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Cyclic pitch for the control of
wind turbine noise amplitude modulation

Franck BERTAGNOLIO1; Helge Aa. MADSEN2; Andreas FISCHER3; Christian BAK4

1,2,3,4 DTU Wind Energy, Technical University of Denmark, Denmark

ABSTRACT
Using experimental data acquired during a wind turbine measurement campaign, it is shown that amplitude
modulation of aerodynamic noise can be generated by the rotating blades in conjunction with the atmospheric
wind shear. As an attempt to alleviate this phenomenon, a control strategy is designed in form of a cyclic pitch
of the blades. As a side effect, it is shown that it is also possible to reduce fatigue load on the blade using
this cyclic pitch. The main goal is to reduce both amplitude modulation and fatigue load without compro-
mising the energy harvested from the wind. A simulation toolthat can model the different aerodynamic and
aeroacoustic aspects of the study is presented. Parameterscontrolling the cyclic pitch are optimized in order
to reduce amplitude modulation and/or fatigue load to a minimum. It is shown that such a minimum can be
found and that benefit may be achieved if such a strategy is to be implemented on an actual wind turbine,
though at the expense of an increased wear and tear of the pitch control system.

Keywords: Wind turbine, Noise, Amplitude modulation
I-INCE Classification of Subjects Number(s): 14.5.4

1. INTRODUCTION
Over the last decade, the size of wind turbines have considerably increased and modern MW-size wind

turbines have rotor diameters approaching 200 m for the largest ones. As a consequence, the aerodynamic
noise has become a critical issue when erecting new wind turbines, especially for on-shore projects. Due to
local noise regulations, wind turbine or farm installationprojects have sometimes to be entirely cancelled.
In some other cases, the operating wind turbines have to be derated in order to comply to these regulations
resulting in direct loss of revenue for the operators.

Recently, wind turbine noise amplitude modulation has comeinto focus as an important source of annoy-
ance (1, 2). One of the possible causes for this phenomenon is found to be a combination of the atmospheric
wind shear and the rotation of the blades, the latter thus alternatively experiencing low and high wind speeds.
This results in a clearly audible modulation of the noise amplitude, sometimes referred to as ’swish’ or
’thumping’. In the present article, we will focus only on trailing edge noise as the main source of noise for
this phenomenon. However it does not preclude that noise amplitude modulation may be generated by other
noise source mechanisms.

In addition to the noise amplitude modulation, wind shear isknown to have an effect on blade fatigue
loads. Indeed, the alternating low and high inflow speed experienced by the blade results in varying inflow
angles onto the blade which are fully correlated along its entire span. Therefore, a periodic aerodynamic
loading is applied on the blade at a frequency defined by the rotor rotational speed. In combination with
gravity loads and atmospheric turbulence, this mechanism contributes significantly to blade fatigue load and
has to be taken into account during wind turbine design. Furthermore, this periodic loading may generate
aeroelastic instabilities if not properly dampened.

In this contribution, a simplified control strategy based ona cyclic pitch of the individual blades is pro-
posed in order to mitigate noise amplitude modulation and fatigue loads due to wind shear. The form of this
cyclic pitch is optimized using a wind turbine model and an optimization code. Using constraints on the
generated power ensures that this control strategy does notresult in loss of harvested energy.

The paper is organized as follows. The phenomenon of interest is studied in an experimental context. Then
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a model that can simulate the relevant aerodynamics and aeroacoustics of the same wind turbine rotor as in the
experiment are described. The optimization algorithm usedto design the cyclic pitch strategy is introduced.
Several optimization configurations are tested and resultsare presented. The paper ends with some remarks
on the present study and possible future work.

2. EXPERIMENTAL EVIDENCE OF ATMOSPHERIC SHEAR EFFECTS ON AERO-
DYNAMICS AND NOISE GENERATION

In this section, measurements performed on a full-scale wind turbine are analyzed. This short study is
intended as an illustration of the phenomenon that is addressed in this paper, namely the impact of the atmo-
spheric shear on the aerodynamics of the wind turbine that causes the amplitude modulation phenomenon as
the blade experiences alternatively low and high incoming velocities as it rotates.

2.1 The DANAERO experiment
In order to improve the understanding of wind turbine aerodynamic and aeroacoustic phenomena, a mea-

surement campaign on a full-scale MW turbine was conducted in years 2009-2010 as part of the research
project entitled DANAERO MW (3, 4). A 40 m wind turbine blade was specifically designed and manufac-
tured by LM Wind Power. It was equipped with a wide array of sensors including structural, aerodynamic
and acoustic measurement devices and installed on a 2 MW windturbine whose main components (i.e. tower,
generator, shaft) were also instrumented. In addition, a meteorological mast erected in the vicinity of the wind
turbine was used to monitor inflow wind conditions (5).

