
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Coating, Degrading and Testing of Organic Polymer Devices - Reducing the route from
Laboratory to Production scale devices

Dam, Henrik Friis; Krebs, Frederik C

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Dam, H. F., & Krebs, F. C. (2013). Coating, Degrading and Testing of Organic Polymer Devices - Reducing the
route from Laboratory to Production scale devices. Department of Energy Conversion and Storage, Technical
University of Denmark.

http://orbit.dtu.dk/en/publications/coating-degrading-and-testing-of-organic-polymer-devices--reducing-the-route-from-laboratory-to-production-scale-devices(76489eb8-bf54-4241-a799-85502845096c).html


Coating, Degrading and Testing of Organic Polymer Devices - 
Reducing the route from Laboratory to Production scale devices 
Henrik Friis Dam
Department of Energy Conversion and Storage
Ph.D. Thesis, August 2013

Department of Energy Conversion and Storage
Technical University of Denmark
Risø Campus
Frederiksborgvej 399
4000 Roskilde
Denmark
www.ecs.dtu.dk ISBN 978-87-92986-06-1

Coating, D
egrading and Testing of O

rganic Polym
er D

evices -Reducing the route from
 Laboratory to Production scale devices    

 H
enrik Friis D

am
      

 
     A

ugust 2013





 

 

Coating, Degrading and Testing of 
Organic Polymer Devices 
Reducing the route from Laboratory to Production 
scale devices  
 
Ph.D. Thesis 

Henrik Friis Dam 

 

August 2013 

 

  



 

Coating, Degrading and Testing of Organic Polymer Devices 
Reducing the route from Laboratory to Production scale devices 
 
 
August 2013 
 
By 
Henrik Friis Dam 
 
 
Sponsorship:  
 

The project was financed through the Danish Strategic 
Research Council (2104-07-0022). 
 

Academic advisor: 
 

Professor Frederik C. Krebs 
Functional Organic Materials, Department of Energy Conversion and 
Storage 
 

Copyright: Reproduction of this publication in whole or in part must include the cus-
tomary bibliographic citation, including author attribution, report title, 
etc. 

  
Cover photo: 
 

Images on the cover shows: Mini Roll Coater (MRC), as presented in chap-
ter 2; Polymer tandem solar cell, as presented in chapter 5; Solar Cell Test 
Platform, as presented in chapter 8. 
 

Published by: Department of Energy Conversion and Storage, Frederiksborgvej 399, 
Building 775, 4000 Roskilde, Denmark 
 

ISBN: 978-87-92986-06-1 



 

 

 

 





 

i 

 

Preface 

This thesis presents the highlights of my work carried out as a Ph.D. student at the 

Technical University of Denmark in the period from August 9, 2010 until August 1, 

2013 in the Functional Organic Materials section in the Department of Energy Conver-

sion and Storage. The work has been funded by the Danish Strategic Research Council 

(2104-07-0022) and completed under the supervision of Prof. Frederik C. Krebs. 

 During my three years as a Ph.D. student I have had the chance to work with some 

really great people and spend my time with a wide range of subjects as is also reflected 

by the range of the subjects within this thesis.  

 I want to thank my supervisor Frederik C. Krebs for the support of this work and for 

the possibility of working on so many different subjects for the last three years. For his 

countless ideas and suggestions, and for allowing me the freedom to be my own guide, 

through the topics and ideas that have been spawned. 

 A special thanks goes to David M. Tanenbaum, who while visiting as a guest re-

searcher had a tremendous influence on my introduction to the field of organic mate-

rials and to Thomas Andersen, who has been a faithful lab partner during the last year 

through both ups and downs of making an uncountable number of solar cells. I would 

like to thank all the colleagues from the Functional Organic Materials section 

 For my stay abroad, which was completed in the Newcastle University Australia 

group of Paul Dastoor, to whom I owe gratitude for a wonderful time learning about a 

different approach to organic photovoltaics, and about the Australian culture and their 

warmth. A special mention goes to Ben Vaughan, Nicolas Nicolaidis, Natalie Holmes 

and Glenn Bryant. 

 Finally, a thanks to my friends and my family, for their support and acceptance of 

the very limited communication coming out of the thesis writing bubble. 

 

Roskilde, August 2013 

  



 

ii 

 

  



 

iii 

 

Abstract 

Organic electronics is a vast and fast improving research area, with widespread uses 

proposed since the 1991 discovery of semiconducting polymers.  

 

 The premise of this thesis is based on finding more effective ways towards making 

cheap organic electronics and enabling a shorter path from the lab scale manufactur-

ing of organic electronics to the large scale manufacturing, by downscaling some of the 

methods used in full size roll to roll (R2R) coating techniques into a lab scale setting. 

The enabling of similar techniques in both lab and production settings allows an opti-

mization in the lab to be more directly transferred to the production environment, in 

contrast to the presently often used spin coating technique, for which optimizations of 

parameters are close to impossible to transfer to the larger scale operations. 

 Therefore a mini lab scale roll coating system was developed to enable lab scale 

fabrication of organic electronic devices, using the techniques of the larger R2R sys-

tems.  

 The lab scale slot-die roll coating technique reported, not only allow a faster route 

from lab scale to production scale, but also has the added advantage of a smaller ma-

terial consumption. The solution volume, which for spin coating allowed making a sin-

gle 1 cm2 device, using the mini roll coater (MRC) enable the coating of a 100 cm2 area, 

resulting in 60 1cm2 devices with the present mask designs. With the relative expen-

sive polymers, this translates into a large saving for performing the same amount of 

tests, not to mention the saved time in the preparation of the devices. 

 The lab scale roll coater system was used to manufacture a range of solar cells from 

different polymers, testing the influence of thicknesses, and post treatment processes. 

It was used to fabricate tandem solar cells with several thousand cells manufactured in 

the process for creating a recipe that would allow a wet processed layer on layer coat-

ing to function without having penetration and dissolution through the up to 12 sepa-

rately printed layers. 
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 Testing and analysis of a nanoparticle based method with water used as the 

transport agent for the active layer inks in solar cells was conducted, with a primary 

focus on testing the morphology of the nanoparticles. This type of ink could allow a 

more environmentally friendly production of solar cells, due to a lower use of organic 

solvents, while further allowing a new level of control for the active layer morphology. 

 Besides solar cells, the lab scale coating method was applied to both electrochromic 

devices and light emitting electrochemical cells. In these cases relatively large devices 

could be manufactured, without the use of protective atmospheres and without using 

evaporated electrode materials. The performance of the devices was lower than the 

state of the art, however this was to be expected due to the proof of concept manu-

facturing. 

 Finally a section has been included on the use of an open source electronic platform 

with a dedicated sourcemeter board developed to test solar cell devices without the 

need of expensive multipurpose source meters. This also shows the potential for 

stand-alone test, especially relevant for the various outdoor test conducted around the 

world and for the logging of various high-impact parameters, such as temperature, 

humidity and solar insolation. 

 



 

v 

 

 
Resume 

Organisk elektronik er et stort og hurtigt udviklende forskningsområde, med mange 

forskellige anvendelser foreslået siden opdagelsen af halvledende polymerer i 1991. 

 

 Præmissen for denne afhandling har været at finde mere effektive måder at frem-

stille billig organisk elektronik og muliggøre en kortere vej fra laboratoriet til produkti-

onsskala. Dette er forsøgt ved nedskalering af metoderne der bruges i fuldskala rulle til 

rulle (R2R) coating teknikken, til laboratoriebrug.  Brugen af lignende teknikker i både 

laboratoriet og produktionen tillader optimeringer i laboratoriet bliver overført direkte 

til produktionen, i modsætning til den nuværende spin-coating teknik, hvor optimerin-

ger er stort set umulige at overføre til stor skala produktion. 

 En mini laboratorieskala rulle coater (MRC) blev derfor udviklet, med henblik på fa-

brikation af laboratorieskala organisk elektronik ved brug af teknikkerne fra de større 

R2R maskiner. 

 Den rapporterede laboratorie slot-die rulle coating teknik tillader udover en hurti-

gere rute fra laboratoriet til produktion også et mindre materiale forbrug. Mængden af 

opløsning som er påkrævet ved brug af spin-coating til at fremstille en enkelt 1 cm2 sol 

celle, rækker ved brug af mini rulle coateren (MRC) til at coate et 100 cm2 areal, hvilket 

resulterer i 60 1cm2 sol celler ved brug af the nuværende maskedesign. Med de relativt 

dyre polymerer betyder dette at der opnås en stor besparelse for udførelse af samme 

mængde forsøg, både i tid og penge ved fremstilling af sol cellerne. 

 Laboratorieskala rulle coateren er blevet brugt til at fremstille en række solceller 

ved brug af forskellige polymerer, hvor indflydelsen fra tykkelser og efterbehandlings-

processer blev undersøgt. Den er blevet brugt til at fremstille tandem solceller, med 

fremstilling af flere tusind solceller fremstillet undervejs, for at finde en opskrift der til-

lod våd processering af lag på lag coatings uden at der opstod gennemtrængning eller 

opløsning af de optil 12 separat printede lag. 

 



 

vi 

 

 En test og analyse af en metode baseret på nanopartikler, med brug af vand som 

transportmiddel for aktivt lag blækket blev udført, med et primært fokus på test af 

morfologien af nanopartiklerne. Denne blæktype kan muliggøre en mere miljø venlig 

fremstilling af solceller, grundet et lavere forbrug af organiske solventer, mens et nyt 

niveau af kontrol med morfologien af det aktive lag kan opnås. 

 Udover solceller, er laboratorieskala coate metoden brugt til både at fremstille elek-

trokrome enheder og lys emitterende elektrokemiske celler. I begge tilfælde kunne re-

lativt store enheder fremstilles, uden brug af en beskyttende atmosfære og uden brug 

af pådampede elektrode materialer. Enhedernes ydelse var noget lavere end førende 

eksempler, hvilket dog også var forventet grundet proof-of-concepts fremstillingen. 

 Endelig er der inkluderet en sektion om brugen af en open source elektronik plat-

form med et dedikeret source meter printkort udviklet til test af solceller uden brugen 

af dyre multifunktions source metre. Dette afsnit viser også potentialet for selvdrevne 

tests, hvilket er specielt relevant for forskellige udendørs tests gennemført rundt om-

kring i verden, og for registrering af forskellige betydningsfulde parametre, såsom 

temperaturen, luftfugtigheden og sol indstrålingen på solcellen. 

 

 

  



 

vii 

 

 

 





 

ix 

 

Content 

1. INTRODUCTION .............................................................................................................. 1 

1.1 Conjugated Polymers ................................................................................................................... 1 

1.2 Solar cells ..................................................................................................................................... 3 

1.3 Substrates .................................................................................................................................... 8 

1.5 Description of chapter contents ................................................................................................. 10 

1.6 Summary .................................................................................................................................... 12 

References ................................................................................................................................... 13 

2. ROLL COATING ............................................................................................................. 19 

2.1 Laboratory roll 2 roll coater ........................................................................................................ 19 

2.2 Development of mini roll coater ................................................................................................. 20 

2.3 Slot-die head design ................................................................................................................... 22 

2.4 Screen printed top electrodes .................................................................................................... 27 

2.5 Flexographic printing head ......................................................................................................... 28 

2.6 Ink supply system ....................................................................................................................... 29 

2.7 Development of Micro roll 2 roll coater for X-ray analysis purposes .......................................... 33 

2.8 Flatbed slot-die coater ............................................................................................................... 34 

2.9 Summary .................................................................................................................................... 35 

References ................................................................................................................................... 36 

3. ORGANIC SINGLE JUNCTION SOLAR CELLS ......................................................... 37 

3.1 Principle of the polymer organic solar cell .................................................................................. 37 

3.2 Structure of a typical organic polymer solar cell ......................................................................... 41 



 

x 

 

3.3 Electrical characteristics of an organic solar cell ......................................................................... 42 

3.4 Spin and roll coated cell with varying Vanadium or PEDOT:PSS hole transport layers ................ 43 

3.5 Roll coated cells produced on the MRC ...................................................................................... 48 

3.6 ITO-free solar cells ..................................................................................................................... 49 

3.7 Summary .................................................................................................................................... 53 

References ................................................................................................................................... 54 

4. X-RAY AND TEM MORPHOLOGY CHARACTERIZATION OF NANOPARTICLE 

BASED SOLAR CELLS ........................................................................................................... 57 

4.1 Preparation of nanoparticles...................................................................................................... 57 

4.2 Near-Edge X-ray Absorption Fine Structure ................................................................................ 58 

4.3 Scanning transmission x-ray microscopy .................................................................................... 60 

4.4 Composition and structure of nanoparticles .............................................................................. 62 

4.5 Performance of solar cells produced from nanoparticles ........................................................... 66 

4.6 Summary .................................................................................................................................... 68 

References ................................................................................................................................... 69 

5. TANDEM SOLAR CELLS .............................................................................................. 73 

5.1 A traditional tandem solar cell ................................................................................................... 73 

5.2 Organic tandem solar cells ......................................................................................................... 74 

5.3 Tandem cells by wet processing ................................................................................................. 76 

5.4 Testing of devices ....................................................................................................................... 76 

5.5 Intermediate layer ..................................................................................................................... 77 

5.6 Absorbance of the extra layers of the tandem cell ..................................................................... 79 



 

xi 

 

5.7 Illustration of the tandem cell stack ........................................................................................... 80 

5.8 Manufacturing Parameters for a tandem cell ............................................................................. 81 

5.9 Encapsulation ............................................................................................................................. 82 

5.10 Post treatment ...................................................................................................................... 83 

5.11 Variation of second active layer thickness ............................................................................. 84 

5.12 Comparison of a single P3HT cell and a P3HT:P3HT tandem cell ............................................ 85 

5.13 Use of PDTSTTz-4 versus P3HT ............................................................................................... 85 

5.14 Single sided illumination with the developed intermediate layer .......................................... 87 

5.15 Bending Test .......................................................................................................................... 89 

5.16 Summary ............................................................................................................................... 90 

References ................................................................................................................................... 91 

6. ELECTROCHROMIC DEVICES ................................................................................... 95 

6.1 Working Principle ....................................................................................................................... 95 

6.2 Considerations in manufacturing an electrochromics display ..................................................... 96 

6.3 Materials .................................................................................................................................... 97 

6.4 Fabrication of a electrochromic device ....................................................................................... 98 

6.5 Pixelated devices ...................................................................................................................... 100 

6.6 Switching the device ................................................................................................................ 101 

6.7 Period of color stability ............................................................................................................ 101 

6.8 Device degradation .................................................................................................................. 102 

6.9 Summary .................................................................................................................................. 105 

References ................................................................................................................................. 106 



 

xii 

 

7. LIGHT EMITTING ELECTROCHEMICAL CELL (LEC) ....................................... 109 

7.1 Principle of a LEC device ........................................................................................................... 109 

7.2 Fabrication of LEC devices ........................................................................................................ 111 

7.3 Performance of a roll fabricated LEC device ............................................................................. 113 

7.4 Stability of light emitting electrochemical cells ........................................................................ 114 

7.5 Summary .................................................................................................................................. 116 

References ................................................................................................................................. 117 

8. SOLAR CELL TEST PLATFORM AND SYSTEMATIC DATA LOGGING ......... 119 

8.1 Testing of and issues with testing of solar cells ........................................................................ 119 

8.2 Arduino – open source electronics ........................................................................................... 119 

8.3 Building a sourcemeter for solar cell tests ................................................................................ 120 

8.4 Components ............................................................................................................................. 121 

8.5 Board design and layout of components .................................................................................. 123 

8.6 Enabling data logging ............................................................................................................... 124 

8.7 Manufacturing of board and soldering of components ............................................................ 126 

8.8 Programming of the microcontroller and defining the interface. ............................................. 127 

8.9 A demonstrator suitcase for showcasing tandem and single solar cells.................................... 128 

8.10 An Advantage of open source building blocks ..................................................................... 129 

8.11 Example of measurement .................................................................................................... 131 

8.12 Summary ............................................................................................................................. 133 

References ................................................................................................................................. 134 

9. CONCLUSION AND OUTLOOK ............................................................................... 135 



 

xiii 

 

10. APPENDIX ................................................................................................................ 137 

 

  





 

Coating, Degrading and Testing of Organic Polymer Devices 1 

1. Introduction 

 

Organic electronics has been heralded as one of the largest revolutions within elec-

tronics[1], with its possibilities of being immensely cheaper and easier to fabricate 

than inorganic based types of electronics [2,3] and with a much lower environmental 

impact [4]. Furthermore, the research into making computers with transistors made of 

molecules and screens made with organic light emitting diodes has spanned a high 

level market, were the use of organics is a question of increasing the performance, 

more so than reducing the price. However the to date largest use of organic electron-

ics is still accounted for by the low-cost high-volume RFID market [5] 

 One of the most sought after objects within organic electronics, are ways to manu-

facture them on a large scale. So far the success of large scale manufacturing has been 

limited. The up scaling has for the most part also shown to be considerably more diffi-

cult than what was initially expected. 

 

1.1 Conjugated Polymers 

 

The basis for most of the organic electronics is conjugated polymers. These are poly-

mers where an overlap of one pz-orbital with another across a sigma bond exists, illus-

trated in Figure 1.1. This overlap of two pz-orbitals creates a π bond, which together 

with a sigma bond is what is referred to as double bonds.  In other words the conju-

gated polymers have a portions of its electrons loosely bound to the polymer, via the π 

bonds . These electrons can therefore travel more freely in the polymer and are at the 

highest occupied energy state (HOMO) of the polymer chain from which they can be 

exited to the lowest unoccupied states (LUMO) level of the polymer. 
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Figure 1.1: The conjugated electron system of a (poly)-thiophene system. A) The pz orbitals contribute 

an electron giving rise to a π or anti-π bond between the orbitals. B) The π bond is a delocalization of 

the pz orbitals in the system across the polymer. 

 

The move of an electron from the HOMO level to the LUMO level is a change of the 

bonding state of the electron from a π state to the higher energy anti-bonding π* 

state. This can happen by the absorption of light. The distance between the π and π* 

state is also referred to as the band gap of the material. A photon with an energy 

above the band gap will therefore be able to be absorbed in the polymer by the trans-

fer of its energy to a π state electron, exciting it to a π* state. Reversely, an electron in 

the π* state can disperse of some of its energy, dropping to the π state by the emission 

of a photon.  

