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ABSTRACT — A magnetic material in an externally applied magnetic field will in general experience a spatially varying internal 
magnetic field due to demagnetizing effects. When the performance of active magnetic regenerators (AMRs) is evaluated using 
numerical models the internal field is often assumed to be spatially constant and equal to the applied field, thus neglecting the 
demagnetizing field. Furthermore, the experimental magnetocaloric properties used (adiabatic temperature change, isothermal 
entropy change and specific heat) are often not corrected for demagnetization. The demagnetizing field in an AMR is in general 
both a function of the overall shape of the regenerator and its morphology (packed particles, parallel plates etc.) as well as the 
magnetization of the material. Due to the pronounced temperature dependence of the magnetization near the Curie temperature, 
the demagnetization field is also temperature dependent. 
We propose a relatively straightforward method to correct sufficiently for the demagnetizing field in AMR models. We discuss 
how the demagnetizing field behaves in regenerators made of packed spheres under realistic operation conditions. 

1. INTRODUCTION 
A magnetic body, i.e. a body with a non-zero magnetization, generates a magnetic field. In zero applied field, a soft ferromagnetic 
body will contain magnetic domains, each with a unidirectional magnetization, but with varying orientation from domain to 
domain. It is energetically favorable for the domains to arrange themselves such that the total (vector) sum of the magnetization of 
the sample, i.e. the observed magnetization, will be zero. Upon application of an external magnetic field, Happ, the domains will 
tend to align with the applied field and thus make the total magnetization different from zero. At some relatively low field (of the 
order 0.1 T for the soft materials we consider) the domains will almost be aligned, and the measured magnetization will be close to 
the intrinsic magnetization; see Ref. [1] elsewhere in these proceedings for a phenomenological discussion of this. 

The total field both inside and outside the magnetized body will differ from the applied field due to this demagnetizing field. This 
may be expressed in the following relation: 

 
demapp HHH += , (1)  

where the applied field is Happ and the demagnetizing field is Hdem. For certain geometries it is possible to derive analytical 
expressions for the demagnetizing field. Examples of this are ellipsoids, infinite sheets and infinite cylinders. In these cases the 
demagnetizing field (inside the magnetized body) is exactly: 

 MNH −=dem . (2)  

The magnetization is denoted by M and the demagnetizing tensor is N . For a sphere this reduces to a tensor with a value of 1/3 on 
the diagonal entries and zero elsewhere, which is typically formulated simply as a scalar N. For an infinite cylinder the tensor also 
reduces simply to a scalar N with the value zero when magnetized along the axial direction while it is 0.5 upon magnetizing in the 

radial direction. Analytical formulae for N  are available for the general ellipsoid in the literature [2]. Assuming a spatially constant 
magnetization it is possible to analytically find an average demagnetization factor in a rectangular prism [3] and a finite cylinder 
[4]. 

Outside the magnetized body the field will in general vary spatially; for a sphere, the field is that of a dipole. For a rectangular 
prism the field it produces may be calculated approximately by discretizing the prism into small rectangular prisms within which 
the magnetization is assumed to be constant; see Ref. 3 for such detailed calculations.  

In an active magnetic regenerator (AMR) both the internal field inside the solid refrigerant and the external field generated by the 
magnetization of the solid are of considerable importance. The internal field determines the magnitude of the magnetocaloric effect 
while the external field contributes to the total field throughout the regenerator (and to a minor extent in the magnetic field source). 
Even with a perfectly homogeneous applied field the field over the regenerator will not be spatially constant. Furthermore, as the 
temperature of a regenerator in operation varies from the hot end to the cold end, the effect of the demagnetizing field is larger at 
the cold end due to the increase in magnetization as the temperature is lowered. In the following we discuss various practical 
methods for calculating the magnetic field distribution in an operating AMR, i.e. in cyclic steady-state.  
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2. METHODS 
The framework for calculating the field in a stack of parallel plates under non-uniform conditions has been presented elsewhere 
[5],[6]. Essentially, the plates are discretized into small rectangular prisms inside which the magnetization is assumed to be 
constant. The stray field from such a prism is then found analytically and the vector sum of the stray fields of the prisms and the 
applied field is then the total field. By allowing for a variation of the magnetic properties with temperature through an appropriate 
state function it is possible to completely model the detailed 3D structure of the magnetic field in an AMR. It is assumed in such a 
scheme that the stray field from the regenerator does not influence the magnetic field source.  

A similar approach has recently been developed for an AMR consisting of packed spheres [7]. Assuming perfect spheres the stray 
field of each sphere is that of dipole. The resulting magnetic field may then be found at any position r in space as the vector sum of 
each of the individual dipoles. With this approach it is even possible to model a regenerator with spheres with different diameters. 
The equations solved may be written as (for calculating the field at the location r): 
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Here n is the number of spheres. The last equation (5) gives the field, Hi, in the i’th sphere located at the position r with N=1/3. 
Equations (3)-(5) are solved iteratively for Hi and Mi. 

Combining the magnetostatic model with an AMR model, i.e. a model solving the coupled partial differential equations (PDEs) 
governing heat transfer in the fluid and magnetocaloric solid is in principle straight-forward. These PDEs may be expressed as: 
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Here, the density is ρ, the specific heat is c, temperature is T, time is t, the velocity field is u, thermal conductivity is k, convective 
heat transfer coefficient h, specific surface area as, the total entropy is s and the porosity of the regenerator is ε. It is here important 
to emphasize that Eqs. (6)-(7) are derived assuming volume averages, i.e. the individual particles / spheres are not spatially resolved 
here. 