2.2 Wind turbine aerodynamics
As mentioned earlier, in order to illustrate the amplitude modulation phenomenon that is studied in this

article, the chain of events that leads to it are investigated experimentally in this section.
As part of the measurement campaign, the wind velocity was recorded on the meteorology mast at various

heights. 10 mins recorded time-series of these velocities at a chosen time during the campaign are averaged
and plotted in Fig.1. The presence of a mean velocity gradient in the atmosphericboundary layer can be
clearly observed.
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Figure 1 – Atmospheric averaged wind speed profile.

As a consequence of this atmospheric wind shear, two important effects on the wind turbine aerodynamics
can be measured. Firstly, the angle of attack is directly related to the inflow velocity. In Fig.2(a), the time
history of the angle of attack measured at two radii on the blade are plotted as a function of the blade azimuth
positionθ in polar coordinates. Note that the time-series have been averaged over all revolutions of the blade
during the same period of time as when the wind speed gradientwas observed (see above). In other words, the
figure only shows the averaged angle of attack experienced bythe blade at each revolution and atmospheric
turbulence fluctuations are disregarded. In this figure,θ =0 when the blade is pointing upward and the blade
rotates with increasingθ . It can be seen that the blade experiences lower angles of attack when pointing
downward than when pointing upward and that this happens simultaneously at the two blade radii.

Secondly, as the angle of attack increases or decreases in a correlated manner along the blade span, this
results in a periodic aerodynamic loading on the blade. Thisis illustrated by the bending moment in the
flapwise direction that is measured at the root of the blade and displayed in Fig.2(b). As expected, the
flapwise bending moment reaches its maximum when the blade isnearly pointing upward (where the angle
of attack is maximum, hence the loading on the blade is maximum) and its minimum when the blade is
pointing downward.
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It should be noted that the periodic fluctuations of the angleof attack and bending moment are not fully
symmetric with respect to the vertical axis. Indeed, an azimuth shift of the polar curves can be observed and
it is particularly clear for the angle of attack atr=31 m in Fig.2(a). This can be attributed to a hysteresis
effect, the angle of attack response lagging behind (in timeand therefore in azimuth location of the blade) the
instantaneous variations of the inflow wind speed.
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Figure 2 – Polar plots of: (a) Inflow angle of attack, (b) Bending moments.

2.3 Wind turbine aeroacoustics
Although the aerodynamic noise generated by the wind turbine was not measured, high-frequency micro-

phones were flush-mounted into the instrumented blade at 37 mradius. These were used to measure turbulent
surface pressure fluctuations. These microphones have an almost flat frequency response between approx-
imately 100 and 15 kHz. Therefore, they are well-suited to measure spectra that are characteristics of the
noise sources in the boundary layer. These surface pressurefluctuations are designated in the litterature as
pseudo-noise. Even if their energy content is much larger than the emitted noise, a decrease or increase of
their spectral energy at any frequency will have similar effects on the emitted noise in term of spectral energy.

Since we are interested in amplitude modulation of trailingedge noise, a microphone located near the
trailing edge of the blade is selected. Time-series of the measured surface pressure fluctuations are recorded
over several revolutions of the blade (corresponding to therecording time considered in the previous section).
The time-series are truncated into smaller ones which are then binned according to the azimuth position of
the blade at the specific recording time of these smaller time-series. Finally, all smaller time-series are Fourier
transformed and spectra belonging to the same bin are averaged together. In our case, four bins were created
by dividing the rotor plane into four sections of identical 90◦ azimuth intervals. The first one is centered on
the blade pointing upward atθ =0. The second is centered on the blade descending and parallel to the ground
at θ =π/2. The third and fourth ones are centered on the blade pointing downward and the blade ascending
and parallel to the ground, respectively (θ =π and 3π/2).

The measured and averaged surface pressure spectra for the four bins are displayed in Fig.3. Two extreme
cases depending on whether the blade is pointing upward or downward can be observed. In the first case,
spectral energy is higher in the low frequency range and lower in the high frequency range, and vice versa in
the second case. For the blade ascending or descending, the results are somehow in between the two extreme
cases. However, there are some differences which can be explained by the same hysteresis effect that was
observed in the previous section. Indeed, the boundary layer turbulence does not instantaneously respond to
the changes in inflow conditions as the blade rotates and experiences varying wind speed, in the same way as
for the angle of attack.