 

1.1.1 PEDOT:PSS 

One of the most often used polymers within organic electronics is PEDOT:PSS. 

poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(styrenesulfonate) (PSS) is a poly-

mer mixture of two ionomers. The sodium polystyrene sulfonate is a sulfonated poly-

styrene and carry a negative charge. PEDOT is a conjugated polymer and carries posi-

tive charges. These charged macromolecules together form a macromolecular salt. [6] 

 It is used as a transparent conductive polymer in a variety of different applications. 

One of the largest uses previously has been for coating of photographic films as an an-
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tistatic agent to prevent electrostatic discharges during production and normal film 

use, independent of humidity conditions [7].  

 

Figure 1.2: One of the most commonly used conducted polymers in organic electronics. The conduc-

tive / hole-selective polymer PEDOT:PSS. 

A new use for PEDOT:PSS is as a transparent conductor for light emitting devices and 

for solar cells. High conductivities, up to 3000 S/cm , can be reached by threating PE-

DOT:PSS with  sulfuric acid [8], and previously  ethylene glycol, dimethyl sulfoxide 

(DMSO) has also shown increased conductivities. The current transparent conductor 

benchmark has been indium tin oxide, however due to the scarcity of indium and in-

creasing prices [9], the quest for a substitute has been ongoing. 

 

1.2 Solar cells 
 

The ever-increasing world energy demand, causing a depletion of non-renewable en-

ergy resources and disruptive climate changes due to the greenhouse gases has raised 

an increased interest in alternative renewable energy sources. Solar energy is one of 

the best available alternatives, with its abundance and cleanness. 

 Since the discovery of the photovoltaic effect in silicon (Si) diodes in 1954, by Cha-

pin et. al. [10], which started the evolution of modern solid state photovoltaic (PV) 

technology. Since then Si solar cells have evolved, into the by far most mature photo-

voltaic technology and represent over 90% of the present day photovoltaic market 

worldwide [11].  
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1.2.1 Types of solar cells 

Solar cells are used to convert the incoming energy from the sun into electricity in a 

very direct way and with efficiencies up to 40% [12,13] with the most advanced sys-

tems and roughly 10-20% for the commonly used systems [11,12]. 

 Solar cells have traditionally been divided into three generations. The first genera-

tion of solar cells is crystalline silicon cells. Crystalline silicon is the defacto standard for 

solar cell production and mounting to this day, with the basic principle of the solar cell 

not seeing much change in buildup. They have seen a gradual increase in efficiencies 

due to anti-reflective surface coatings and better fabrication techniques. The efficien-

cies of the single crystalline silicon solar cells have increased to a level of 25% in re-

search cells and general production cells and modules with efficiencies above 18% and 

16% respectively [14]. Multi crystalline silicon cells are also considered as a first gener-

ation technique and shows slightly lower efficiencies, however with some panel manu-

factures also reaching the 16 % mark for the multi crystalline modules. 

 The Second generation of solar cells was defined as the a group of cells based on 

cheaper substrates and thin film technologies. These include amorphous silicon solar 

cells, polycrystalline silicon solar cells on glass or metal substrates and the thin film 

Cadmium Telluride (CdTe) and Copper Indium (Gallium) diSelenide (CI(G)S) solar cells.  

 Organic solar cells are considered part of the 3rd generation solar cells. The 3rd gen-

eration refers to several techniques with very different types of solar cells included. It 

spans the ground from very advanced multi cell tandem devices produced from III-V 

semiconductors used for satellites and concentrator systems, to nanoparticles and 

quantum dots which shows promise as strong absorbers with very small material use,  

to the organic solar cells which are simple and extremely cheap to produce with the fu-

ture idea of solar cells produced with methods close to newspaper printing [15]. 

 The performance marks during the last 30 years are presented in Figure 1.3, with 

several variations of the above mentioned technologies indicated. 
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Figure 1.3: The highest performing solar cell of different types during the last 40 years. The clime in ef-

ficiency for OPV has been very fast during the last ten years.  NREL Research-Cell Efficiency chart Re-

produced from [16] 

 The performance of most of the 2nd and 3rd generation technologies lies below the 

1st generation silicon technologies, the exception being the multijunction cells, concen-

trator cells and IIIV semiconductor cells. The performance of the emerging PV technol-

ogies, however, shows a fast increase in the maximum efficiency of research scale so-

lar cells. 

 

1.2.2 Solar cell market 

The PV market has been increasing at a rate of 64% in the period from 2006 to 2011. 

[11,17], however flattened in 2012, as seen in Figure 1.4, and are expected to increase 

only slightly in 2013. 
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Of the total solar cells and modules produced in 2012 63 % and 64 % respectively 

were made in mainland China, which is a marginal increase over 2011 (62 % and 59 %).  

In total, Asia made up 86 % of global module production, and showed an even higher 

dominance in cell production, with an estimated 95 % of cells being produced in Asia in 

2012 [11]. 

 

1.2.3 Making a competitive organic solar cell 

For the organic solar cells or any of the solar cell technologies to have a chance on the 

market terms, it needs to not only show a high power conversion efficiency, but also 

do so at a competitive cost level and with a guaranteed lifetime long enough to back 

the initial investment. For this to be fulfilled, one has to make solar cells that abides to 

all three of these points (Figure 1.5), having an adequate efficiency at a low cost with a 

significant lifetime. 

 

Figure 1.4: Global production of solar cells in the period from 2007-2012. Reproduced from GTM Re-

search [4] 
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Figure 1.5: Venn diagram with the three most important parameters for an organic device. The red 

circle pinpoints the overlap between the key parameters – the place where the solar cell will have to 

be to be competitive. 

 Going deeper into the unification of the three key parameters for solar cells, the 

range of the circles and their overlap is hugely different depending on the technology. 

For organic photovoltaics the cost in both energy and money is significantly lower pr. 

area solar cell, compared to crystalline silicon, amorphous silicon, and III-V devices. 

Thin film devices are lower than the aforementioned, but still not as low as OPV devic-

es are projected to be. At present however, the price of manufacturing an organic so-

lar cells has been quite high due to the less than industrialized processing methods and 

the material price points, which at the relatively small scales used has a significantly 

higher price level than what should be obtainable in large scale productions. Studies of 

the prices of organic solar cell, and potential market shares were completed by Nielsen 

et. al. [18] and Azzopardi et. al. [19]. 

 Furthermore, one of the large issues with the OPV manufacturing has been to not 

only increase the efficiency of the solar cells, but to do so in a fashion which can be up 

scaled and, with the lower level of efficiency that it is currently at, at a cost significant-

ly below the ever present silicon technology. So far the primary method for producing 

the research scale solar cells has been by spin coating in protective atmosphere. Both 

spin coating and using protective atmospheres, are not technologies well suited for up 

scaling device sizes, and especially not at an attractive cost. This is especially clear 

when comparing the maximum efficiencies of the OPV in Figure 1.3, with the few large 

cell and module OPV devices reported. Efficiencies of 1 % to 3 % for larger areas [20–

Lifetime Cost

Efficiency
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23] compared to the promising 10 % for lab scale devices shows a significant gap to be 

filled for a widespread adoption of OPV.  

 

1.3 Substrates 
 

For roll coating there is an added issue to the substrate requirements in comparison to 

spin coating and many other production techniques. It needs to be flexible.  

 When roll coating, the substrate will pass several rollers going through the coating 

machine and will have to bend over these rollers. For this reason a bendable substrate 

is needed for roll coating, and for devices such as the herein presented electrically ac-

tive devices an extra complication of having bendable electrodes also arises.  

 For most of the experimental world working with organic electronic devices the lab 

scale experiments are spin coating of glass slides, and for solar cells, OLED’s and other 

devices that requires transmissive electrodes, the use of indium tin oxide (ITO) covered 

glass slides is normal. The development of new electrodes to substitute ITO is ongoing 

and important, since Indium is a scarce resource which has seen a high price increase 

during the last decade due to the use of ITO in popular products such as touch screens, 

flat-screen televisions and mobile phone displays.  

 Examples of possible electrode substitutes are materials such as grid based struc-

tures, were a metal grid array, nanowires from metals, or carbon based materials such 

as carbon nanotubes [24–26], graphite [27] or graphene [28–33] are used. Other pos-

sibilities are to use high-conductivity PEDOT:PSS materials, either alone or as hybrids 

with metal grids or nano-wire/tubes [34–38]. In comparison to ITO based materials, 

and of special importance for the flexible substrates, many of these alternatives show 

better bending abilities than ITO, which is a brittle material that handles bending poor-

ly [39,40]. 
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 Figure 1.6 shows the transparency of three different electrode materials. ITO on 

glass which has a very high transparency (blue). ITO on PET which is less transparent, 

but due to the brittleness of the ITO is also less conductive (black). Flextrode which is a 

PEDOT:PSS-Ag grid electrode on PET which has a lower transparency, but a high con-

ductivity and handles bending well.  

 The devices manufactured and presented in this work has primarily been based on 

roll coating and are therefore made using either pre-patterned ITO on PET or the Flex-

trode PEDOT:PSS-silver grid substrates. 

 

1.4 Encapsulation 
 

When considering substrates for the manufacture of organic devices, it is a necessity 

to consider the possibility of encapsulation of the fabricated device, since most of the 

organic electronics are very susceptible to degradation caused by air or water va-

por[41–44]. For this reason several different barriers are used, both in this report and 

in general [45].  

 

Figure 1.6: Comparison of the transmission through glass and PET electrodes with an ITO layer or a 

PEDOT:PSS- metal grid electrode. 
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 The transmission of these barrier materials does however also contribute to the re-

duction of light absorbed or transmitted by the organic device. In Figure 1.7 the trans-

mission of different barrier materials are presented, ranging from low-cost barriers 

such as AMCOR µ-Barrier and Mitsubishi barrier materials [43,46], which are roll 2 roll 

compatible, to glass slides which are not roll 2 roll compatible with regular PET shown 

for reference. A second option is to use the barrier material directly as a substrate, 

eliminating the cost of the PET substrate and inherent transmission losses[47].  

 

1.5 Description of chapter contents 
 

The somewhat widespread number of subjects which has been treated within the 

three years of this Ph.D. has been divided into the following chapters. 

 

Chapter 2: 

 Description of the roll coating technique used for most of the devices produced and 

presented in this thesis. The chapter is meant to illustrate the issues and concerns, 

which makes slot-die coating and roll coating in general a difficult area to master. 

 

Figure 1.7: Transmission of light through different barriers. The Mitsubishi barrier is with a UV filter, 

cutting away radiation below 390 nm. For comparison, the transmission of the flextrode electrode 

coating directly on the barrier foil is also included.  
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Chapter 3: 

 Presentation of the organic polymer solar cell. The inner workings of this type of 

junction and the different cells with variation of active materials, electrode materials 

and blocking layers. The efficiency of several different polymers will be presented in a 

slot-die coated device structure and with quantum efficiencies included. The chapter 

will describe single junctions only. 

 

Chapter 4: 

 Description of the use of nanoparticle based inks made from polymer and acceptor 

materials, and the analysis of these using both x-ray technology and electron micros-

copy. The nanoparticle approach is shown as an example of a way to reduce the sol-

vent amount used and giving a benefit of a possibly higher degree of morphological 

control of the active layer mixing. 

 

Chapter 5: 

 Organic tandem solar cells are described in this chapter, with fully roll coated cells. 

The initial devices were manufactured as thick homo junction cells to allow optimiza-

tion and partial optical separation of the two cells. Later cells have been focused on us-

ing the obtained intermediate layer stack to increase the performance of the cells by 

applying thinner layers and more optimized polymers. 

 

Chapter 6: 

 Having described primarily solar cells in the precious chapters, chapter 6 will pre-

sent the result of another type of organic electronic device. This is the electrochromic 

device. A device consisting of two polymer layers and an electrolytic layer sandwiched 

between two electrodes. The polymers changes their absorbance on application of an 

electric pulse, causing a reduction and oxidation of the two polymers respectively. Roll 

coated devices was manufactured and these are presented with performance num-

bers. 
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Chapter 7: 

 The chapter will describe a light emitting device, the light emitting electrochemical 

cell (LEC), which is an OLED like device, but with the benefit of being significantly easier 

to manufacture and with the possibility of a higher efficiency than the OLED. Devices 

were manufactured in air and only using roll coating methods. 

 

Chapter 8: 

 The final chapter describes a solar cell tester developed based on the open source 

Arduino electronics platform, for the use for solar cell testing in labs and offsite life-

time studies.  

 

1.6 Summary 
 

This chapter is written as an introduction to the world of organic electronics, with a 

description of some of the common denominators for the various devices presented in 

this thesis. Emphasis has also been put on describing the solar cell market and the var-

ious technologies that any organic solar cell will have to compete against. 
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2. Roll Coating 

Roll coating of polymer devices is the holy grail for many of the devices which are dis-

cussed in this thesis. A large issue with roll coating however, is the difficulty in moving 

from small scale production methods to the inherent large scale roll-to-roll processing. 

Most of the laboratory development of new materials, structures and devices are done 

by using spin coating; a technique that has shown its value for the many generation of 

wafer scale processing in the semiconductor industry. The issue arising with the spin 

coating technique is that, however well working it is for producing thin and very uni-

form films on small glass slides or wafers, the trouble arising when scaling from small 

to large the advantages quickly disappears with impossible demands on machinery, ink 

formulation and substrate uniformity. 

 Furthermore, the scaling of foil speed for different coating techniques often also 

have very large influence on the obtained film quality and patterns in the coatings. A 

coating technique such as flexographic printing can for less viscous solutions require 

coating speeds of more than 15 m/min before it becomes possible to produce uniform 

films. 

 Roll coating as a technology is mainly used for very high volume applications. The 

use of speeds of >100 meter/min and widths for polymer and paper substrates up to 1 

m for wet coating [1,2] and 2.5 meters for evaporation techniques [3].   

 

2.1 Laboratory roll 2 roll coater 
 

 The issue with working on full size roll-to-roll coating equipment is that the en-

trance level for this technology lies with a considerable minimum cost, as can be ex-

pected when the minimum amount of material for one device in a spin-coating setting 

would be a substrate of 10 x 10 mm2, while in roll-coating the substrate comes in a 

width of 305 mm or larger . A typical machine requires more than 5 m of foil to get 

from the unwinder roll to the pickup roll. An example of one of the roll 2 roll coating 
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systems used at DTU Energyconversion is shown in Figure 2.1. This system is still con-

sidered a small scale system despite the 305 mm rollers with a 20 m/min max speed.  

 

Figure 2.1: Roll to roll coater as found at DTU Energyconversion. The machine is a full size roll 2 roll 

coater and allows running coatings of 305 mm width at up to 20 meter/min. 

The throughput of this machine peaks at a maximum of just below 40 m2 per hour. 

The roll to roll coater pictured does however offer the option making available several 

different coating techniques on one machine. 

 

2.2 Development of mini roll coater 

 

Following from the high entry point of roll coating and the many lab scale experiments 

being conducted with spin coating, the process of developing a laboratory scale mini 

roll coater was initiated. The principle of which was to make a system that allowed an 

easier and faster, not to mention cheaper method for testing new polymers, electrode 

materials and transport layers for coated electronics. Optimizations on the MRC would 

then be possible to transfer to the larger scale roll 2 roll coaters, instead of having op-

timized the processing of a new polymer in a spin coating situation, later to find that 

the transfer to roll coating required the optimization to be carried out once again for 

this technique. Furthermore the use of the roll coating, with a slot-die head and a flex-

ographic printed head enables the use of a single machine for manufacturing of a 

complete solar cell. 
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Figure 2.2: The mini roll coater (MRC) as first illustrated. The indicated parts are (1) start button, (2) 

motor controller, (3) heating controller, (4) breakers for motor and heat controller, (5) translation 

stage for adjusting the position of the coating head in horizontal and vertical position. (6) shows the 

slot-die coating head. (7) shows the central axel for the rotation of the drum, and (8) and (9) are the 

emergency stops. (10) is a shelf for holding the ink supplying pump. 

 

 The principle buildup of the coater came to be a 320 mm diameter solid aluminum 

drum with build in heating elements and a temperature sensor mounted on a trans-

versal axel. The heaters are adjusted via a PID temperature controller and a tempera-

ture range of room-temperature to 190 °C has been tested, however since most coat-

ings are performed on PET plastics, normal working temperature lies between 30 °C to 

140 °C.  

 The drum rotational speed is adjusted via a frequency motor speed controller, 

which allows a speed between 0 and 2 m/min, with an option of changing the gearing 

to allow up to 5 m/min. Speeds of over 2 m/min, however has the disadvantage of very 

short experiment times, with a complete rotation in 30 seconds at 2 m/min resulting in 

the need of an experienced operator to adjust the head height and lateral position 

with respect to any previously coated layer(s). 

 To adjust the position of the coating head translation stages were used with a verti-

cal stage in both sides of the coater giving the possibility of also adjusting the head to 

the correct angle with respect to the substrate. A horizontal translation stage was 
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mounted to adjust the head position with respect to the coating of individual stripes 

on the substrate and to offset one coating with respect to the next layer coating. 

 

2.3 Slot-die head design 
 

The slot-die head design developed at the former Risø National Laboratory, now DTU, 

consists of a slot-die head with a steel foil meniscus guide acting to control the width 

of the coating line. The head is divided into three distinct parts: The meniscus guide 

(Figure 2.3A), which is a metal foil center piece serving to define the width of the coat-

ing. A front part (Figure 2.3B) with a milled grove, which is the channel, where the liq-

uid flow from a top inlet down to the outlet and out onto the meniscus guide. The back 

part (Figure 2.3C) is a solid piece which holds the screw mount and has a flat backing 

for the meniscus guide and front piece.  

 

Figure 2.3: Example of a 3 piece 13 mm width coating head. A) The front part of the head with the 

milled groove. B) The meniscus guide insert directing the flow at the head outlet. C) The slot-die head 

back piece. 

 The use of a meniscus guide offsets this technique somewhat from the conventional 

slot-die coating technique, where the coating head only consists of the front and back 

piece, with the groove outlet defining the coating width. The advantage of using the 

meniscus guide technique lies in an easier change of the coating pattern and a slightly 

different meniscus formation. 
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Figure 2.4: Illustration of a slot-die coating head with a meniscus guide and meniscus. A) shows the 

entire coating head, while B) is an illustration of the ink flow around the meniscus guide and tip of 

coating head. Meniscus size and shape is illustrative only. 