The equations (3)-(5), or the equivalent equations for geometries other than packed spheres, are strongly coupled with the 
governing equations for the AMR (Eqs. (6)-(7)): The temperature field inside the regenerator is determined by the total magnetic 
field, which in its turn depends on the temperature through the magnetic equation of state. The full solution to the problem may 
thus, in principle, be obtained by solving the above mentioned equations with an appropriate state function for the magnetization 
and an expression for the total entropy of the regenerator solid (magnetocaloric material). 

In terms of computational time, however, there is a rather large difference in convergence times for the two sets of equations. 
Equations (3)-(5) have to be solved at each time step in the time evolution of Eqs. (6)-(7). For realistic regenerator geometries the 
solution for the magnetic field takes of the order tens of minutes whereas a single timestep in the regenerator equations is of the 
order milliseconds (on the same hardware). Furthermore, the modeled AMR geometry is typically simplified into 1D or 2D porous 
medial models, i.e. exploiting continuum averages. The reason for this is that for geometries like packed spheres and similar 
structures resolving the full heat transfer and fluid flow problem is simply not realistic. The level of detail in the two models is 
therefore not the same and it may be justifiable to simplify the spatially resolved magnetostatic calculations when applied in an 
AMR model. 

Such a scheme has previously been suggested [8]. Assuming that in periodic steady-state operation the temperature distribution in 
an AMR is linear and the applied field profile is given as a function of space and time a scalar field coupling the two models may be 
defined as: 



6th IIF-IIR International Conference on Magnetic Refrigeration 
Victoria, BC, 7-10 September 2014 

 

  3 
 

 

))(),,((
),(),(

),( app

rr
rr

r
TtHM

tHtH
tK

−
≡  (8)  

 ))(),((),(),( AMRappAMR rrrr THMtKtHH −=  (9)  

Note that the magnitudes of the fields and magnetization are used here. In Eq. (9) the magnetic field HAMR denotes the magnetic 
field applied in the AMR model (Eq. (7)), i.e. Eq. (9) is solved iteratively at each timestep while temporally evolving Eqs. (6) and 
(7). HAMR is the field, which the magnetocaloric effect is calculated from. It is important to distinguish the total magnetic field, H, 
found through solving Eqs. (3)-(5) and HAMR. The former is represented by the definition of the K field (Eq. (8)), which is then used 
in Eq. (9) to find the field needed in the AMR model.  

3. RESULTS 
As an example of calculating the internal magnetic field in a packed sphere structure the model was applied to the case of equal-
sized spheres ordered in a regular simple packed structure. The resulting field (on the surface of the cube) is visualized in Fig. 1. 
The temperature and the applied field are constant. Notice that the color scale varies only a little over 0.1 T and so the resulting 
field is quite homogeneous for this case.  

Prototype modeling 
The model presented above has been applied in the design 
of the new magnetic refrigeration prototype at DTU 
presented elsewhere in these proceedings [9]. Following the 
procedure explained above this was used to find the internal 
field in the regenerator as the magnet rotates. Thus both the 
temporal and spatial variation of the applied field is taken 
into account when calculating the internal field. In 
combination with the flow profile this gives rise to some 
asymmetry in the internal field distribution in each 
regenerator bed. This is visualized in Fig. 2 half-way 
through the cold-to-hot blow period in one regenerator bed. 

The internal field is greater at the hot end than at the cold 
end is merely due to the temperature gradient, i.e. the 
magnetocaloric material (here gadolinium) is more magnetic 
at the cold end. The internal field is also seen to peak 
roughly down through the center of the bed. This is caused 
by the fact that the applied field and the flow profile are 
synchronized so that half-way through a blow period the 
applied field peaks in the middle of the regenerator, i.e. the 
regenerator operation is balanced in terms of flow and 
applied field. 

In Figure 3 an example is given of the importance of taking 
demagnetizing effects and the significant spatial variation 

of the applied field into account. The cooling power (at a temperature span of 30 K) is plotted as a function of the number of 
regenerators in the prototype. As this number increases the width of the individual bed decreases and the field applied to each 
individual regenerator is thus increasingly homogeneous resulting in a better performance. 

 

Fig. 1. An example of the magnetic field applied to packed 
spheres. The spheres are structured in a regular simple pack. The 
applied field is homogeneous and equal to one tesla (the direction 
is indicated by the arrow). The colorbar shows the internal field 
magnitude in the spheres (in units of tesla).  
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4. CONCLUSION 
The effect of demagnetization in active magnetic regenerators was presented in general. Specific models for handling parallel-
plates and packed sphere geometries were discussed with emphasis on the internal magnetic field. The model for handling packed 
spheres in a demagnetization context was applied in the design of a new prototype built at DTU. The results indicate the 
importance of including both the effect of demagnetization as well as the effect of a spatially varying applied field (at any instant 
in time) for accurately capturing the relation between the spatially varying magnetocaloric effect and the fluid flow profile. 
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Fig. 2. The internal magnetic field modeled in the new prototype at DTU (Ref. [9]) as a function of flow direction 
(length of the magnet) and direction of rotation (azimuthal direction) for a specific regenerator (90x18 mm). The color 
bar shows the value of internal field in tesla. Note that the AMR is in cyclic steady-state and the cold side is at 0 mm 
while the hot side is at 90 mm in the flow direction. The temperature span is 30 K and the external field varies both in 
the flow direction and the direction of the regenerator width. Left: After 25 % of the AMR cycle (where the applied 
field is maximum). Right: After 50 % of the AMR cycle (where the applied field is half-way between maximum and 
minimum values). Note the color scales are not the same. 

 
Fig. 3. Modeled cooling power as a function of the number regenerator 
beds in the DTU AMR prototype. As the number of beds is increased 
the width of each bed is smaller resulting in an increase in 
performance. 
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