From measurements performed in wind tunnel (6), it can easily be verified that the observed surface
pressure spectral energy redistributions between low and high frequencies can be directly related to the vari-
ations of the angle of attack. These spectral energy redistributions will furthermore certainly be reflected on
the far-field noise in a similar manner. The above described mechanism is readily the amplitude modulation
phenomenon that we are interested in.

3. ROTOR MODEL
In this section, the models used to simulate the rotor aerodynamics and noise generation are described.

Inter-noise 2014 Page 3 of8
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Figure 3 – Surface pressure spectra binned according to blade azimuth position.

3.1 Rotor blade momentum model
The present model for the rotor aerodynamic is based on the classical Blade Element Momentum (BEM)

theory (7). The fluid volume flowing across the rotor is discretized into co-axial flow tubes on which this one-
dimensional theory is applied. The local aerodynamic loading (lift and drag) on a blade airfoil section at a
particular radius and azimuth location of the rotor plane isknown as a function of the local inflow conditions,
which are primarily defined by the incoming wind velocity at this particular height and the angular velocity
of this section due to rotation at this particular radius. The solution method consists in finding an equilibrium
between the local loading on the blade section and the local induction factors (along the mean flow direction
and along the angular velocity vector) that are used to account for the local deformation of the flow created
by the blade loading. This local deformation in turn modifiesthe local relative inflow velocity and angle of
attack on the blade airfoil section and thereby the aerodynamic loading. Equilibrium is reached through an
iterative procedure. Corrections for tip and and root losses using Prandtl’s corrective function (8) are included
in the present model.

The geometric and operational characteristics of the wind turbine, including yaw, tilt, blade pitch, blade
twist/thickness/chord radial distributions, and rotational speed can be specified and are taken into account
accordingly at the local rotor locations. As for the incoming flow conditions, mean wind speed, wind shear,
inflow turbulence intensity and integral length scale can besimilarly specified to determine the local flow
conditions across the rotor plane.

As a closure for this BEM rotor model, the aerodynamic loading on the blade airfoil sections as a function
of the local angle of attack has to be specified. In order to evaluate rotor loads and performances such as
thrust, torque, power, etc., engineers usually resort to tabulated 2D data for the particular airfoil profiles used
along the span of the blade. These data may for example originate from wind tunnel measurements and are
usually corrected for 3D effects that generally become significant near the root of the blade. In our case, an
additional approach is also used. Since the trailing edge noise model introduced later in Section3.2requires
informations about the turbulent boundary layer characteristics (such as boundary layer velocity profile and
thickness near the trailing edge), the flow is assumed to be locally two-dimensional and the XFOIL code (9)
is used at each blade section to evaluate iteratively the local aerodynamic loading and induction as described
above. Note that if the former approach using tabulated 2D data for calculating the rotor aerodynamics is
used, then the local trailing edge boundary layer characteristics are also obtained using XFOIL results, but
for which the local inflow velocity and angle of attack are directly extracted from the rotor calculation with
tabulated data.

For all calculations, the rotor plane is discretized into 16blade sections along the blade span from the root
to the tip and 16 angular sections in azimuth.

3.2 Noise model
The hypothesis behind this study is based on the fact that amplitude modulation is generated by the

combination of trailing edge noise as the main source of noise and the rotation of the blade as the mechanism
for modulation of the noise amplitude. Therefore, only trailing edge noise will be simulated in the results
presented in this article.

Trailing edge noise is produced by the convection above the trailing edge of the vortices generated in
the turbulent boundary layer developing on an airfoil surface, resulting in a scattering phenomenon. In our
case, the so-called TNO model originally derived by Parchen(10) is used. It is mainly based on previous
works as follows. Using the total enthalpy as a main unknown for formulating an equivalent to the Lighthill
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analogy (11), Howe (12) proposed a theory that describes the trailing edge noise mechanism. Combining the
previous theory with the derivation of the surface pressurespectrum beneath a turbulent boundary layer as
originally proposed by Kraichnan (13) and extended by Blake (14), Parchen (10) (see also Moriartyet al (15))
develops a methodology, the so-called TNO model, to predicttrailing edge noise based on 2D Reynolds-
Averaged Navier-Stokes calculations of airfoil flows.