 

2.3.1 Meniscus guides and slot-die head sizes. 

The initial head size used for the MRC was made with a 13 mm coating width and with 

two optional head sizes of 25 mm and 50 mm. The use of a 13 mm wide coating width, 

comes from the compromise between alignment width, number of possible cells on a 

full width 305 mm substrate and the necessity for a high aspect ratio in a solar cell to 

reduce the series resistance of the cells. 

 

Figure 2.5: Foil inserts for the MRC standard coating heads. A) Foil insert for making a 13 mm wide 

slot-die coating. This is the stripe width used in many of the modules produced at DTU and the width 

used in the pre-patterned electrodes. 
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13 mm head 

 A COMSOL simulation of the flow through the 13 mm wide head was completed to 

check the variation of the flow exiting the bottom of the groove, as a function of the 

distance from the center of the groove. The simulation of the flow showed the flow 

rate across the exit slit to vary less than 1 % over the width of the outlet. The simula-

tion was completed with a groove size of 13 mm width, 0.2 mm depth and a 25 mm 

height, corresponding to the coating heads used in the slot die coater. The liquid simu-

lated was water. 

The creeping flow standard physics module was chosen for the simulation due to 

 

Figure 2.7: COMSOL simulation of the coater head groove in a 13 mm wide head. A) Pressure field 

through the groove and B) flow rate through the groove. The size of the simulated groove is 13 mm 

wide, 25 mm high and 0.2 mm deep.  

 

Figure 2.6: Variation in flow rate across the centerline of the bottom outlet from the slot-die head. 

The variation is small and does not indicate a tendency for a depletion of the ink flow towards the 

outer edges of the outlet. 
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the low Reynolds numbers in most of the flow region. 

25 mm head 

The optional 25 mm coating head was made using a different design than the 13 mm 

head. The groove in the head top part was made as a triangular shape to reduce the 

dead volume in contrast to the founded shape used in the 13 mm head. In the center 

of the head a support beam for the foil insert was made to ensure that the foil insert 

would not bend into the groove and thereby reduce the depth of ink channel. An im-

age of the head front and rear piece is shown in Figure 2.8. 

 

50 mm head 
For the largest head used, the 50 mm width head, three iterations was completed be-

 

Figure 2.8: 25 mm head design. The curved edges are to reduce the head dead volume, while keeping 

a uniform flow profile. The center line acts as a support beam for the foil insert. 

 

Figure 2.9: 50 mm head design. At the inlet a pressure distribution channel has been milled into the 

head to even out the pressure across the width of the bottom outlet. This head also has a support 

beam in the center similar to the 25 mm head. 
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fore a design which could produce a uniform coating was reached. The final design is 

shown in Figure 2.11. The initial design was made based on the 13 mm head with the 

only difference being an enlargement of the heads coating width. However, a problem 

with the variation of the pressure at the outlet during coating was seen, resulting in an 

issue with the flow rate at the edges being significantly reduced when coating layers of 

viscous fluids such as some of the PEDOT:PSS solutions. As shown in the COMSOL 

simulation for the 13 mm head with water used as medium. The issue was traced to 

two separate issues. One being the width of the groove with respect to the foil insert. 

The second being the width of the groove in respect to the hydraulic flow resistance. 

The second iteration of the head included a support beam, as was also used on the 25 

mm head, to ensure the correct distance between the foil insert and the groove wall. A 

third iteration included the support beam and added the pressure equalling reservoir 

channel which significantly improved the flow rate uniformity at the outlet, due to a 

more uniform hydraulic resistance from the inlet to the outlet. . 

 

2.3.2 Reduced coating width: 10 mm 

A new design was developed to allow fitment of two modules on a 305 mm coating 

width. The new design is made for manufacturing of the FreeOPV modules [4], with 8 

 

Figure 2.10: FreeOPV electrode design. Made for production of modules consisting of 8 cells in series, 

with two modules side-by-side on a 305 mm wide substrate. 
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stripes of 10 mm width. An example of a FreeOPV Flextrode substrate is shown in Fig-

ure 2.10. 

 A new set of foil inserts were designed for use with existing heads and the FreeOPV 

substrate, with a meniscus guide width of 10 mm. The design of the three different 

meniscus guides seen in Figure 2.11, was done to allow both the coating of single cells 

and modules. Modules could be produced with a single meniscus guide type foil insert, 

however using the multiple meniscus guide foils allows a full 8 stripe module to be 

manufactured on the MRC with only two parallel coatings of each layer and without 

having to worry about alignment of the extra stripes.  

 The foil inserts were made with the single meniscus guide foil insert fitting the 13 

mm head design, the dual meniscus guide insert fitting the 25 mm head and the 

quatro meniscus guide insert fitting the 50 mm head design. 

 

2.4 Screen printed top electrodes 
Initially the top electrodes were screen printed on a flatbed screen printer. This was 

done in a similar fashion to the technique used in Krebs et. al [5], where a roll 2 roll 

screen printer was used. However, the use of a screen printer for making the top silver 

electrode necessitated an extra machine for doing the screen printing. 

 

 

 

Figure 2.11: Meniscus guides for use with the free OPV design. A) Single 10 mm wide guide. B) Double 

10 mm wide guides with a 2 mm spacing and C) a 4 line guide with 4x10 mm guides and a 12 mm pitch 

for making complete FreeOPV substrate based modules on the MRC. 
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2.5 Flexographic printing head 

 

A flexographic printing head was developed as a solution to enable full processing of a 

solar cell on the mini roll coater, without the need of any other equipment for the fab-

rication of any of the layers.  

 The flexo printing head consists of a mounting block with a horizontal axel on which 

two beams are attached carrying a 100 mm diameter coating roller. The roller can be 

fitted with a range of different patterned rubber flexo-rollers enabling the printing of a 

2D patterned top electrode. Two different versions were developed with a change in 

the width of the roller, to enable the use of either a 30 mm wide roller enabling a wid-

er movement range on the horizontal translation stage and a 60 mm wide roller which 

enabled compatibility with the patterns used in the SameSUN solar tester system and 

cell size and electrode layouts identical to the patterns used on the laboratory glass-

ITO slides. 

 

Figure 2.12: Screen printing of top electrodes using Dupont PV410 silver paste on an Alraum Screen 

printer. The screen is for printing of 10 cells of 1 cm2 each on a 13 mm wide stripe pattern. A) View 

from in front of the squeegy before the first print. B) Side view after the first print. C) The electrode 

mask design. 
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 To supply a uniform pressure during the coating of silver the mounting block was 

fitted with a pneumatic piston and a two-way valve with a regulator, to supply con-

stant force on the flexo-roller during the printing of the silver and increase the repro-

ducibility of the cells produced on the machine. 

 

2.6 Ink supply system 
 

 

Figure 2.13: Flexographic rollers for printing the top electrode. Currently the ink used with these roll-

ers is the silver particle ink PV410.  A) Flexographic printhead mounted on the MRC machine. This 

version has a 30 mm flexoroller and a pneumatic piston to apply pressure against the printing surface. 

B) Shows a roller for the manufacture of 1 cm2 cells compatible with the SameSUN system. C) A grid 

electrode for creating a series connected two cell module, with a 5 degree slanted finger electrode. 
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Supplying the ink to the slot-die coating head was initially done using Knaur Smartline 

Pump 100 HPLC pumps (see Figure 2.14A), however the cleaning when changing be-

tween inks and the associated removal of air bubbles in tubing and pump reservoirs 

made it less suitable. Instead of the HPLC pumps an Aladdin NE-1000X syringe pump 

 

Figure 2.14: A) Knaur Smart Pump 100 HPLC pump initially used on the roll coater, however the 

cleaing and removal of air in the pump made it less suitable B) Aladdin NE-1000X syringe pump used 

for the coating of solutions on the coaters. The use of syringe pumps gives a wide range of flow rates 

with a choice of syringe diameter and with the use of disposable syringes enables a quick change of 

solution and cleaning.  

Table 2.1: Calculated thicknesses for coatings on the MRC with estimated dry thicknesses for a 

P3HT:PCBM 1:1 mixture ink. Numbers are for a 13 mm head width. Dry film densities for the materi-

als was assumed to be: ρ(P3HT) = 1.10 g/cm3 and ρ(PCBM) = 1.50 g/cm3. Dry numbers corresponds to 

the use of a 15:15 mg/ml or 20:20 mg/ml solution respectively. 

Speed Flow Rate Thickness 

m/min ml/min Wet Dry (15:15) Dry (20:20) 

0.40 0.050 9.6 µm 227 nm 303 nm 

0.50 0.050 7.7 µm 182 nm 242 nm 

0.60 0.100 12.8 µm 303 nm 404 nm 

0.80 0.100 9.6 µm 227 nm 303 nm 

1.00 0.100 7.7 µm 182 nm 242 nm 

1.50 0.100 5.1 µm 121 nm 162 nm 

2.00 0.200 7.7 µm 182 nm 242 nm 
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system (see Figure 2.14B) was bought for use with the coater, which helped to reduce 

the amount of cleaning needed between coating of different materials, with the pump 

reservoir now being reduced to an disposable syringe. Air bubbles are also much less 

of an issue in the syringe pumps, due to the lack of any counter-moving valves.  

 

2.6.1 Gradient pumping system 

For the purpose of enabling variation along the coating line for an experiment, a dual 

ink supply system was developed allowing mixing of two components during a coating, 

for instance for varying the concentration ratio between donor and acceptor in the 

coated film or for reducing the concentration of a ink by having a ink supply and a sol-

vent supply line. This technique can give similar experimental possibilities to what was 

previously described in Alstrup et. al. [6] and [7]  in both cases using a full scale roll 2 

roll coater. 

 To allow coating with two pumps and two different solutions a mixing tee was used. 

However, depending on the coating width used and flow rate used, the use of two dif-

ferent mixers were required. In Figure 2.15A a mixer for high flow rates is shown, 

which is used when the flowrate is higher than 0.3ml/min, while in Figure 2.15B a 

smaller channel mixer is shown, which enables efficient mixing at lower flowrates. 

 

Figure 2.15: Mixers for making gradient pumping experiments. A) Upchurch Scientific U-466 mixing 

tee with connectors for attachment of Luer Lock syringes on ends and slot-die mount. B) Upchurch 

Scientific M-540 micro static mixing tee. 
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 Together with the mixing tees two syringe pumps were used to supply the 

ink/solvent flow for precise mixing during a coating run. This was further assisted by an 

in-house developed pump control program, which enables setup of a time controlled 

rate experiment for a coating. The graphical user interface of the program is shown in 

Figure 2.16. 

 

2.6.2 Pressure driven pump for high viscosity 

Due to the high viscosity of the PEDOT:PSS inks used as top electrodes, the use of the 

Knaur pumps was not possible, due to issues with clogging and incurred stopping of 

the flow. Instead a pressure driven pump was used on the large roll 2 roll coating sys-

tem. To keep the similarities and the transferability between the two systems, a similar 

pressure driven pump was made for the MRC. This is shown in Figure 2.17. The pump 

is run of the compressed air lines in the lab with a regulator to adjust the coating pres-

sure depending on the ink viscosity and flow rate needed. 

 

Figure 2.16: Screenshot of the gradient pumping control program. The program enables use of a two-

pump system with individual ramping up/down of both pumps over a step ramp period. 
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2.7 Development of Micro roll 2 roll coater for X-ray analysis purposes 

 

A further evolvement of the small scale coating equipment has been the development 

of a micro roll 2 roll coater (MR2C). The MR2C is a true R2R coating machine, in con-

trast to the MRC. The advantage of this is the possibility of running at higher foil 

speeds and having a longer stretch of foil to vary coating parameters.  

 

Figure 2.17: Pressure driven pump for supplying viscous PEDOT:PSS top layer ink. Pump is driven from 

the laboratory compressed air system with a 1.5 bar to 2 bar pressure. 

 

Figure 2.18: Micro Roll 2 Roll Coater (MR2C) constructed with the purpose of analyzing film morphol-

ogy while drying by the use of X-rays. 
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 The primary aim of this setup is to have a way of characterizing morphology. The 

machine is made with compatibility to grazing angle x-ray scattering experiments in 

mind. Using this technique a variation in the morphology as a function of changes in 

parameters, for instance thickness, speed and temperature is possible. Furthermore 

the movement of the coating head with respect to the characterization spot enables 

characterization of these parameters during the drying process of the film. 

 

The system comprises two rollers mounted on bearings with the receiving roller being 

driven by a computer controlled stepper motor and the unwinding roller keeping ten-

sion by a Teflon screw providing friction. Two glides are mounted higher to assure a 

constant height of the foil as it is unrolled from the rear roller and onto the front roller. 

The film width is a maximum of 25 mm enabling coating of a complete 13 stripe based 

complete cell with the same offset as on the larger machines. 

 A translation unit is used for mounting of the slot-die head, enabling a variation of 

the distance from the coating head to the impinging x-ray beam from 2 cm – 20 cm.  

 

2.8 Flatbed slot-die coater 
 

 

Figure 2.19: An Erichson draw bar coater converted to a flatbed slot die coater. The purpose of the 

coater is to allow coating by slot die on glass substrates for analysis and calibration purposes. 
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One of the disadvantages of working on flexible substrates or soft substrates is the in-

curred difficulty in finding layer thicknesses of coated layers. The typically used meth-

od of measuring with a profilometer by scratching a sample and measuring the depth 

of the scratch can only rarely be used, due to the ever present risk of making scratches 

that are not only in the film which is to be measured, but also going into the underlying 

substrate. Measuring a thickness of a film at the edge of a coated film is possible, but 

rarely gives a correct value due to the edge effect of the coating method. Long scans 

over the edge and across a film will only give localized film variations, since getting the 

substrate to lie flat on a surface to within the accuracy wanted when measuring a 100 

nm film is nearly impossible. 

 A solution to this problem have been to make a coater, which applied the same slot-

die coating technique as the MRC, while doing so on a planar surface, enabling the use 

of glass substrates, which are much more scratch resistant and planar over longer 

ranges. 

 For this purpose an Erichson draw-bar coater was used, with a replacement of the 

draw bar with a positioning stage and slot-die head mount as seen in Figure 2.19. An 

Aluminum plate with heater elements was added as a substrate holder enabling use of 

elevated temperatures for the drying of the coating. 

 

2.9 Summary 

 

This chapter has described the process of roll coating in a roll 2 roll setting and, more 

importantly in this context, in a lab scale setting as a substitute for spin coating. The 

use of roll coating techniques in the lab could allow a quicker development of new ma-

terials, due to possibilities of testing and transferring in settings similar to the full scale 

production. 
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3. Organic Single Junction Solar Cells 

During the last three years a vast array of different solar cells has been produced with 

variations in active layer materials, transport layers electrodes and geometries. Here a 

selected few are presented, which represents part of the range of materials worked on 

and part of the range of techniques used. 

 The results in this chapter will be based on previously unpublished results, with sec-

tions based on the papers Espinosa et. al [1] and Dam et. al [2] attached as appendix 

A2 and A1.  

 This chapter will however be started with an introduction to what the principles for 

the polymer solar cell are and which considerations to take.  

 

3.1 Principle of the polymer organic solar cell 
 

As conjugated polymers have their overlapping p-orbitals and the associated loosely 

bound π electron, the interesting thing for the use of the conjugated polymer is how to 

absorb the energy in the polymer by exciting the π electron to its antibonding state, 

π*, the high energy one, and then dissociate it from the polymer [3,4].  

 Having a π* electron is also described as an exciton together with its corresponding 

hole, both still bonded to the polymer.  

 

Figure 3.1: Process of light absorption in an organic polymer with the associated breakage of the exci-

ton bond between the hole and electron by at the donor-acceptor interface and transfer of the elec-

tron to the acceptor. 
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 The breaking of this exciton and dissociation from the polymers occurs by the intro-

duction of an acceptor material, which has a lower LUMO level than the polymer. By 

transferring the excited electron from the LUMO level of the polymer (donor) to the 

LUMO level of the acceptor material the charges are separated and can pass through 

the respective material, donor/acceptor, to the corresponding electrode.  

 When fabricating organic solar cells the junction between the donor acceptor spe-

cies needs to be close to the materials, since the exciton diffusion length within the 

donors are generally less than 20 nm.  There have typically been two different ap-

proaches two achieving this: The use of either a bilayer heterojunction or a bulk het-

erojunction. The bilayer junction is made by producing cells with two separate layers 

for the donor and acceptor materials, while the more commonly used bulk heterojunc-

tion is manufactured with a single mixed layer of donor acceptor material. The ad-

vantage of the bulk heterojunction lies in the short distance between acceptors and 

donors, increasing the change of exciton dissociation. 

 

3.1.1 Donors 

The donors for which results are presented in this thesis are shown in Figure 3.3. The 

most typically used of these is the P3HT donor, which was also shown in Figure 3.1A as 

an example of light absorption and charge transfer process. The usefulness of P3HT lies 

not only with the LUMO-HOMO level, but also with the relative simplicity of the poly-

mer, the high mobility and the solubility and mixing with acceptors. The absorption of 

 

Figure 3.2: The two types of junctions used in the organic solar cells, both based on the heterojunc-

tion principle of donors and acceptors.  
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P3HT is relatively high, however the bandgap of approximately 2 eV results in the pol-

ymer not absorbing any light with a wavelength longer than ≈620 nm.  

Several polymers have later been synthesized with the aim of increasing the absorp-

tion range of the polymer by lowering the bandgap and thereby increasing the effi-

ciency of the solar cells, as shown by Bundgaard et. al. [5]. The absorption limit for the 

 

 

Figure 3.3: Examples of polymers used in polymer solar cells. The P3HT polymer has been around for 

the last decade, while PSBTBT [7] is a low bandgap polymer and PDTSDTTz-4 [8] is a polymer with bet-

ter alignment to the donors resulting in a higher voltage output. MH301 and MH306 are similar in ab-

sorption to P3HT and PSBTBT respectively. 

 

Figure 3.4: The maximum current which can be extracted from the incoming sun light under the as-

sumption of 100% absorption, 100% photon to electron-hole pair conversion and 100% extraction. 
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polymers presented in Figure 3.3 are shown in Figure 3.4 plotted on a scale of maxi-

mum current, which can be extracted at that limit, assuming absorption of all the pho-

tons with energies higher than the bandgap. 

 Low bandgap polymer with an absorption out to 1000 nm (bandgap of 1.1 eV) [6] 

have been developed and polymers such as PSBTBT also shown in Figure 3.3 shows ab-

sorption out to 850 nm, however it is difficult to make a polymer which absorbs all the 

photons with an energy higher than the polymers bandgap. 

