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Overview

1) We planned to use the mesoscale model WRF for this study. At

the moment I began (20111001) there was no wind farm desciption

included in WRF.

→ A new parametrisation had to developed from scratch.

This month (hopefully) the introduction/validation of the

parametrisation will be submitted.

2) Study of the atmospheric impact and ocean feedbacks in the

external stay.
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1) Wind Farm parametrisation

From WRFV3.2.1 a wind farm parametrisation was included, which has been used
from that point on the reference (U. Blahak, 2010):

Tk =
CtNij Ak V

2
h,k

2 (∆x)2 ∆zk


Ct = min(7Cp/4, 0.9)

Nij the number of turbines in the grid

Ak turbine blade intersecting with level k

Vh,k horizontal velocity

It adds turbulence proportional to the power extracted by the turbine:

∂tkek
∂t

=
∂tkek
∂t

+ Ctke
Nij Ak V

3
k

(∆x)2 ∆zk

{
Where tke = u′2i /2, i ∈ 1, 2, 3

Ctke = Ct − Cp
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1) Wind Farm parametrisation (”EWP” Wind Farm)

From the diffusion equation, one can obtain the typical length scale `:

(1) `2 =
2Km

U0
x+ `20


Km is the turbulence coefficient for momentum

`0 the initial length scale

U0 background hub-height velocity

Assumption: In the far wake the ensemble average will be Gaussian. then U
becomes:

(2) U(z)︸ ︷︷ ︸
Wake velocity

= U0(z)︸ ︷︷ ︸
Upstream velocity

− Usf(z)︸ ︷︷ ︸
Velocity deficit

where f = e−
1
2(

z
`)

2

.

Using (2) we can obtain Us from the thrust equation:

Us

`

1

2
CtA0U

2
0 = W

zmax∫
0

U(U0 − U) d z


Ct is obtained from the thrust curve

W is the width of the wake

zmax is the height of the domain
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Recovery
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Wind Farm Parametrizations, Horns Rev I

1) Drag formulation f(∆z). Sub grid scale wake expansion achieved with additional
turbulence kinetic energy source term.
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2) Drag formulation, but does not depend on ∆z. Explicit wake expansion (diffusion
equation). Assumption: inside a grid cell additional turbulence and enhanced
dissipation balance (due to its small length scale compared to the grid size).
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Technical aspects EWP scheme

• Real cases

• Nested runs

• Rotated grids

• Shared memory + Distributed memory

Additional option: ”Coupling” of microscale models Tm = f(U, θ)
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External stay, UCLA

Real Case complete 2009, Californian Coast

200 7MW turbines. Hub height

125 m and the radius is 63 m.

Expensive:

D1: 6 km (230×250×60)

D2: 2 km (259×250×60)

For the IC and BC we use NARR (North American

Reanalysis 32 km) data only.
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Preliminary Results, January 1st 15h steady conditions

|U | = 10ms−1 ± 2ms−1

θ = 265◦ ± 10◦
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Preliminary Results, January 1st 15h steady conditions

9h average in the WF 9h average of cross section through the WF
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Cold/moist air is transported
upwards into the inversion layer,
causing cooling and moisturing of
the inversion layer. We notice
the horizontal advection 100 km
downstream.
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