Recently, the authors derived an improved version of the model that accounts for the turbulence anisotropy
in the boundary layer in the presence of an adverse pressure gradient (16, 6). This version of the model will
be used in this article. In addition, since the present studywill involved an optimization technique that will
require numerous model evaluations, the Computational Fluid Dynamics approach of the original TNO model
will be replaced by a faster and simpler approach for boundary layer calculation during this optimization
process. The XFOIL software will be used for that purpose (9). It is based on a panel method to compute the
flow around the airfoil and it is coupled to an integral boundary layer formulation. Detail about its coupling
to the TNO noise model has been described in earlier works (15, 17).

The emission noise is calculated at each radial section and each azimuth angle location of the discretized
rotor plane as defined in the previous section. The local aerodynamic characteristics calculated by the BEM
method and the XFOIL code on this mesh are used as input for thetrailing edge noise model. Note that the
far-field noise that will be used to define the cost function during the optimization procedure in Section5 is
estimated at 50 m downstream of the rotor at hub height. This is done in order to minimize the influence of
directivity effects on the results. Indeed, these effects are known to produce a localization of the aerodynamic
blade noise at specific locations on the rotor disk (18). As the blades rotate, this leads to an acoustic behaviour
associated to amplitude modulation. However, in the present work we are not interested in this particular
phenomenon which is more dependent on the receiver’s location than the pitch control strategy.

4. OPTIMIZATION METHODOLOGY
The optimization problem that will be defined later in this paper will require the minimization of a cost

function subject to constraints. However, no information will be available concerning the cost function and
constraints derivatives with respect to the design variables. An algorithm able to deal with this kind of problem
is presented below.

4.1 Generalized pattern search method
The optimization algorithm used in this work is an in-house implementation of the method proposed by

Bookeret al (19). It is an extension of the pattern search method which convergence has been proven by
Audetet al (20).

The basic idea behind the pattern search framework is that the design space is restricted to lie on a mesh
which can be refined as a local minimum is approached. Therefore, cost function and constraints are only
evaluated for points located on this mesh (or meshes if refinement is considered). The algorithm involves
two steps: a ’search’ step and a ’poll’ step. Each step is deemed successful if it finds a mesh point that
improves the cost function and satisfies the constraints. The exploratory search step may use virtually any
strategy to attempt to reduce the cost function. The goal of this step is to increase the convergence rate of the
method toward a global or local minimum, but is not necessaryfor the convergence of the algorithm itself.
Convergence is ensured by the poll step where points neighbouring the current best point on the mesh are
evaluated to check if the current best point is a mesh local optimum. The set of neighbouring poll points are
required to generate an+1 positive basis (wheren is the dimension of the design space) in order to ensure
convergence (20).

The iterative procedure consists in performing search steps until one fails, i.e. until no mesh point improv-
ing the cost function is found. Then, a poll step is performed. If it is successful, then the algorithm switches
back to search steps as above. Note that the mesh may be coarsened at this stage. If no neighbouring point im-
proving the cost function is found during a poll step, then the mesh is refined and the above search/poll steps
sequence is continued on this finer mesh. This process is iterated until the mesh refinement has reached a user-
defined limit and the poll step is unsuccessful. The issue of handling the constraints and proving convergence
has been discussed by Audetet al (21).

Note that in our case, various strategies for the search stepare implemented. In particular using the clas-
sical Simplex method to generate exploratory directions were found to be quite effective for the present kind
of problems. But a detailed description of these strategiesis beyond the scope of this paper.

Inter-noise 2014 Page 5 of8
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5. OPTIMIZED PITCH CONTROL
The design procedure used in this paper makes use of the optimization algorithm introduced in the previ-

ous section and is based on the wind turbine aerodynamic and noise model presented in Section3. A model
configuration with similar conditions as the test wind turbine which was discussed in Section2.1 is used as
reference.

5.1 Choice of design variables
The control strategy proposed within this article is definedas an individual cyclic pitch of the blades

around a given fixed pitch. In other words, the same pitch variation as a function of azimuth is applied to each
blade during a revolution according to their respective azimuth locations. Furthermore, the pitch function as
a function of the azimuth position is assumed sinusoidal with a period equal to one revolution of the blade.
Therefore, the design variables for the optimization algorithm are the amplitude of the pitch variation and its
phase relative to a reference position of the blades (say, the blade pointing upward).

Yaw is known to have an effect on cyclic loads. Therefore, a yaw error was introduced as a design variable
in the optimization algorithm, in addition to the two previous ones, in order to measure its impact on the
results. Although a small yaw error (of the order of 2 to 3◦) can be beneficial, differences in the performances
of the resulting optima were found to be only marginal and arenot presented here.