 

3.1.2 Acceptors  

A selection of commonly used acceptor molecules are shown in Figure 3.5. In this work 

only PCBM have been used due to its lower cost, however by the use of other accep-

tors such as PC71BM or ICBA, the efficiency of the organic solar cells has shown to im-

prove. Using PC71BM, the efficiency of the solar cells are increased both due to a lower 

bandgap in PC71BM resulting in an absorption in the visible range within the acceptor 

molecule and an excellent miscibility with the donors, increasing the chances of exci-

ton separation [7,8].  The use of ICBA as an acceptor has shown to be favorable with 

P3HT due to a higher LUMO level of the ICBA acceptor molecule, which results in a 

higher voltage of the solar cell output. 

 The higher voltage which can be obtained by use of ICBA is caused by the alignment 

of the donors bandgap to the bandgap of the acceptor[9], and together with the in-

 

Figure 3.5: Typically used acceptors in organic solar cells. A) PC60BM is the cheapest and most often 

used acceptor. B) PC71BM; The C70 variant of the PCBM molecule is much more expensive but offers a 

higher absorption and tends to give higher performance. C) ICBA; This acceptor is often used due to 

its better energy alignment with the typically used P3HT polymer. It gives a higher voltage compared 

to the other to, with up to 1 V for P3HT under concentrated light conditions 
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herent losses in the cells defines the solar cell open circuit voltage. The maximal volt-

age which can be obtained has been found to be,  

𝑉𝑜𝑐 = (1/𝑒)�|𝐸𝐻𝑂𝑀𝑂𝐷𝑜𝑛𝑜𝑟 |– �𝐸LUMO
𝐴𝑐𝑐𝑒𝑝𝑡𝑜𝑟�� –  0.3 V 

where the 0.3 V is an empirical constant which refers to the internal losses [9–11]. 

 

3.2 Structure of a typical organic polymer solar cell 
The commonly used polymer and acceptor in organic solar cells has for a long time 

been P3HT and PCBM, not due to an incredibly high performance, but more due to 

their reasonable performance, with a high tolerance to different processing conditions 

and a much better stability than many other polymer acceptor mixes. At the same time 

the P3HT polymer is one of the cheapest and easiest polymers to buy / produce. 

The electrical structure of the solar cells in the two most often used geometries are as 

shown in Figure 3.6.  Both structures are based on the light entering through the 

transparent ITO front electrode. Figure 3.6A shows the energy levels of the materials 

used in a normal geometry solar cell, where the electrons goes through the Aluminum 

back electrode and the holes through the front ITO electrode. In the case of a normal 

geometry OPV solar cell, a PEDOT:PSS layer is used for band alignment and electron 

blocking between the ITO electrode and active layer, while an optional Lithium Fluo-

ride layer is sometimes used at the Aluminum back electrode.  

 

 

Figure 3.6: Energy diagram of a A) Normal geometry solar cell and B) Inverted geometry solar cell. The 

LiF layer in the normal geometry is not always used. In both types the P3HT:PCBM material is in a 

mixed layer creating a bulk hetero junction (BHJ). 
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 Figure 3.6B shows the energy levels of the materials of an inverted geometry OPV 

solar cell. In the inverted geometry, the inversion lies in the direction of transport of 

the charge carriers. This type of device uses the ITO electrode to transport the elec-

trons and a silver back electrode to transport the holes. To direct the charges a Zinc 

Oxide layer is used between the ITO layer and active layer, which only transports the 

electrons, while a PEDOT:PSS layer is used between the active layer and the silver back 

electrode. 

 

3.3 Electrical characteristics of an organic solar cell 

 

Since the total power which can be extracted is the product of the current and voltage, 

bad alignment of the energy levels of the acceptor, donor and buffer layers will reduce 

the operating voltage and thereby the power output of the solar cell. An example of 

the electrical characteristics of a solar cell is shown in Figure 3.7. The main characteris-

tics are the short circuit current, Isc, and the open circuit voltage, Voc. The maximum 

power point for a solar cell is defined as the point of the highest power output, and re-

 

Figure 3.7: Illustration of the Current-Voltage characteristics of a solar cell. Important parameters, 

such as the open circuit voltage, Voc, and short circuit current, Isc, are shown, together with an illustra-

tion of the Maximum power point Current and Voltage, and the fill factor, FF, being the ratio between 

the area described by {I,V}Pmax and Voc,Isc. 

Isc

VocVPmax

IPmax
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lates to the open circuit voltage, Voc, and short circuit current, Isc, with a quantity de-

scribed as the fill factor, FF. 

𝐹𝐹 =
𝑃𝑚𝑎𝑥
𝑉𝑜𝑐𝐼𝑠𝑐

 

 

3.4 Spin and roll coated cell with varying Vanadium or PEDOT:PSS hole 
transport layers 

The purpose of these cells were to test the possibility of using Vanadium Oxide as a 

substitute for PEDOT:PSS as a Hole Transport Layer (HTL) in an inverted geometry or-

ganic solar cell. Vanadium oxide has previously been tested by others in normal geom-

etry cells or hybrids [12] and often by use of evaporative techniques as a hole 

transport layer [13–15] 

 

 

Figure 3.8: Three type of VTIP devices. To the left a spin coated cell on ITO-glass slides, in the middle 

roll coated individual cells on ITO-PET substrate and to the right a full module with 16 serially con-

nected stripes. Reproduced with permission from MDPI [1]. 

The cells produced and tested are divided in to three distinct steps, however all made 

in the inverted geometry. Initial tests were completed on spin coated glass-ITO sub-

strates, as seen as the outer left cell in Figure 3.8. After testing on glass, the second set 

was PET with ITO fully roll coated single cells, with an area of 4.2 cm2. Finally a set of 

full size modules consisting of 16 stripes connected in series with a total area of 360 

cm2 were made. 
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Figure 3.9: The structure of the cells. Devices were produced in an inverted structure with an ITO bot-

tom electrode, a ZnO ETL layer, a P3HT:PCBM active layer, a Vanadium Oxide HTL layer and a screen-

printed full silver top electrode. Reproduced with permission from MDPI [1]. 

 

3.4.1 Spin coated cell optimizations 

 Different concentrations of VTIP in isopropanol (3.5, 6.5, 12.5, 25, 50 and 100 

mg/mL) was used as a HTL in the cells, and different numbers of layers were fabricat-

ed. The results of the best cells are shown in Figure 3.10. These were achieved with 

one or two layers of 12.5 mg/mL of VTIP. The efficiency of the VTIP based cells was 

roughly 0.4%.  

 

Figure 3.10: Spin coated devices on ITO glass slides with an area of 0.5 cm2. Devices reported are coat-

ed with 1, 2 or 3 layers of varying concentration of VTIP. Reproduced with permission from MDPI [1]. 
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 Comparing the efficiency of the Vanadium based cells to the PEDOT based cells, the 

vanadium oxide cells are limited by the conductivity of the cells resulting in both low 

current and a low fill factor. 

 

3.4.2 Analysis of an annealed Vanadium Oxide film 

Hydrated vanadium(V)oxide films were prepared on glass, silicon, and PET substrates 

and characterized by optical spectroscopy, ellipsometry, profilometry, scanning elec-

tron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and grazing inci-

dence wide angle X-ray scattering (GIWAXS). Measurements with GIWAXS on silicon 

substrates combined with the structural model of (H2O)n [16], indicated the films to be 

largely low-crystalline hydrated vanadium pentoxide V2O5·(H2O)0.3 with an interlayer 

spacing of 1.11 nm, as seen in the measurements shown in Figure 3.11. The hydrated 

vanadium pentoxide is always of low crystallinity, typically characterized as nano-

crystalline, and the locally ordered structure was therefore determined by pair distri-

bution function analysis [16]. EDX data confirmed the relative vanadium and oxygen 

concentrations. A SEM image of a cleaved cross section through a 15 nm-thick film is 

shown in Figure 3.12. The low conductivity of the hydrated vanadium(V)oxide films is a 

limiting factor in the devices, which is a major difference between this study and pre-

 

Figure 3.11: Left side shows the GIWAXS data as measured, with a logarithmic colour scale represent-

ing intensities. The strongest scattering feature near the center of the image corresponds to the 001 

reflection, whereas the weaker scattering at the edges of the image, correspond to the 110 and 11-1 

reflections [16], showing that the crystallites are preferentially oriented with the ab-plane parallel to 

the substrate surface. Right: Integration over 001 peak, assuming sample to detector distance of 121 

mm, yields a d-spacing of 11.1 Å. Reproduced with permission from MDPI [1]. 
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vious studies where vanadium oxide films were prepared by different methods [12,13]. 

 It has been reported that for hydrated vanadium(V)oxide films the conductivity in 

thicker films increases with the annealing temperature as long as the film retains the 

layered slab structure with a bilayer of vanadium oxide stacked between layers of wa-

ter molecules. However, annealing at higher temperatures transforms the hydrated 

oxide to crystalline V2O5 with much lower conductivity, presumably because of the 

formation of grain boundaries [17]. Compared to the previously reported measure-

ments on vanadium(V)oxide xerogel films which were cast from gel solutions [17,18], 

our VTIP cast films are extremely thin, with a much higher surface to volume ratio. This 

makes dehydration effective at lower temperatures, so that our 120–140 °C anneal re-

sults in n values of ~0.3, comparable to much higher temperature annealing processes 

on the gel based films where similar n values required annealing at above 250 °C. 

 The thickness of the roll coated films on PET substrates was calculated using a dry 

film density based on the GIWAXS results and the speed, coating width and flow rate 

used for the coating process, according to a formula 

𝑡 =
𝑓 × 𝜌w × 𝑀V2O5

2 × 𝑆 × 𝑊 × 𝜌d × 𝑀VTIP
 

where f is volumetric flow, ρw and ρd are the densities of the VTIP solution and the dry 

V2O5·(H2O)0.3 film, MV2O5 and MVTIP are molecular weights, and S and W are the coating 

speed and width of the stripe. For a PET sample coated with 15 mg/mL, a profilometer 

measurement of the dry film thickness showed a range with an average of 34 ± 9 nm, 

in agreement with the 27 nm predicted by our model.  

 

Figure 3.12: SEM cross section (tilted 17°) of 15 nm-thick cleaved V2O5·(H2O)0.3 film on a crystal silicon 

substrate showing film thickness and uniform morphology on the film surface. 
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3.4.3 Variation of the Vanadium concentration in an in-situ experiment 

To test the parameter space for the thickness of the vanadium oxide layer in a roll 

coating setting, an in-situ thickness variation experiment was completed. The experi-

ment was done using the technique previously shown in work by Alstrup et. al. [19] 

and also described in the roll coating chapter of this thesis for use on the mini roll 

coater.  

 The technique involves a gradual change of the dilution of the coated solution by 

the use of a dual pump setup, where one pump is pumping a solution of the VTIP pre-

cursor in the maximal concentration which one wants to coat, and the other pump is 

pumping the pure solvent used to create the gradual change of concentration.  

 The result of the experiment is seen in Figure 3.13, where three separate dilution 

runs are shown. Two runs with a dilution using isopropanol shows the need of a 5 

mg/ml concentration corresponding to a 10 nm dry thickness to be needed for the so-

lar cells to work. A second experiment where butanol was used to dilute the VTIP stock 

solution shows a twice as thick layer to be needed for the cells to work, however the 

use of butanol also showed cells with an overall lower efficiency. 

 

Figure 3.13: Variation of the concentration of the VTIP solution in the coating process. A two pump 

system similar to that described in the Roll coating chapter of the thesis was used. Reproduced with 

permission from MDPI [1]. 
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3.4.4 Full size modules 

 Based on the gradient experiment, a VTIP concentration of 15 mg/ml in isopropanol 

was chosen for production of the full size modules shown on the right in Figure 3.8. 

The modules consisted of 16 stripes connected in series with a total module area of 

360 cm2. The performance of the modules is shown in Table 3.1 

 Although the performance of the large modules was not very high, a degradation 

study on the modules was completed to compare the lifetime of a module made with 

Vanadium oxide and a reference module made with PEDOT. The cells were mounted 

on an outdoor solar tracker and the dose, to which the modules were exposed was 

registered using a bolometer. Unfortunately, the aging of the modules showed a deg-

radation to D80 of ≈50MJ/m2 for the vanadium based cells, and a D80 of >150MJ/m2 

for the PEDOT based modules, where D80 is the dose at which the module had 

dropped to 80% of its initial performance. 

 

3.4.5 Summary of vanadium experiments 

 The performance of both the cells and modules made with vanadium oxide indi-

cates that the use of vanadium oxide as a substitute for PEDOT in the solar cells not to 

be a viable solution with the ProcessOne [20] method used in these experiments. 

 

3.5 Roll coated cells produced on the MRC 
One of the initial uses of the MRC presented in chapter 2 was for manufacturing of so-

lar cells on a 13 mm wide ITO substrate with the three solvents chlorobenzene, 1,2-

dichlorobenzene and 1,2,4-trichlorobenzene. The result of which was published and is 

attached as appendix A1. The goal of the experiments conducted was to test for varia-

tion of performance on the basis of different solvents and coating at different temper-

atures. An example of the J-V curves for a subset of the cells are presented in Figure 

3.14, together with an example of the newer ITO-free cells based on the flextrode sub-

Table 3.1: Performance of 360 cm2 modules in outdoor measurements. 

Measurement  PCE (%)  Voc (V)  Isc (mA)  FF (%)  

Outdoor  0.12 ± 0.06  6.0 ± 2.0  −25.4 ± 4.8  26.8 ± 1.1  
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strate. Much of the reason for the large discrepancy between the ITO based cells and 

the ITO free cells lies with the use of ITO substrates with a high resistance. The nominal 

resistance of the ITO substrate used was 100 Ω/□, while the resistance of the Flextrode 

design is a combination of a ≈200 Ω/□ PEDOT:PSS layer and 0.1 Ω/□ silver fingers. 

 A further issue with the ITO flexible substrates is the high risk of cracking of the ITO 

layer upon bending. The ITO handles bending badly due to its brittleness. Examples of 

sheet resistivities ranging from the nominal 100 Ω/□, up to was 1.5 kΩ/□, was meas-

ured with the batch of ITO substrate used for the production of these cells, indicating 

that the efficiencies would be lower than for non-flexible or higher quality ITO sub-

strates. 

 

3.6 ITO-free solar cells 
 

The switch to ITO free solar cells has been completed, as a way to avoid the issues with 

the ITO substrates. The use of ITO substrates comes at a high cost. The Indium in ITO is 

a scarce material and prices of it is increasing, with the evaporative methods used to 

 

Figure 3.14: Comparison of solar cells manufactured at different parameters. The use of different sol-

vents and temperatures shows a difference, however the ITO-free cells shows much better perfor-

mance compared to the PET-ITO based cells. 
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manufacture it and the patterning process needed to define the electrode patterns be-

ing further cost intensive processes.  It has been so, that both cost and energy wise the 

ITO substrate made up approximately half of the total cost of the solar cell [21–23]. 

Combined with the issues of flexibility and the high resistances for ITO on PET com-

pared to ITO on glass substrates, the development of a different electrode was done. 

The electrode design that has replaced the previously used ITO-PET substrates, is a PET 

foil, which is flexoprinted with a finger or honeycomb silver grid and further flexoprint-

ed with a full area highly conductive PEDOT:PSS layer. For the use in an inverted ge-

ometry the electrode is further slot-die coated with an Aluminum doped Zink Oxide 

 

Figure 3.15: Structure of a -ITO free solar cell with a PEDOT:PSS Ag grid electrode. The flextrode bot-

tom electrode is illustrated as a black grid with a blue PEDOT:PSS layer. A yellow layer indicates the 

ZnO layer. The red layer is the active material layer with a dark and light part indicating the bulk het-

erojunction of donor and accepter materials. A top electrode consists of three separate PEDOT:PSS 

layers and a silver grid electrode. 

Table 3.2: The coating parameters used for the developed coating stack as shown in Figure 3.15 

Layer Material Concentration Temp Speed Flow T
wet

 

   °C m/min mL/min µm 

Substrate Flextrode 
     

1st active layer Active Polymer 20:20 mg/ml 60 1.0  0.20  15 

Compatibilizer PEDOT F010:IPA 1:4 vol/vol 60 1.0 0.10 8 

HTL PEDOT 4083:IPA 1:2 vol/vol 60 1.0 0.30 23 

Conducting Layer PEDOT F10:IPA 1:1 vol/vol 60 1.0 0.40 31 

Top Electrode Ag PV410   60 1.2     
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layer. An illustration of the electrode structure is shown in Figure 3.15, with an active 

layer and a semitransparent top electrode. The parameters for the typical cell on flex-

trode with the PEDOT:PSS silver grid top electrode is shown in Table 3.2. The top 

PEDOT layer is actually a combination of three separate PEDOT layers; a thin diluted 

PEDOT (F010) layer to aid in adhesion, a second PEDOT layer (Clevios 4083) to give 

hole selectivity and a top layer of high conductivity F010 PEDOT. 

 

Using the flextrode substrate and the 3-PEDOT top electrode structure, a range of 

polymers were made on the MRC with performance numbers for the various polymers 

presented in Table 3.3. The highest performance cells have still been P3HT:PCBM cells, 

however this is also the material for which the process has originally been optimized. 

Variation of the solvents, additives and temperatures together with optimization of 

thicknesses can improve on the performance of the polymers. 

 

Table 3.3: Performance of different polymers coated on the MRC with the Flextrode substrate. 

Active layer Ratio Solvent VOC JSC FF  PCE  

   V  mA cm-2 % % 

P3HT:PCBM 1:1 CB 0.54 -9.20 57.8 2.85 

PSBTBT:PCBM 2:3 CHCl3 0.56 -5.66 41.7 1.33 

PDTSTTz-4:PCBM 2:3 CB 0.68 -7.15 37.3 1.81 

MH301:PCBM 1:2 CB 0.83 -4.67 54.1 2.09 

MH306:PCBM 2:3 CB 0.63 -5,57 41.4 1.33 
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The low bandgap polymers are somewhat low in performance, which to a certain 

degree can be blamed on the absorption of the bottom electrode PEDOT, which has a 

decreasing transmission at longer wavelengths, as shown in chapter 1. Considering the 

light available after the passage of the substrate and bottom electrode also shows 

some of the reason as to why the flexible solar cells shows a lower performance. The 

maximum current that can be extracted from the different substrates, under the as-

sumption of a 100% EQE after passage of the substrate and bottom electrode are 

shown in Table 3.4. The drop in maximum attainable current when using the flextrode 

substrate compared to a ITO glass substrate is >20%. 