5.2 Cost function and constraints
As mentioned earlier, the main goal of this study is two alleviate two phenomena undesirable for wind

turbine operation:
• aerodynamic noise amplitude modulation, and
• cyclic loading on the blades.
To achieve this, this two aspects are quantified and the cost function for the optimization algorithm is

defined from these values.
The wind turbine model gives access to the trailing edge noise spectra generated by each blade section as a

function of the azimuth position of the blade on the discretized rotor disk (see Section3). These noise spectra
can firstly be integrated across the whole frequency range yielding a sound pressure level (SPL). Secondly,
the SPLs can be further integrated along the blade span to form an equivalent SPL characteristics of the whole
blade and function of its azimuth location. Noise amplitudemodulation is then quantified as the difference
between the maximum and the minimum of the blade SPL during one revolution of the blade.

Note that using the maximum of the sound pressure spectral energy (instead of integrating across fre-
quency) was also tested. However this yielded very similar results. Indeed, most of the spectral energy is
located near the frequency where it reaches its maximum.

Similarly, the aerodynamic loading on each blade sections can be integrated over the blade span to define
the moment exerted at the root of the blade. Then, the periodic amplitude of the resulting azimuth dependent
time-series is used as a measure of the cyclic loading.

Both quantities are normalized by the equivalent quantity for the reference turbine, which will be used as
an initial guess for the iterative optimization algorithm.Three cost functions are defined. The first one consists
only of the cost associated to the noise modulation. The second one consists only of the cost associated to the
aerodynamic loading. And the third one is created by equallyweighting the two normalized values.

Finally, constraints are enforced to preserve the characteristics of the reference turbine model. The first one
consists in ensuring that the power generated by the wind turbine with cyclic pitch cannot be smaller than the
one generated by the reference turbine model. Two additional constraints ensure that the maximum flapwise
bending moment and the maximum SPL at all blade azimuth locations are smaller than those calculated for
the reference turbine.

5.3 Results
The results from the optimization procedure are displayed in Figs. 4(a-b). The first figure shows the

integrated SPL as a function of the azimuth for the three types of cost function as defined above, whereas the
second shows the flapwise bending moment. It can be seen that the three cost function definitions achieve
amplitude reductions for the two quantities of interest. Asexpected, equally weighting the cost function gives
intermediary results.

Quantitative results are given in Table1 where the rotor power together with the amplitude ranges of
the SPL and the flapwise bending moment are reported. It can beseen that significant reductions of noise
amplitude modulations are achieved in the two cases where the cost function includes the SPL. Note that
these two optima also yield a small increase in rotor power. Surprisingly, the case for which the cost function
only involves the flapwise bending moment results in lower reduction of the moment amplitude than the
previous cases. This is attributed to the fact that the iterative optimization algorithm probably got stucked at
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Figure 4 – Polar plots of: (a) SPL integrated along blade; (b)Flapwise bending moment.

a local optimum and failed to achieve further reduction of the cost function.

Table 1 – Performances for reference case and optimized cyclic pitch operational conditions.

Case Power, kW SPL amplitude, dB Flapwise mt. amplitude, kNm

Reference 1540 14.20 337.5
Cost SPL only 1554 1.965 165.8
Cost bending mt. only 1540 9.305 207.1
Cost SPL+bending mt. 1553 2.177 126.7

6. FINAL REMARKS
Using a wind turbine simulation tool, it was shown in this paper that individual cyclic pitch of the blades

of an horizontal axis wind turbine can be used to reduce both noise amplitude modulation and blade fatigue
load without reducing the energy output of the turbine. The specific control strategy for the cyclic pitch was
optimized ultimately yielding potential improvement of the cost of energy of a wind turbine.

Nevertheless, the results obtained in the present study remain theoretical and have to be implemented
on an actual wind turbine to validate the potential of such a control strategy. Indeed, a cyclic pitch has a
significant impact on the design and choices made for the mechanical devices that actuate the pitch of the
blade, which costs have to be evaluated to complete this study.

Finally, it is important to point out the fact that the present optimization study was performed in ideal
conditions since atmospheric turbulence was not included in the simulation. In the case of a large atmospheric
turbulence intensity, its impact on the flapwise bending moment and on the noise amplitude modulation may
exceed that of the wind shear combined with the rotation of the blade as described in this paper. This may
render the above control strategy useless for the specific purpose for which it was implemented. Such analysis
will be performed in future work.
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