Table 3.4: Maximum current which is achievable by the use of the flextrode depending on the sub-

strate used. Numbers are an integration of the AM1.5G spectrum over the shown wavelengths. ITO 

M-type is a ITO glass reference substrate. 

Substrate 350-800 nm 350-650 nm 650-800 nm 
Melinex Flextrode 18.5 11.8 6.7 
Mitsubishi flex 15.3 9.5 5.8 
Amcor flex 16.6 10.5 6.1 
ITO M-type 23.3 14.4 8.9 

 

 

Figure 3.16: Absorbance of coated films of four of the tested polymers. The MH306 polymer was un-

fortunately not tested, however the absorption is very similar to PSBTBT. 
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 External quantum efficiency (EQE) measurements on the cells, as shown in Figure 

3.17, indicates the absorption and charge extraction of the P3HT cells to be substan-

tially higher than for the other polymers, but simultaneously follows the trends of the 

absorption curves in Figure 3.16, with the offset of the PEDOT absorption showing as 

the EQE values relative to the Absorbance numbers are higher at the lower wave-

lengths. 

 The use of other polymers than P3HT shows potential to increase efficiencies fur-

ther compared to the present level, however as also shown some optimizations has to 

be completed for the solar cells.  

 

3.7 Summary 

 

This chapter has been a description of a large range of different solar cells produced 

with a range of techniques and with several variations in the materials used. From spin 

coating and full roll-2-roll production of solar cells with vanadium oxide hole transport 

layers to ITO based flexible devices based on the ProcessOne methods completed on a 

lab scale roll coater, to ITO-free devices with a range of different polymers used. 

 

Figure 3.17: EQE measurements of different polymers manufactured using the Flextrode substrate 

and a F10 PEDOT:PSS and silver grid top electrode. 
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4. X-ray and TEM morphology characterization of 
nanoparticle based solar cells 

Making an organic photovoltaic (OPV) from nanoparticles instead of the traditional use 

of solvent based inks is one of the ways to reduce the use of solvents for solar cell 

manufacturing and thereby making the OPV production both more environmental 

friendly and cheaper in both terms of embodied energy and traditional economic cost 

[1]. However, when manufacturing the solar cells from nanoparticles instead of sol-

vents, the traditional bulk heterojunction is not obtained [2], but a more complicated 

structure of packed nanoparticles with an internal morphology and an external packag-

ing morphology [3,4]. 

 One of the ways to characterize the morphology of nanoparticle based polymer so-

lar cells is by using x-ray characterization. A Near-Edge X-ray Absorption Fine Structure 

(NEXAFS) spectrum is taken to find the absorption peaks for the materials inside the 

particles. The most significant components are chosen to do a scanning transmission x-

ray microscopy (STXM) image of the sample with the chosen energies and a following 

de-convolution of the amount of each component in each pixel. This chapter will show 

results based on both x-ray and electron microscopy of the morphology of the nano-

particle structure. 

 The P3HT polymer system has been previously described in [5], however no analysis 

of particles based on chlorobenzene as the initial solvent has been completed. The 

low-band gap polymer PSBTBT has previously been studied by Morana et. al. [6] who 

did morphology studies on the PSBTBT polymer, while Schmith et. al. did in-situ X-ray 

scattering to estimate the crystallinity during the drying process [7]. However, no pre-

vious experiments have been completed on nanoparticles of the PSBTBT polymer.  

 

4.1 Preparation of nanoparticles 

 

The aqueous inks were prepared according to the procedure presented by Landfester 

et al. [8], with minor variations as described in Andersen et. al. [9]. PSBTBT and PCBM 
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was dissolved in chloroform while P3HT and PCBM was dissolved in Chlorobenzene, af-

ter which an aqueous solution of sodium dodecyl sulfate (SDS) was added and allowed 

to form a macro-emulsion for 1 hour while vigorously stirring in both. The macro-

emulsion was subjected to ultrasound energy to form a micro-emulsion, which was 

heated at 75 °C for 3 hours to evaporate away the chloroform/chlorobenzene, result-

ing in an organic nanoparticle dispersion in water. The dispersion was dialyzed against 

demineralized water to remove excess SDS. The remaining dispersion was con-

centrated by centrifugation in a dialysis centrifugation tube to approximately 55-60 

mg/mL. Specification of the two batches can be seen in Table 4.1. 

 

4.2 Near-Edge X-ray Absorption Fine Structure  

 

To calibrate the intensities of X-ray absorption a scan over the X-ray energy range is 

completed initially on a pristine sample consisting of a thin film spin coated from a sol-

vent based solution of the respective component. 

 

4.2.1 Preparation of pristine samples for NEXAFS 

Pristine samples were prepared by spin coating on small glass slides. A 1 x 1 cm2 glass 

slide was pre-treated with standard cleaning process and a 10 min ozone treatment. 

The substrates were then spin coated with a thin layer of Clevios 4083 PEDOT:PSS, to 

allow a lift off of the spin coated films. The PEDOT:PSS layer was air dried for 2 min af-

ter which the solvent based solutions were spin coated.  

Table 4.1: Specifications of the nanoparticles used for the experiments. Two different batches were 

made for devices and STXM sample of each of the polymers 

Batch  Solid (mg)  Solvent 
(mL) 

SDS conc. (g/L) SDS 
(mL) 

Ultra-sound  Size (nm) 
SAXS 

Device 740 17.5 30 50 6.5 min, 900 
W 

32 (10) 
STXM 100 5.3 0.357 9.3 5.0 min, 650 

W 
- 
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 A thickness of the spin coated reference samples of ~100 nm was aimed for, to ob-

tain the best contrast in the NEXAFS measurements. The thicknesses of the spin coated 

samples are listed in Table 4.2. 

 For the lift off the films were scratched in squares of roughly 2 x 2 mm2 and slowly 

slid into a beaker of water, with the film floated onto the water surface. The films were 

then transferred to TEM cobber grids enabling analysis in the X-ray beam line. Images 

of the TEM grids with the pristine films are shown in Figure 4.2  

 

Figure 4.1: Pristine films of the P3HT, PSBTBT and PCBM materials, spin coated from solution. The 

films were spin coated to obtain a thickness of ~100 nm. 

 

Figure 4.2: Pristine samples floated onto TEM cobber grids. Microscopy images of the P3HT (A), 

PSBTBT (B) and PCBM (C) pristine films. 

Table 4.2: Thicknesses and spin parameters for the P3HT, PSBTBT and PCBM reference samples. 

  P3HT PSBTBT   PCBM 
 Thickness  117 (5) nm  115 (10) nm  85  (8) nm 

Spin parameters 1300 rpm, 1min 1800 rpm, 1 min 500 rpm, 1min 
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4.2.2 Near edge absorption fine structure spectra 

After making a NEXAFS line scan across one of the edges of the floated off pristine 

samples, the intensities were normalized to account for the background. The spectra 

were further normalized to a calculated absorption spectra  for each of the polymers, 

obtained from the online solid x-ray filter tables [10,11]. 

 The normalized spectra for P3HT and PSBTBT are plotted in Figure 4.3 A and B to-

gether with the normalized absorption spectra for PCBM. From the two spectra suita-

ble energies for distinguishing between polymer and PCBM was chosen. These, for 

both polymers, were chosen at 284.5 eV, 287.4 eV, and 288.2 eV.  

 

4.3 Scanning transmission x-ray microscopy 
 

With the chosen energies from the NEXAFS spectrums scanning transmission x-ray mi-

croscopy maps could be obtained. These were done by setting the energy of the beam 

line constant, and doing a scan over the sample area after which the second and third 

energies were set and another scan completed for each of these. This will be refered 

to as a stack. A stack consists of the three STXM images completed at the three select-

ed energies.  

 
Figure 4.3. Normalized absorption spectra for the reference samples prepared and the three selected 

energies used for the STXM scan. Black is the P3HT reference (A), the PSBTBT reference (B) and green 

is the PCBM reference in both A and B. 
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 The analysis of the STXM stacks was completed using the techniques as described 

by Burke et. al. [3]. Singular value decomposition was used to fit a sum of the pristine 

spectra to the measured blend spectrum, at each pixel in the STXM images. Image 

analysis was performed with the aXis2000 software package developed by Hitchcock 

et. al. [12]. The intensity maps presented in this chapter shows the relative mass com-

position for the PSBTBT, P3HT and PCBM, respectively, in relation to the total mass in 

the scanned areas. 

 

4.3.1 Preparation of nanoparticle samples for STXM 

The polymer-PCBM nanoparticles were spin coated onto a silicon substrate with a 250 

x 250 µm silicon nitride window. The Si substrate was attached with double-sided tape 

to a glass slide during the spin coating. Images of the initial drop casting of the solu-

tions can be seen in Figure 4.4. 

 

 

Figure 4.4: Spin coating of Silicon substrates with a 250 x 250 µm SiN window. Dispersions of 

P3HT:PCBM nanoparticles (A) or PSBTBT:PCBM nanoparticles (B) are spin coated. The Si substrate was 

attached with double-sided tape to a glass slide during the spin coating. 

 After having spun the solutions and dried, visual light microscopy images of the 

samples were acquired, to ensure an adequate coverage of the Silicon Nitride window 

and help in the location of suitable sections on the windows for doing the STXM scans. 

These images for the two samples are shown in Figure 4.5 A and B with a red square to 

indicate the area in which the STXM scans reported here were completed.  
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Figure 4.5: Visual light microscope images of the spin coated SiN windows. A) P3HT nanoparticle sam-

ple window. B) PSBTBT nanoparticle sample window. The red square marks the area in which the 

STXM scans were completed. 

 

4.4 Composition and structure of nanoparticles 
 

Several different types of nanoparticle composition has been suggested for the poly-

mer:fullerene system, with core-shell-, Janus- or heterogeneous-particles as the main 

possibilities. A fourth type of particles is the homo particles, which are made from sep-

arate batches ensuring no mixing. 

 The objective of these investigations has been to find whether the nanoparticles 

showed any signs of a predominant type of phase-separation. 

 

4.4.1 P3HT:PCBM nanoparticles 

In the following, two separate x-ray stacks are presented. Both are from the red 

square, marking a large cluster of nanoparticles in Figure 4.5A.  

 Section 1 shows a cluster with relatively few evenly sized large particles and few 

small particles surrounding. The P3HT and PCBM relative mass contents shown in Fig-

ure 4.6A and Figure 4.6B, respectively, shows clear signs of a higher concentration of 

P3HT in the shell of the particles, with the PCBM concentration primarily in the core of 

the particles.  
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 The TEM image captured of the section shows the particles to be somewhat fused 

together, which is not as evident from the X-ray images due to the lower resolution. 

 The second section shows a larger view of another part of the nanoparticle sample, 

with a larger size range of the particles than in the first section.  

 The bonding between many of the particles is quite pronounced as indicated by the 

TEM image in Figure 4.7C. This shows in the relative density mass of both P3HT and 

PCBM as more of a smearing of the structures, with only few particles showing as core-

shell structures. 

 

Figure 4.6:  Section 1: Composition of P3HT:PC60BM nanoparticles from STXM. A) Relative mass com-

position of P3HT to total mass. B) Relative mass composition of PCBM to total mass. C)  TEM image of 

nanoparticle cluster taken after STXM imaging. Mass composition plots are shown on a black to white 

color scale. 

 

Figure 4.7:  Section 2: Composition of P3HT:PC60BM nanoparticles from STXM. A) Relative mass com-

position of P3HT to total mass. B) Relative mass composition of PCBM to total mass. C)  TEM image of 

nanoparticle cluster taken after STXM imaging. Mass composition plots are shown on a black to white 

color scale. 
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4.4.2 PSBTBT:PCBM nanoparticles 

The relative mass densities for the PSBTBT polymer and PCBM are presented in the fol-

lowing three figures, which are the result of three distinct stacks. All three stacks are 

from within the area marked by the red square in Figure 4.5B.  

In contrast to the P3HT:PCBM nanoparticles the PSBTBT:PCBM nanoparticles shows 

less agglomeration together with more well defined single particle.  

Section 1 shows a section of the sample with a clear indication of a core-shell struc-

ture, as seen by the bright high-intensities in the rim of the particles in Figure 4.8A and 

the smaller areas of intensity in Figure 4.8B, indicating the high concentration of 

PSBTBT in the shell of the particles and high concentration of PCBM in the centre of 

the particles. 

In Figure 4.9, the second section of PSBTBT:PCBM nanoparticles, the STXM resolu-

tion of the particles is a little better than for section one. The core-shell structure seen 

in the previous figure is therefore also more noticeable here, with the larger centre 

particle, with a diameter of ≈250 nm and the smaller particles down to 100 nm show-

ing a P3HT rich outer shell and PCBM rich core. 

 

Figure 4.8. Section 1: Composition of PSBTBT:PC60BM nanoparticles from STXM. A) Relative mass 

composition of PSBTBT to total mass. B) Relative mass composition of PCBM to total mass. C)  TEM 

image of nanoparticle cluster taken after STXM imaging. Mass composition plots are shown on a 

black to white color scale. 
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 Finally, in the third section, the particles ware resolved with almost all the particles 

in the imaged area showing a clear core-shell structure. Especially the PCBM image 

shows more clearly the separation between the particles. 

 

4.4.3 TEM images of nanoparticles which has not been X-rayed 

A set of reference nanoparticle samples were imaged with TEM before going to the 

synchrotron, to ensure that the particle coverage and size distributions were adequate 

for using the samples in the beam line experiments. A further reason for doing TEM on 

these samples was to have a reference for the particle agglomeration and shape for 

 

Figure 4.9: Section 2: Composition of PSBTBT:PC60BM nanoparticles from STXM. A) Relative mass 

composition of PSBTBT to total mass. B) Relative mass composition of PCBM to total mass. C)  TEM 

image of nanoparticle cluster taken after STXM imaging. Mass composition plots are shown on a 

black to white color scale. 

 

Figure 4.10:  Section 3: Composition of PSBTBT:PC60BM nanoparticles from STXM. A) Relative mass 

composition of PSBTBT to total mass. B) Relative mass composition of PCBM to total mass. C)  TEM 

image of nanoparticle cluster taken after STXM imaging. Mass composition plots are shown on a 

black to white color scale. 
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nanoparticles that had not been exposed with x-rays. The use of both x-rays and elec-

tron imaging techniques, such as TEM, could incur radiation damage to the particles. 

 

Figure 4.11: TEM images of nanoparticles of PSBTBT:PCBM (A) and P3HT:PCBM (B). These samples 

have not been used for x-ray experiments. 

This has however not been observed in these particles as the shape and type of ag-

glomeration of the particles in the un exposed TEM images seen in Figure 4.11 show a 

similar structure of the nanoparticles to the nanoparticles in the TEM images of Figure 

4.6, Figure 4.7, Figure 4.8,Figure 4.9 and Figure 4.10. The larger amount of particles in 

Figure 4.11B, shows the very nice packaging of an area with a large concentration of 

particles. 

 

4.5 Performance of solar cells produced from nanoparticles 
 

Solar cells have been fabricated from the PSBTBT:PCBM nanoparticles, with numbers 

for their efficiency given in the following section, however due to difficulties in coating 

the P3HT:PCBM nanoparticles manufactured from Chlorobenzene, there is not pre-

sented any data for the P3HT:PCBM system. 

 

4.5.1 Efficiency of PSBTBT cells 

The efficiency of the OPV devices produced from PSBTBT:PCBM nanoparticles gave a, 

for nanoparticle based OPV, promising result of 1.29% best efficiency. In comparison to 
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what has previously been reported [5], this is among the highest efficiencies recorded 

for water based OPV production.  The efficiency of the cells were primarily low due to 

the 33% fill factor, which might be blamed on an inefficient transport of the charges 

from the nanoparticles to the electrodes. The current density versus voltage curve for 

a typical device is shown in Figure 4.12.  

 

Figure 4.12. Current Density versus Voltage curve for a typical PSBTBT NP device. The device showed a 

short circuit current density (Jsc) of 6.21 mA/cm2, an open circuit voltage (Voc) of 0.62 V and a fill-factor 

of 33 %. The efficiency of the device (η) is 1.29 %. The device area was 5x5 mm2. 

The short-circuit current density of the device is 6.21 mA/cm2 and the open circuit 

voltage is 0.62 V. This compares quite well to other nanoparticle based polymer solar 

cells, but is however not fully at the level of solar cells based on the PSBTBT polymer 

processed from solution, where a current  density of 12mA/cm2 was originally report-

ed Hou et. al. [13]. 

 

4.5.2 IPCE of PSBTBT:PCBM nanoparticle based cells. 

Internal photon conversion efficiency (IPCE) data for the cells produced from the na-

noparticle system was completed, however not until three days after the cells were 

manufactured. The IPCE of the cells after the three days in a non-protective atmos-

phere is shown in Figure 4.13. The current density of the cell has dropped from the 

6.21 mA/cm2 measured initially, to 3.56 mA/cm2 after the storage in air. The IPCE of 
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the cell also matches the absorption pattern of the PSBTBT polymer, as shown in Chap-

ter 3. 

 

  

Figure 4.13: IPCE measurement of the cell presented in Figure 4.12. The IPCE measurement was not 

completed until three days after fabrication of the cell. The integrated current density from the IPCE is 

3.56 mA/cm2. 

 

4.6 Summary 
This chapter has described the production of nanoparticles for use on organic solar 

cells coated from water and the morphology of the as produced nanoparticles internal 

morphology. It has been shown that the nanoparticles produced from the chloroform 

and the PSBTBT polymer gives spherical particles with a core-shell structure, while the 

chlorobenzene based P3HT based particles gives a similar core-shell structure, but with 

a tendency towards a less spherical shape and a larger degree of agglomeration. The 

performance of the PSBTBT:PCBM nanoparticles was evaluated and found to lie below 

the record for the polymer, but with a, for a nanoparticle based system relatively high 

1.3% efficiency. 
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5. Tandem Solar Cells  

The quest for the fabrication of tandem solar cells has been recently started for organ-

ic photovoltaics with few occurrences of tandem cells previously, but recently with ef-

ficiencies overcoming the efficiencies of the individual cells.  

 The results presented in this chapter are based on results from the paper attached 

by Andersen et. al. [1]  as appendix A5, together with examples of single sided illumi-

nation solar cells not previously published. 

 

5.1 A traditional tandem solar cell 

 

The traditional tandem solar cells are based on III-V crystalline materials with the add-

ed benefits of the multijunctions being the possibility of absorbing the incoming pho-

tons in a range of cells, which are each better matched to convert the energy of the 

photons to an electron with an energy as close as possible to the energy of the incom-

ing photon. This is in contrast to the single cell junctions, where the energy of the pho-

ton higher than what is needed for exciting an electron across the materials band gap 

is dissipated as heat in the material.  

 These tandem solar cells are however performing significantly better than organic 

solar cells, with efficiencies in the >40 % range [2,3]. The performance of these is also 

further increased by the use of concentrator lenses to increase the intensity upon the 

cells and reduce the size of the cells required to cover a given area. Using concentrator 

systems for this type of cells is also a necessity from an economical viewpoint, howev-

er concentrators requires accurate tracking of the sun for the focusing of the light onto 

the solar cell area. A further issue with this solution in countries, such as Denmark, is 

the low amount of the sun light which comes in as direct sunlight in comparison to the 

diffuse component of the incoming irradiation.  
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5.2 Organic tandem solar cells 

 

In organic solar cells, the implementation of a tandem structure was realized as early 

as 1986 with the 2-cell tandem cell structure by Tang et al. [4]. The efficiency increase 

in the single cells and the complications in making tandem cells have however kept 

high efficiency organic tandem cells from reaching a performance level similar to the 

organic based single cells. It is not until recently that organic tandem cells have begun 

to show a competitive performance to the single cells. Evaporated small molecule cells 

by Heliatek have been certified with a 12% conversion efficiency for a 1.1 cm2 tandem 

cell [5], while the polymer tandem cell have been reported with efficiencies just above 

10% by You et. al. [6,7], however with device areas of a somewhat smaller 0.1cm2. 

 The reason for increasing the complexity of the organic solar cells by the use of a 

tandem cell structure lies with the possibility of tailoring the individual cells in the de-

vice towards a specific wavelength range. This is similar to the argument of making in-

organic tandem cells, however in the organic tandem solar cells, the difficulty in mak-

ing a material with a wide absorption is larger. As shown in Figure 5.2, the low 

bandgap polymers tend to absorb less at the shorter wavelengths. Furthermore, due 

 

Figure 5.1: Energy level diagram of the materials in an inverted geometry OPV tandem solar cell, with 

the materials aligned according to their position in the cell. A recombination layer consisting of a PE-

DOT:PSS-ZnO layer has holes from the front cell recombining with electrons from the back cell. The 

front cell based on P3HT only absorbed the light out to 650 nm while the back cell consisting of a low-

bandgap polymer such as PSBTBT absorbed the light out to 850 nm. 
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to the much lower mobilities, it is not possible to make the active layers very thick, re-

sulting in a somewhat transparent layer. 

 An example structure of an inverted structure organic tandem solar cells is shown in 

Figure 5.1, being in essence a stack consisting of two solar cells coated on top of each 

other, however with the top electrode of the first cell replaced by a transparent re-

combination layer, which the long wavelength light haves to pass before being ab-

sorbed in the second cell.  

 The principle of the two different polymers absorbing the light is shown in Figure 

5.2, where the part of the solar spectrum marked with red will be absorbed in the 

front P3HT:PCBM cell while the part of the solar spectrum marked with blue will be ab-

sorbed in the PSBTBT:PCBM back cell. This type of cell, with these two polymers was 

demonstrated by Sista et. al in 2009 [8] showing an efficiency of >5 %.  

  

 

Figure 5.2: Splitting the incoming solar radiation between two active layers consisting of P3HT and 

PSBTBT for example would allow a significant increase in the efficiency of the solar cell, here illustrat-

ed with the red highlight showing the absorption area of the P3HT layer and the blue highlight the ab-

sorption area of the PSBTBT polymer. 
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5.3 Tandem cells by wet processing 

 

However simple these results shows the processing of tandem cells to be, the use of 

only wet processing complicates the process slightly, since the coated layers need to 

withstand coating of several extra layers on top. Therefore the intermediate layer of 

the tandem cells becomes indeed the most essential part of creating the polymer or-

ganic solar cell. Tandem cells have been shown previously, manufactured using doctor 

blading techniques [9] or spin coating and with the use of thin evaporated metal layers 

in the intermediate layer [8]. The tandem cells presented herein however are made us-

ing wet processing for the entire 12 layer stack. 

 

5.4 Testing of devices 
 

Since one of the concerns for the tandem solar cells made by wet processing is the 

separation of the individually coated layers, the idea of using a two sided illumination 

and two thick P3HT:PCBM active layers evolved. This allowed a semi-separation of the 

performance of the two active layers, since the thick P3HT:PCBM layers allow very lit-

tle of the light to pass through to the other active layer, and thereby a possibility of di-

 

Figure 5.3: Illustration of the double sided illumination test setup. Two mirrors angled at 45 degrees 

with the solar cell mounted between them allowed a two sided illumination of the solar cell with 

equal intensity on both sides using a single solar simulator. Reproduced with permission from Elsevier 

[1]   
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agnosing which of the two cells in the tandem device was the limiting cell. 

 A test stand with two mirrors angled at 45 degrees with a mount for the solar cell 

between them was made. The advantage of this setup was the uniform intensity too 

both sides of the solar cell with the use of a single solar simulator. The intensity used 

with this setup was 700 W/m2 for each side. 

 

5.5 Intermediate layer 
 

One of the biggest issues when making a tandem solar cell using wet processing meth-

ods is the added complexity in keeping the individual layers separated.  

 During the fabrication of these tandem solar cells, it was found that the largest diffi-

culty was making the intermediate layer solvent resistant. This issue arose by the top 

active layer solvent penetrated through the intermediate layer and dissolved the bot-

tom active layer, thereby resulting in a blend of the two active layers and a partially 

covering intermediate layer. The performance of these cells were abysmal, with per-

formance numbers of less than one fifth of what is the norm for the single junction roll 

coated cells and with voltages of roughly 0.5 V. 

 To find the culprit of this solvent penetration several different intermediate layer 

combinations was tried and tested for both solvent penetration and coatability. Initial-

ly making cells with a Clevios 4083 PEDOT:PSS layer and ZnO layer was tried, however 

the Clevios 4083 layer could not be coated on the P3HT:PCBM active layer, due to de-

wetting.  

 A solution to this was tried with the use of VTIP as a substitute for the PEDOT layer, 

however the coating of the VTIP solution on the mini roll coater gave very non-uniform 

films, as seen in Figure 5.5. The VTIP dried into small islands of Vanadium Oxide crys-

tals, with the size of the particles highly dependent on the amount of VTIP material.  

Even with a 60 nm thick Vanadium Oxide layer with a 80 nm thick ZnO layer the sol-

vent test proved that the intermediate layer was not solvent resistant, as shown in the 

last microscope image of Figure 5.5. 
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 Switching to using MoOx as the hole conducting layer in the intermediate layer stack 

showed nicer coating properties towards uniformity compared to the Vanadium layer, 

however, as seen in Figure 5.4A, the resulting intermediate layer stack showed crack 

 

Figure 5.5: Coating of a Vanadium Oxide layer from a VTIP precursor. The microscope images shows a  

Flextrode substrate coated with a P3HT layer and varying amounts of VTIP solution. (a) is the bare 

P3HT layer, (b) is 7.5 nm of VTIP, (c) is 15 nm, (d) is 30 nm and (e) is 60 nm. (f) shows dissolution of 

the complete coated V2O5 ZnO intermediate layer on solvent penetration testing. 

 

Figure 5.4: Variations of the intermediate layer to stop solvent penetration. Microscope images of roll 

coated sample cells coated to and including the top active layer. A) An intermediate layer consisting 

of a MoOx HTL layer and a ZnO ETL layer with P3HT coating on top. Image shows significant crack 

formations. B) Intermediate layer with MoOx, PEDOT:PSS 4083 and ZnO with P3HT coated on top. No 

cracks is seen in the layer when using a PEDOT:PSS 4083 layer as a HTL and solvent blocking layer. Re-

produced with permission from Elsevier [1] 
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formations after the coating of the 2nd active layer material. 

 We did however find, that with an intermediate layer with MoOx, PEDOT:PSS and 

ZnO, the cracks does not form, as seen in Figure 5.4B, and that the films underneath 

does not dissolve upon application of a solvent onto of the intermediate layer. 

 A further complication to the process of finding a suitable material combination for 

the intermediate layer lied with the Flextrode electrode used. As shown in Figure 5.6, 

spikes caused by the flexographic printing of the bottom silver electrode in some cases 

as high as 0.6 µm, caused the solvent resistance of the intermediate layer to be inef-

fective. This was shown to be an issue with some batches of the flextrode electrode, 

where tandem cells could simply not be fabricated. The issue was eventually solved 

with an improvement of the silver printing reducing the amount of spikes. 

 

5.6 Absorbance of the extra layers of the tandem cell 

 

Making the intermediate layer solvent resistant is a necessity for the manufacture of 

the tandem cells as described in the previous section, however the solvent resistance 

has to be done, without increasing the absorbance of the intermediate layer to a level 

where it can no longer be used in single side illumination tandem solar cells. An ab-

 

Figure 5.6: One added difficulty for the production of tandem cells on the Flextrode substrate is the 

inherent spikes in the flexographic printed silver bus bars. As seen in (A), the height of the spikes in 

the print is up to 0.6 µm for the flextrode substrate. Solvent penetration through the intermediate 

layer is shown in (B). Reproduced with permission from Elsevier [1] 
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sorbance test of the individual layer materials of the cell coated by roll coating on bare 

substrate was completed. The absorbance of the materials of the tandem cell can be 

seen in Figure 5.7. The absorbance of the intermediate layer components is very small. 

The variation of the measurement of the absorbance of the substrate is negligible for 

both VTIP and ZnO layers, while there is a slight absorbance of less than 0.05 in the 

Pedot 4083, primarily at higher wavelengths.  

 

5.7 Illustration of the tandem cell stack 

 

The optimized stack found to work in a complete wet processed procedure is shown in 

Figure 5.8, with the materials and other of these similar to those shown in Figure 5.1. 

The stack consists of two identical polymer layers sandwiched with a ZnO and PEDOT 

layer on each side of them. The use of the three layer PEDOT structure in both inter-

mediate layer and top layer, shows the further potential for the stacking of more than 

two cells onto each other, however this would require a careful choice of suitable pol-

ymers and absorber layer thicknesses. 

 

Figure 5.7: The absorption of the layers of the tandem solar cell. All absorbance measurements are 

conducted with an air reference, so the PET substrate is included in all the measurements. The ab-

sorbance of the layers in the intermediate layers can be seen to very small. 
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5.8 Manufacturing Parameters for a tandem cell 

 

For the fabrication of the final design of the two layer P3HT:PCBM; tandem cells the 

parameters described in Table 5.1 were used. The parameters are based on the opti-

mizations carried out, while some are chosen due to convenience. A temperature of 

60°C for instance, was chosen to allow an efficient drying of the layers, while not being 

too high causing defects while coating ZnO. Coating speeds has been kept at 1.0 

m/min, due to this offering a good compromise allowing corrections during coating 

 

Figure 5.8: The stack of an optimized tandem solar cell using a PEDOT:PSS and ZnO intermediate re-

combination layer. Reproduced with permission from Elsevier [1] 

Table 5.1: The coating parameters used for the developed coating stack as shown in Figure 5.8 

Layer Material Concentration Temp Speed Flow T
wet

 

   °C m/min mL/min µm 

Substrate Flextrode 
     

1st active layer P3HT:PCBM 20:20 mg/ml 60 1.0  0.20  15 

Compatibilizer PEDOT F010:IPA 1:4 vol/vol 60 1.0 0.10 8 

HTL PEDOT 4083:IPA 1:2 vol/vol 60 1.0 0.30 23 

ETL ZnO 39 mg/ml 60 2.0 0.10 3.8 

2nd active layer P3HT:PCBM 20:20 mg/ml 60 1.0 0.08 6 

Compatibilizer PEDOT F010:IPA 1:4 vol/vol 60 1.0 0.10 8 

HTL PEDOT 4083:IPA 1:2 vol/vol 60 1.0 0.30 23 

Conducting Layer PEDOT F10:IPA 1:1 vol/vol 60 1.0 0.40 31 

Top Electrode Ag PV410   60 1.2     
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and still offering a high throughput. 

 Concentrations of the different solutions were based on what have generally been 

used in the lab in the case of ZnO and active materials and with dilutions of PEDOT:PSS 

solutions to allow an easier coating process. 

 

5.9 Encapsulation 
 

Encapsulation of the tandem solar cell was needed to allow the cell to open at positive 

bias. As seen in Figure 5.10, the opening of the diode does not occur before the device 

has been encapsulated. This is believed to be a question of the humidity and oxygen 

content in the top PEDOT:PSS layer. 

 The encapsulation was done in two different ways. For the typical cells encapsula-

tion was done with two microscope cover slides of 18 x 18 mm2, with DELO LP-655 UV 

curable epoxy. This encapsulation means that the cells are no longer flexible and the 

technique is therefore not roll 2 roll compatible, however for the testing of cells, the 

cheapness and the pre-cut size of the cover glass made this an ideal solution. The se-

cond type of encapsulation was done using an AMCOR µ-barrier foil and the LP-655 

epoxy. These cells are flexible and the encapsulation method is the same as presently 

used on the roll 2 roll produced cells. 

 

 

Figure 5.9: Images of encapsulated tandem cells with different electrode patterns. All are encapsulat-

ed in 18 x 18 mm2 0.1 mm thickness glass with DELO epoxy glue. 
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5.10 Post treatment 

 

After completing the solar cell, a series of post treatment steps has to be performed to 

allow the full performance of the solar cell. First, any shunts present in the solar cell is 

burned, with the use of a negative bias between 14 V and 20 V. This enables a non-

resistor J-V characteristic, as shown with the first curve in Figure 5.10. Secondly the 

cells is heat-annealed, which is supposed to improve the morphology of the active lay-

ers and dissipating moisture from the PEDOT:PSS layers. The result of this is shown in 

the second curve, with a higher short circuit current. The third step is to encapsulate 

the solar cell, which due to the type of PEDOT:PSS is required to show a diode charac-

teristic. The use of a UV-curable adhesive also enables a doping of the ZnO layers in 

the cell, which increases the conductivity of the cell in the forward bias direction. Final 

steps of applying a negative voltage, heating and soaking shows the highest efficiency 

of the device, with an improvement in voltage, current and fill factor. 

 

 

 

 

Figure 5.10: Post treatment of the tandem solar cells. For the solar cells to perform, the post treat-

ment is crucial for these wet processed tandem cells. Post treatment consists of high voltage shunt 

burning, heat annealing, encapsulation and light soaking. 
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5.11 Variation of second active layer thickness 

 

The use of two identical cells was the initial idea for testing the cell stack, however af-

ter completing external quantum efficiency (EQE) measurements on the two sides of 

the cell, the efficiency of the top cell was found to be very low. The shape of the EQE 

of the thick top cell, as shown in Figure 5.11B, shows an EQE value of less than 10% 

with a significant dip where the peak of the P3HT absorption lies. This was concluded 

to be caused by a high percentage of the light being absorbed in the first part of the 

second active layer film, causing the electrons to travel across a long distance before 

reaching the recombination layer and thereby increasing the risk of recombination 

within the active layer. A test of the effect of using thinner cells was therefore com-

pleted with thicknesses of 100 nm, 200 nm and 300 nm for the 2nd cell active layer. The 

J-V curves shown in Figure 5.11A shows the use of a 200 nm active layer to give the 

highest performing cell, with a better matching of the current from the top and bot-

tom cell and a better conductivity through the cell, while the 100 nm cell is too thin to 

absorb enough light and the 300 nm cell shows a similar transport problem to the full 

thickness cell. The EQE of the 200 nm 2nd active layer cell (Figure 5.11B), shows the 

clear improvement from the full thickness 2nd layer. The previously observed drop in 

 

Figure 5.11: Variation of the thickness of the second coated active layer. A) J-V curves for 2nd layer 

active curves of 100 nm, 200 nm and 300 nm. B) EQE measurement corresponding to thick and thin 

2nd active layers. Curves are completed with light biasing of the 1st cell. Reproduced with permission 

from Elsevier [1] 
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EQE where P3HT absorbs the most has been effectively removed by reducing the layer 

thickness. As expected there is a minor peak in EQE around 340 nm, which is due to 

the illumination through the top electrode and thereby the light does not get absorbed 

in the ZnO layer. 

 

5.12 Comparison of a single P3HT cell and a P3HT:P3HT tandem cell 
 

Comparing the performance of a typical single cell P3HT cell to the two layer P3HT 

tandem cells, shows the tandem cell to perform worse. The voltage is 1.9 times higher 

than the single cell, the current is 44 % of the single junction and the fill factor is down 

from 44.4 % to 35.8 %. The lower performance of the tandem cell is expected when us-

ing a material such as P3HT, where most of the light is absorbed in the active layer for 

this thickness and the transport properties of the active layer is not a problem. 

 

5.13 Use of PDTSTTz-4 versus P3HT 

 

As a test for the use of other polymers, a batch of tandem cells based on different 

combinations of the P3HT and PDTSTTz-4 polymers were made. The PDTSTTz-4 poly-

 

Figure 5.12: Comparison of the J-V curve for a single junction solar cell and a tandem solar cell in the 

two side illumination setup. The Voc of the tandem cell is almost two times the Voc of the single junc-

tion, while the current and fill factor of the single cell are higher than for the tandem cell.  Repro-

duced with permission from Elsevier [1] 
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mer is similar in its absorption spectrum, however due to lower energy levels, the volt-

age of single cells based on this polymer is higher than for P3HT. This also applies for 

the tandem cells based on the polymer. By using a combination of P3HT and PDTSTTz-4 

in the tandem solar cell, the Voc of the solar cell is increased from 1.02 V to 1.09 V with 

the P3HT as the first layer and 1.12 V with P3HT as the second layer. By using PDTSTTz-

4 in both active layers the Voc was raised to 1.30 V. The increased voltage with similar 

current levels resulted in a power conversion efficiency of 1.8 % under two sided illu-

mination. The high voltages proves the intermediate layer to be a very efficient re-

combination layer 

 

 

Figure 5.13: Example of tandem cells with the P3HT and PDTSTTz-4 polymers. The PDTSTTz-4 polymer 

gives a higher voltage than the P3HT polymer, due to a better alignment with the PCBM acceptor. 

Table 5.2: Performance of double sided illuminated tandem solar cells based on PDTSTTz-4 and P3HT 

polymers. Numbers measured at 0.7 suns pr. side 

 

PDTSTTz-4: 
PDTSTTz-4 

PDTSTTz-4: 
P3HT 

P3HT: 
PDTSTTz-4 

Voc 1.30 V 1.12 V 1.09 V 

Jsc 4.82 mA cm
-2
 4.66 mA cm

-2
 2.93 mA cm

-2
 

FF 39.9 % 38.0 % 33.9 % 

PCE 1.79 % 1.41 % 0.77 % 
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5.14 Single sided illumination with the developed intermediate layer 

 

With the use of the developed intermediate layer solution of F10 PEDOT, 4083 PEDOT 

and ZnO the progress onto single sided illumination was completed. Solar cells based 

on the two polymers PDTSTTz-4 [10]and PSBTBT [11] both mixed with PCBM was com-

pleted. 

 The cells were manufactured according to the parameters presented in Table 5.3 

with a variation of the PSBTBT active layer thickness with three stripes coated at 0.12 

ml/min, 0.10 ml/min and 0.08 ml/min respectively. Representative J-V curves of the 

cells are presented in Figure 5.15. The best performing cells showed efficiencies of ap-

proximately 1.1% under 1000W/m2 AM1.5G illumination. These were cells with the 

thinner second active layer. The lower efficiency of the thicker active layer suggests 

possible issues with recombination in the layer. 

 Comparing the efficiency of the single sided illuminated cells to the double sided il-

luminated cells shown in Figure 5.13, shows a drastic reduction in the short-circuit cur-

rent extracted from the cells. However the lower efficiency of the single cell PSBTBT 

solar cell compared to a single cell P3HT solar cell is clearly part of the reason, while 

matching of the band gaps of the two polymers would also be beneficial to move a bit 

since the use of the flextrode substrate allows less light to pass through in the region 

from 600 nm to 850 nm, where the PSBTBT cell is primarily working, than what passes 

Table 5.3: Coating parameters used for a single sided illumination tandem solar cell. 

Layer Material Concentration Temp Speed Flow T
wet

 

Substrate Flextrode  °C m/min mL/min µm 

1st active layer PDTSTTz-4:PCBM 16:24 mg/ml 60 1.0  0.20  15 

Compatibilizer PEDOT F010:IPA 1:4 vol/vol 60 1.0 0.10 8 

HTL PEDOT 4083:IPA 1:2 vol/vol 60 1.0 0.30 23 

ETL ZnO 39 mg/ml 60 2.0 0.10 3.8 

2nd active layer PSBTBT:PCBM 20:20 mg/ml 60 1.0 0.08 6 

Compatibilizer PEDOT F010:IPA 1:4 vol/vol 60 1.0 0.10 8 

HTL PEDOT 4083:IPA 1:2 vol/vol 60 1.0 0.30 23 

Conducting Layer PEDOT F10:IPA 1:1 vol/vol 60 1.0 0.40 31 

Top Electrode Ag PV410   60 1.2     

 



 

Ph.D. Thesis - Henrik Friis Dam  

88 Coating, Degrading and Testing of Organic Polymer Devices 

through an ITO based substrate as used in the previous reports of this polymer combi-

nation. 

 A picture of one of the coated tandem cells is shown in Figure 5.14. The image 

shows the tandem solar cells to be pseudo-transparent, which is another limiting fac-

tor. A reflective back electrode could help to reflect back light through the active lay-

ers, increasing the absorption in the active material and help to reduce the need for as 

thick active layers.  

 

 

Figure 5.15: Tandem cells made with the PDTSTTz-4 polymer and the PSBTBT low band gap polymer. 

The low band gap polymer was coated in three different thicknesses, ~300 nm, ~250 nm and ~200 nm. 

 

Figure 5.14: Semi-transparent tandem solar cell consisting of the 12 layer stack with active layers of 

PDTSTTz-4:PCBM and PSBTBT:PBCM. 
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5.15 Bending Test 

 

The added complexity of coating more layers also means that there are more interfac-

es between these layers and thereby a larger risk of having issues with delamination or 

cracking of the films during exposure to mechanical strain.  

 Doing bending tests can help to show how the solar cells responds to mechanical 

strain and how well the solar cells can withstand handling. In the case of roll to roll 

coating the production of the solar cells is the first step on the path of mechanical 

straining of the materials, since the roll to roll machines runs the foil through going 

over a number of rollers, most of which have diameters from 90 mm and upwards.  

Bending tests on dedicated compression testing machinery with smaller bending di-

ameters and repetitive bending can help to show if any drop in performance happens 

during repetitive bending or if there is a critical bending angle above which the devices 

dies immediately or simply dies faster. 

 

Figure 5.16: Bending tests performed on Tandem solar cells coated on Amcor Flextrode substrate with 

an encapsulation of DELO LP-655 and AMCOR barrier foils. A) shows device 1 with a bending radius of 

11 mm while B) shows device 2 under a bending radius of 8 mm. Both cells were bend for 1, 10, 100 

and 1000 times with IV-curves being captured at each of the aforementioned numbers. C) Normalized 

efficiencies of the cells, with practically identical performance. Both cells also showed the delamina-

tion as seen in B). The dashed yellow line indicates the position of the solar cell. 
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 Two tandem cells were taken from a P3HT:P3HT tandem batch, and encapsulated in 

AMCOR barrier foil using DELO LP-655 epoxy glue. The silver top contacts were con-

tacted using conductive cobber tape and expanded to enable contacting of the cell, 

while keeping the area of the cell under bending without too much variation in flexibil-

ity. Both cells were bend for 1, 10, 100 and 1000 times with IV-curves being captured 

at each of the aforementioned numbers. The performance of the cells after each of the 

bending cycles showed to be very constant, as shown in Figure 5.16C, with only an out-

lier at 10 bends for device 1, due to slightly higher lamp intensity during that meas-

urement.  

 Both cells showed a delamination of the encapsulation, which was caused by a 

weak adhesion between an UV-barrier glued to the substrate and the substrate itself. 

Images of the two cells under bending are seen in Figure 5.16. The dashed yellow line 

on the images indicates the position of the solar cell.  

 

5.16 Summary 
 

This chapter has shown the possibility of making tandem solar cells with a solvent re-

sistant intermediate layer using only wet processing technologies and with the mini 

roll coater (MRC) used as the only machine necessary for the fabrication.  

 Two sided illumination of tandem cells were manufactured using the scheme for 

testing the efficiency of the intermediate layer as recombination layer, showing volt-

ages on the level of two individual cells, when using either P3HT or PDTSTTz-4 poly-

mers. A single sided illumination tandem cell was made using the PDTSTTz-4 and 

PSBTBT polymers, showing an efficiencies 1.1 % due to a current limitation caused by 

the PSBTBT polymer. 
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6. Electrochromic Devices  

 

Electrochromic are materials which changes their color or color intensity when an elec-

tric field is applied to them. For polymer based electrochromics this occurs by a reduc-

tion or oxidation of the polymer. 

 In the work described by Jensen et. al. [1], attached as appendix A6 roll-coated elec-

trochromic devices (ECDs) were fabricated and tested with success, showing the possi-

bility of making organic based electrochromic devices such as windows and displays on 

a cheap in-air slot-die coating process. 

 

6.1 Working Principle 
 

The majority of ECDs consists of one polymer which changes color when switched be-

tween the reduced and oxidized state and a counter polymer, which is necessary to 

balance the redox reaction. Preferably the charge balancing polymer should lend min-

imal absorption to the device in both redox states. Between the two polymers is an 

electrolyte layer, which is electrically insulating, but ionically conducting. The change in 

color is caused by the application of an electric field across the two electrodes causing 

 

Figure 6.1: Principle of an electrochromic device. The connection of the electrodes to a voltage supply 

respectively oxidizes and reduces the polymers and to compensate the charge build up the mobile 

ions in the electrolyte moves to screen the charges. 
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an oxidation and reduction of the respective polymers. The effect is reversible, so the 

polymer can be repeatedly switched between its two states.  

 Compared to light emitting devices and liquid crystal displays, the principle of the 

electrochromic device is similar to that of a capacitor, where power only needs to be 

applied when changing the color of the device. The device will remain in one of the 

two redox states until the polarity is reversed or slowly discharge the built in potential 

until the ground state is reached. 

 

6.2 Considerations in manufacturing an electrochromics display 

 

In general, there are several challenges for electrochromic technology as presented in 

Figure 6.2 which has to be considered. These have been broken down into three main 

points: materials, addressability, and device manufacture. Previous work has ad-

dressed the challenges in regards to color availability and processing, allowing for a full 

color palette of solution processable polymers [2,3]. However, less effort has focused 

on utilizing these different materials in full device manufacture, on flexible substrates  

 

Figure 6.2:  Chart of the considerations which has to be applied for manufacturing relevant electro-

chromic devices.  

utilizing large area processing, let alone addressability of matrix displays and integra-

tion of electronics drivers [4]. As effort towards use of EC materials in commercial ap-

plications, such as currently available in auto mirrors, the development process for 
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ECDs is at a stage where further progress has to centre on efficient production meth-

ods combining high output, reliability and low cost. To realize these important parame-

ters, where conjugated polymers are concerned, the employment of roll coating onto 

flexible substrates emerges as the technique of choice. The success of using these 

techniques in polymer photovoltaics manufacture has stimulated the use of similar 

techniques in electrochromic devices, addressing several of the points illustrated in 

Figure 6.2.  

 

6.3 Materials 

 

All chemicals and solvents were used as received unless otherwise noted.  

 The polymers used for the devices was the magenta polymer (ECP-Magenta), 

poly((2,2-bis(2-ethylhexyloxymethyl)-propylene-1,3-dioxy)-3,4-thiophene-2,5-diyl) and 

the minimally changing polymer (MCCP), poly(N-octadecyl-(propylene-1,3-dioxy)-3,4-

pyrrole-2,5-diyl), previously reported in Reeves et. al. [5] The schematic of both poly-

mers can be seen in Figure 6.3. 

 

Figure 6.3: Materials used in an organic electrochromic device. A Minimally Colour Changing Polymer 

(MCCP), an electrolyte+binder layer and a Radiantly Colour Changing Polymer (RCCP) consisting of the 

Magenta polymer. 

 

 The polymer inks used for the poly(methylmethacrylate) (PMMA)/propylene car-

bonate (PC) devices had an electrolyte content equivalent to that of the electrolyte-

binder layer (w/w) to avoid cracking in the polymer film. Chloroform was used as sol-

vent because of the solubility of both polymer and salt, while having a reasonably low 
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vapor pressure making it suitable for roll coating. The ElectroChromic Polymer (ECP)-

Magenta had a Mn of 76 kDa and the MCCP had a Mn of 56 kDa. The concentrations of 

inks were varied according to coating method. Solutions of 5 mg/mL were used in the 

spray coating experiments. In the spin coating experiments 20 mg/mL concentration of 

polymer was used, whereas the concentration used for slot-die coating varied from 20 

to 40 mg/mL in CHCl3. 

 The ionic liquid electrolyte solution was made according to Susan et. al [6] with a 

slight modification. Methylmethacrylate (MMA) and the crosslinking agent eth-

yleneglycol-dimethacrylate was purified by distillation and degassed before use. Ben-

zoylperoxide was recrystallized from chloroform/methanol before use. MMA (0.02 

mol), the crosslinker ethylenedimethacrylate (2 mol %) and 1-ethyl-2-methyl-

imidazolium-bis(triflouromethane sulfonyl)imide (0.02 mol) were mixed in a round-

bottomed flask and benzoyl peroxide (BPO) (0.5 mol %) was added. A condenser was 

added and the solution stirred at 85 °C for 4 hours, after which 10 mL of acetonitrile 

was added. Further stirring for 12 hours at 85 °C yielded a slightly yellow viscous solu-

tion that was used without further purification. 

 

6.4 Fabrication of a electrochromic device 

 

The polymer is coated on a substrate with a transparent conducting electrode. Exam-

ples of coatings of Magenta and MCCP on the MRC can be seen in Figure 6.4. On top of 

the polymer the electrolyte layer is coated, which supply the ions necessary to ensure 

charge balance when the polymer is reduced or oxidized.  

 The electrochromic devices reported here were produced by either slot die coating 

or spray coating, the advantage of the slot-dye coating process being a higher uni-

formity and one dimensional pattern control.  
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 Roll coating was performed on the mini roll coater [7,8], as presented in Chapter 2, 

using PET foil substrates pre-coated with a 175 nm sputtered ITO layer. The ITO came 

pre-etched into stripes of 4 mm or 13 mm width. The ITO electrode layer had a nomi-

nal sheet resistivity of 100 Ω/□. Lengths of 1 m were coated at a time with a coating 

width of 50 mm, thereby covering three or eight of the pre-patterned ITO stripes, re-

spectively. ECP-Magenta, MCCP, and electrolyte were coated on the machine with a 

high degree of uniformity, as seen in the color uniformity of the coating in Figure 6.4. 

 

6.4.1 EC Assembly 

The ECDs were assembled manually due to the adhesiveness of the electrolyte. The 

ITO covered PET substrate was cleaned with isopropanol prior to coating. After coating 

of the various layers, 1 cm of ITO was carefully cleaned for electrical contact by remov-

ing the polymer and electrolyte layer with isopropanol.  

 

Figure 6.4: Roll coating of (a and c) ECP-Magenta from a 20 mg/mL solution and (b and d) MCCP 

from a 20 mg/mL solution. (e) A spray-coated substrate coated with 20 mg/mL ECP-Magenta. Re-

produced with permission from Wiley [1]. 
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Figure 6.5:  Assembly of the ECD. The foils consist of PET with ITO stripes or solid ITO. MCCP (top) and 

ECP-Magenta (bottom) is coated onto the foils followed by a layer of electrolyte. The foils are placed 

on top of each other with the ITO stripes perpendicular. An area of 1 cm on each foil is cleaned of pol-

ymer for connection to an external power source. Reproduced with permission from Wiley [1]. 

The two films were assembled perpendicular to each other, as shown in Figure 6.5. Af-

ter assembly, the device was run through a laminator effectively forming a single unit-

ed electrolyte- binder layer. 

 

6.5 Pixelated devices 
 

An example of the pixelated devices with a 4 x 4 mm2 pixel size is shown in Figure 6.6. 

The pixelated devices can be switched between the reduced and oxidized states inde-

pendently for each pixel, however showing a little crosstalk between pixels. 

 

 

Figure 6.6 Example of pixelated device in the reduced (a) and oxidized state. The device is a roll coat-

ed multi pixel device using an eight striped 4 mm wide ITO patterned substrate. 
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6.6 Switching the device 

 

The electrochromic device is operated by the application of a positive or negative volt-

age to its two electrodes to either reduce or oxidize the colored polymer.  

Switching of the manufactured devices was completed with a symmetric square 

wave pulse switching between ±2 V. The current response to the switching voltage is 

seen in Figure 6.7. It can be seen that the response to the voltage is not symmetric 

with a clearly faster switching from the reduced to the oxidized state. 

  

6.7 Period of color stability 

 

The stable state for the ECD is the colored (reduced) state. The hold time of the oxi-

dized state is however important. During a time period of 4 hours without current af-

ter having switched the device to its transparent state, the device switches back to the 

magenta reduced (stable) state, as shown in Figure 6.8. This is caused by the move-

ment  

 

Figure 6.7: Current (left axis)/voltage (right axis) switching of a 10 cm2 device, when switched be-

tween -2 and 2 V. The colored (reduced ECP-magenta) and bleached (oxidized ECP-Magenta) states 

for a device are shown in the photographs to the right. Reproduced with permission from Wiley [1]. 
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Figure 6.8: The hold time of a roll coated device. During a time period of 4 hours without current after 

having switched the device to its transparent state, the device switches back to the magenta oxidized 

state. Reproduced with permission from Wiley [1]. 

 

of the ions in the electrolyte. They will not completely screen the potential of the 

charged polymer, so while some of the polymer chains changes back to the neutral 

state the screening ions will move in the electrolyte, since the small screening field is 

no longer there and thereby increase the risk of another unit to go to its reduced state. 

This is of importance for large area applications as a short hold time would result in a 

need for applying a switching/holding voltage at more regular intervals, thereby in-

creasing the power consumption. 

 Based on this result, it would seem that these ECDs have a large potential for dis-

play and shading applications with very low power consumption either through self-

powering using a solar cell as demonstrated in [1,9] or through brief updates of the 

color state every 30 min.  

 

6.8 Device degradation 

Degradation of the electrochromic devices was investigated by several different tests. 

First of the change in transmission as a result of repeated switching of the device was 

tested, with an automated switching test of the transmission of the device before, af-

ter and during a switch of the device under the ±2 V potential previously used. 
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 In Figure 6.10 the transmission of the device is shown. A slight drop in transmission 

of the oxidized (clear) state can be seen after 90 switches. The degradation can be min-

imized by the use of a lower switching potential, however also resulting in a longer 

switching time. The switching times of the device has been extrapolated from the trial 

for the interval from 600 seconds to 750 seconds, as shown in Figure 6.9, showing a 

90% switch to occur in 2.3 seconds and 3.9 seconds for the colour-to-bleach and 

bleach-to-colour, respectively. 

 

Figure 6.9: Transmission of a device at 550 nm while switching from 2 to -2 V for 30 s at each poten-

tial.  Response times for the 600–750-s interval. The colors represent various degrees of switching. (b) 

Table showing response times corresponding to the lines in (a). Reproduced with permission from 

Wiley [1]. 

 

Figure 6.10: Transmission of a device at 550 nm while switching from 2 to -2 V for 30 s at each poten-

tial. For a 45-min period (90 switches) a slight decrease in DT is observed. 
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 The devices prepared here were not encapsulated in a barrier to oxygen and water 

and in spite of this showed a reasonable stability both towards shelf lifetime and under 

light illumination. We illuminated an operational device with a solar simulator 

(AM1.5G, 1000 W/m2, 45 C) for 100 h continuously and found that the degree of pho-

to bleaching was limited.  

 

The device lost 20% in absorbance and when switching about 25% of the transmission 

change was lost, as seen in  (Fig. 11). The photo bleaching was just visible to the eye 

and most significant in areas around the edges where slight delamination had occurred 

allowing for ingress of water and oxygen. This is a convincing result and it is estimated 

that operation for many years is possible provided that water and oxygen are excluded 

from the ECD through a suitable barrier material. The shelf life is encouragingly long 

for practical development and use. It was not possible to detect any decrease in ab-

sorbance or performance for devices stored or cycled in the dark for 4 months. 

 

 

 

Figure 6.11: Degradation of the electrochromic device due to photo bleaching. A complete device un-

derwent continuous illumination (AM1.5G, 1000 W/m2, 45 °C) for 100 h.  The loss in switching capaci-

ty as a consequence of the 100-h illumination condition was 25% (see a). The effect of photo bleach-

ing is shown in the photograph (b) of the photo bleached device. Red arrow marks an observed in-

gress all around the edges. 
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6.9 Summary 

 

Demonstration of fully roll coated devices of various sizes, up to 4 x 4 cm2, are demon-

strated with pixelated devices containing pixel sizes of 4 x 4 mm2 or 13 x 13 mm2.  The 

transmission contrast exhibited by the devices, when switched between the fully 

bleached and fully colored state was 58 % at a visible wavelength of 550 nm and the 

devices exhibited switching times of <10seconds, with 95% switching within 5 seconds.   
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7. Light Emitting Electrochemical Cell (LEC) 

Light emitting electrochemical cells (LEC) [1] are a competitive and somewhat com-

plementary technique to the more well-known OLED. However there are some inher-

ent advantages in the LEC compared to the OLED and of course also some drawbacks. 

The main selling point of LEC devices is a prospect for better efficiency than OLEDs and 

easier processing conditions. 

 In Figure 7.1 examples of operating roll coated LEC devices are shown. The two im-

ages are of a fabricated LEC device with light emission from the back (a) and front (b) 

while operated at 7 V. The emitting area is ~300 mm2 

 In the work described in the article Sandström et. al. [2], attached as appendix A7 

roll-coated LEC devices were fabricated and tested with success, showing the possibil-

ity of making large scale displays on a cheap in-air slot-die coating process. This chap-

ter is based on the paper with some added data which was not presented in the paper. 

 

Figure 7.1:  (a, b) Photographs of the light emission from two slot-die coated LEC devices driven at V = 

7 V illustrating the bi-directional light emission and the device conformability. Reproduced with per-

mission from Nature Publishing Group [2]  

 

7.1 Principle of a LEC device 

 

LEC’s works by the principle of radiative recombination. The active material is a conju-

gated polymer (in this case Merck, Superyellow , no. PDY-132) which has a strong yel-

low colored light emission when electrons and holes recombine in the polymer. This 
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makes it an ideal candidate in both OLED and LEC devices. For it to work in a LEC de-

vice the SY layer is mixed with an electrolyte to enable a doping of the polymer.  

 This means that upon turning on the voltage for the device an injection of electrons 

and holes from each of the corresponding electrodes will cause a doping of the poly-

mer with the injection of electrons increasing the amount of free carriers in the LUMO 

level, while the charging occurring being offset by the positive ions in the electrolyte. 

From the hole injection side the number of carriers in the HOMO level will increase 

and the charging will be offset by the negative ions in the electrolyte, in total causing a 

cancelation of the charge concentration associated to the polymer. The resulting P-N 

junction will emit light from the PN-boundary layer, when charges from each of the 

doped sides of the polymer meet.  

 

Figure 7.2: Working principle of a light-emitting electrochemical cell. a) schematic structure of a pris-

tine LEC device indicating the existence of mobile ions, b) the electric double-layer formation and ini-

tial electronic charge injection within the same device following application of a voltage bias, c) and 

the light-emission from the in-situ formed p-n junction at steady-state.   

 The advantage of this principle in contrast to OLED devices is that the dependency 

on making uniform layers of active material to get uniform light emission is no longer 

required. In the OLED a variation of the layer thickness will cause a change in the 

strength of the electric field and places with a thin active layer will therefore see a 

higher field than areas with thicker layers. Being a diode a higher electric field will re-

sult in a higher current and thereby a higher light intensity. 

 This is also in stark contrast to the organic solar cells, where a thickness variation 

doesn’t cause issues since the principle of the solar cells is closer to the principle of the 
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LEC than the OLED, with a heterojunction in the solar cell consisting of two materials 

that in the interface between them make up the PN-junction. 

 The disadvantage on the other hand for a LEC in comparison to an OLED is the slow-

er turn on time, due to the doping process. This makes LEC devices great for slow 

changing lights, such as commercial signs, road signs and other slow changing lighted 

displays, while fast changing and high resolutions displays is much better suited to be 

produced by the OLED technique. 

 

7.2 Fabrication of LEC devices 

 

The LEC devices were fabricated by slot-ide coating on the MRC coater described in the 

roll-coating chapter of this thesis. The devices were coated on a PET substrate with 

pre-patterned ITO in either a 4 mm or 13 mm wide stripe pattern. The coated however 

was performed in a 13 mm stripe pattern regardless of the underlying substrate pat-

tern. In principle is seen in Figure 7.3(a) and in Figure 7.3(b) a picture of the coated de-

vices on the prototype mini roll coater described in the roll coating chapter. 

 

Figure 7.3: (a) Schematic view of the slot-die roll coating of the (yellow) active layer and the (blue) 

semi-transparent anode, (b) photograph of the roll coater during the deposition of the active layer. 

Reproduced with permission from Nature Publishing Group [2]  

 



 

Ph.D. Thesis - Henrik Friis Dam  

112 Coating, Degrading and Testing of Organic Polymer Devices 

 Devices both with and without ZnO between the ITO and Active layer was fabricat-

ed, however only devices with ZnO are reported here. The device stack consisted of 

the pre-patterned substrate, which was coated with a thick layer of the light emissive 

layer consisting of the Superyellow polymer and a KCF3SO3 salt in a poly(ethylene ox-

ide) PEO polymer matrix. A layer consisting of conductive PEDOT:PSS was coated on 

top of the active layer as a top electrode (see schematic in Figure 7.5b). The coating of 

both the active layer and the PEDOT:PSS was completed at a speed of 0.6 m/min and a 

substrate temperature of 40°C. To dry the PEDOT:PSS fully it was degassed in a vacuum 

oven to avoid exposure of the devices to the higher temperatures used in the coating 

of solar cells.  

 An inherent issue with the coating of these materials used the slot-die coating tech-

nique is the roughness of the coated film. AFM scans of the layers in the device are 

shown in Figure 7.4 with an overlay of the individual layers in Figure 7.4(a) showing the 

substantial thickness of these films and in Figure 7.4(b) a separate plot of the rougher 

interfaces of the cathode and anode interface layers. The root mean squared value of 

the surface roughness of the cathode and anode layers were 4.5 nm and 20 nm, re-

spectively. 

 

Figure 7.4 Thickness of the layers manufactured with the slot-die technique. A) An overlay of the 

three layers of the LEC, with AFM scans conducted on each layer. B) The roughness of each of the in-

terfaces for the Anode-active layer and cathode-active layer respectively. 
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 The reason as to why the LEC devices still works even with roughness’s on this order 

of magnitude is due to the thick films, which it is possible to use in a LEC. In the OLED 

the film thickness is limited by the conductivity of the small molecule or polymer used 

and therefore most devices are made with film thicknesses of 30 nm to 100 nm [3,4]. 

In the LEC, the combination of materials in the active layer creates a doping of the pol-

ymer spreading from the electrode interfaces until they meet, illustrated in Figure 

7.5(c). This in-situ created interface is where the light emission happens and due to 

this interface being created, the uniformity of the light emission is much less depend-

ent on the electrodes, since the distance to the electrode no longer directly defines the 

electric field across the active layer. 

 

Figure 7.5: The figure shows:  a) An exploded view of atomic force microscopy (AFM) height maps of 

the 10x10 µm2 PEDOT-PSS anode (top), the active layer (middle), and the ZnO cathode (bottom). (b) 

The layer structure of the device, with the ITO bottom electrode, the Superyellow, PEO, KCF3SO3 ac-

tive layer mix, and PEDOT:PSS top electrode, (c) Coloring indicated the doping of the polymer during 

operation, with a blue haze indicating a p-type doping of the polymer and red indicating a n-type dop-

ing. Light emission is marked by the yellow center lines.   

 

7.3 Performance of a roll fabricated LEC device 
 

The performance of the LEC devices produced are shown in Figure 7.6a, where optoe-

lectronic data was recorded during a voltage sweep at 0.1 V/s, during which the 

brightness reached 150 cd/m2 at a voltage of 10 V. The turn-on voltage at which the 

device began to emit visible light (B > 1 cd/m2) was 3.7 V. This is close to the theoreti-
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cal limit, as dictated by the band-gap potential of Superyellow, with a band gap of 2.4 

V as described by Becker et. al. [5] and Sandström et. al. [6]. 

 The time required is another essential part of the LEC device puzzle. While the OLED 

turns on instantly, in the LEC the doping of the polymer has to occur for the cell to 

reach its full brightness and efficiency. The turn-on time has been defined as the time 

to reach a brightness of B > 10 cd/m2 for a pristine device: The turn on time was found 

to be roughly 2 s at a current of 770 A/m2. 

 

Figure 7.6: (a) Optoelectronic data recorded on a roll-coated PET / Indium-tin-oxide / ZnO / 

{SY+PEO+KCF3SO3} / PEDOT:PSS device during a voltage sweep at 0.1 V/s. Inset: the brightness data 

plotted on a logarithmic scale. (b) The turn-on time for a nominally identical device driven in gal-

vanostatic mode at j = 770 A/m2. Inset: the data plotted on a logarithmic scale. Reproduced with per-

mission from Nature Publishing Group [2] 

 The fabrication yield of the roll-coated LECs was found to be satisfying, which could 

primarily be contributed to the fault-tolerant device geometry with a very thick active 

layer and some semi-air-stable materials. All tested devices, which were not mistreat-

ed during transportation and contacting, were functional and emitted light.  

 

7.4 Stability of light emitting electrochemical cells 

 

The operational stability of a roll-coated LEC can be quantified by the time for it to 

reach half-maximum brightness [7,8], which was found to be roughly 8 hours at a drive 

current density of 77 A/m2, for these devices. The latter results were attained on de-
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vices that had been stored in a glove box for more than 6 months. The highest record-

ed current efficacy is 0.6 cd/A at a brightness of 50 cd/m2.  

 A study on the effect of using an encapsulation for improving the lifetime has been 

studied by Asadpoorvish et. al. [9] , where the barrier keeps the device protected from 

O2 and H2O vapor. 

 

Figure 7.7: Photograph of an encapsulated roll-coated device operating at V = 7 V under ambient con-

ditions. Note that the device had been stored under ambient air for 3 days before the voltage was ap-

plied. 

 The mentioned devices, from a performance context, were fabricated from a less 

than optimal ink, since the ink was made with the primary intent of making the coating 

as easy as possible. An example of the little optimization of the ink towards perfor-

mance or stability is the high electrolyte content, which has proven to be detrimental 

for the attainment of both high efficiencies and long-term stability [10].  One could 

therefore also expect a significantly improved performance and stability with further 

optimization of the constituent processes and the utilization of lower-electrolyte-

content active materials, resulting in closer to the state-of-the art efficiency and opera-

tional stability numbers for polymer LECs. These are at present efficiencies of roughly 

10 cd/A and several  1,000 hours stability, which can be attained also for roll-coated 

LEC devices [11–14]. 
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 The ink formulation and coating processes, as presented herein, were conveniently 

executed solely under ambient conditions, but during light emission the active material 

in LECs (and in OLEDs) must be free from oxygen and water vapour to enable a satisfy-

ing performance. This challenge should, however, be addressable in a manner compat-

ible with ambient processing by including an efficient drying stage at an elevated tem-

perature to drive out remnants of O2/H2O/solvents followed by an immediately subse-

quent encapsulation stage, where a flexible barrier material is attached to the device 

with, for example, pressure-sensitive adhesive or a heat or UV-curable epoxy.  A pho-

tograph of such an encapsulated roll-coated LEC device during operation at a voltage 

of 7 V and working under ambient conditions, is shown in Figure 7.7. The device could 

be operated without any signs of deterioration in performance following 3 days of am-

bient storage, despite the fact that the encapsulation material exhibits rather limited 

barrier properties with respect to water and oxygen permeability (see ref. [15]). Con-

sidering the current cost for high-performance barrier materials [16], the possibility of 

using  a low-cost barrier material together with a material-conservative and time-

efficient fabrication process could thus be an indicative step towards conformable 

emissive devices for low-end applications, at a cost that could be accepted by the mar-

ket. 

 

7.5 Summary 

 

In summary, a demonstration of a full manufacturing of emissive LEC sheets, including 

the initial preparation of inks, to the coating of the constituent layers, to the final en-

capsulation in flexible substrates, can be carried out in air. This was done using slot-die 

coating, directly compatible with high-speed and low-cost roll-to-roll fabrication.  

 The fabricated devices are robust and fault-tolerant by the utilization of air-stable 

materials and a micrometer-thick emissive layer.  
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8. Solar Cell Test Platform and Systematic Data 
Logging 

 

8.1 Testing of and issues with testing of solar cells 

 

Testing of organic solar cells are done by tracing a IV curve of the cell under test with 

most often a Keithley 2400 sourcemeter or similar. Most of the solar cells produced 

around the world in different labs are solar cells of a size of 0.04 mm2 to 1 cm2. With 

efficiency maximums of roughly 10 % and current densities up to 20 mA/cm2 combined 

with highest voltages for tandem cells under 2 V, the measurement range required for 

testing a solar cell is quite small. The use of an instrument such as a Keithley 2400, 

which has become the defacto source measure unit, to some degree validates the re-

sult, however this can only be said to be true when used correctly. The range of the 

Keithley supports voltages up to ±21 V at a current level of ± 1 A. One of the troubles 

with this is that if the instrument range is set incorrectly or with a too high range, for 

instance testing a 0.1 cm2 solar cell with a short-circuit current density Jsc of 10 

mA/cm2, the current would be Isc=1 mA and if the range of the Keithley is set at 1 A the 

incurred offset of the instrument will give an extra ≈0.02 mA current. Furthermore 

with a cost of roughly 10 k$ the Keithley comes at a premium compared to what the 

cost of the components needed to supply and measure the more limited range of the 

smaller area organic solar cells. 

 

8.2 Arduino – open source electronics 
 

The Arduino platform is an open source hardware and software platform. Much like 

open source software, where the source code is available, the open source hardware 

and software platform has both a reference hardware design, but at the same time 

makes available the schematics and knowledge of the design enabling redesigns and 

changes of the original design to be made.  
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Figure 8.1: Example of Arduino board. The Arduino Leonardo board. The board features a 53 x 73 mm 

layout size with a header layout defined for mounted shields which adds components or functions to 

the board. Courtesy of the Arduino homepage [1] 

 

The Arduino platform itself is based on a C-like programming language with its own In-

tegrated Development Environment (IDE), a range of board reference designs and 

bootloaders that allows an easy access to microcontrollers and using these in small 

scale development projects.  

 

8.3 Building a sourcemeter for solar cell tests 

 

The principle of any sourcemeter is to have the possibility to source a voltage to a de-

vice and measure the current through the device while doing so. For solar cell testing 

the range of test methods goes from a multimeter based measurement of the short-

circuit current and the open circuit voltage, which is basically the unloaded and maxi-

mally loaded solar cell, via a resistor array based measurement, where different valued 

resistors are used as loads for the solar cell giving a sampling of the solar cell behavior 

under different loads, with the voltage and current still measured in each point. Fol-

lowing this, the use of the source meter, which in contrast to the previously mentioned 

is an active measurement method, where the supply of current makes it possible to, 

not only measure in the 4th quadrant of the IV-diagram, but also in the other three 

quadrants. 
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 A blog post from the PV group at MIT  showed an example of how to build a solar 

cell tester based on the Arduino platform [2], which has also been the basis for this 

sourcemeter. 

 

8.4 Components 
 

To make a source meter the components needed are a digital to analog converter 

(DAC), which will take a digital input and set a voltage on an output channel. This out-

put needs an operational amplifier (OPAMP) to buffer the output voltage of the DAC, 

since the output terminals of a DAC are not made for supplying current. A unity gain 

OPAMP is therefore used to supply the current needed to apply the voltage set on the 

DAC on the solar cell. The  

 

The components needed for the board is therefore;  

A 2 channel DAC 

A 2 channel OPAMP 

A 2 channel ADC 

A shunt resistor 

Two resistors for voltage division 

 

Since single solar cells have not reached voltages higher than 2V in short circuit current 

a voltage range of +-2 volt should be sufficient, however to enable test of small serially 

connected modules a higher voltage could also be considered. For the current range, 

the current output of some of the best organic solar cells are up to 20 mA/cm2, with 

many of the cells being tested around laboratories being down to 0.01 cm2. The roll 

coated devices however tend to be bigger devices with sizes up to 10 cm2 per. cell. 

Therefore, a current range of roughly 100 mA was chosen. The use of the Arduino form 

factor and the goal of keeping number of components low also mean that the power 

will be limited by the USB supply to the Arduino board, if powered only by the USB 

port. This combined with the microprocessors running at 3.3 V or 5 V, resulted in a 
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choice of components that could operate at both 3.3 V and 5 V. For communication 

with the chips the I2C bus was chosen, due to it having only two data lines connected 

to the components with build in addressability, reducing the need for input/output 

pins, compared to the SPI bus.  

 The following components were chosen based on the requirements above. 

 

8.4.1 MCP4728 4 channel digital to analog converter (DAC) 

The MCP4728 [3] is a 12-bit 4 channel DAC which can be driven from a supply between 

2.7 to 5.5 V. It has an integrated 2.048V reference with a 1x/2x programmable gain 

amplifier (PGA) and is controlled by an I2C interface. All channels are buffered by a uni-

ty buffer capable of supplying 20 mA and sinking approximately 10 mA. 

The use of this circuit means the external OPAMP is not required for small cells were 

the current does not get beyond 10 mA.  

 

8.4.2 TLV4113 2 channel operation amplifier (OPAMP) 

A high powered OPAMP capable of supplying up to 200 mA with a rail-to-rail output 

and a 2.5 V to 6 V power requirements was chosen. This Texas Instrument TLV4113 

dual-channel amplifier was used to enable a high enough power output to test large 

cells with a high current output. The further advantage of this unit is its power down 

mode, enabling the shutdown of the amplifier to reduce both power consumption and 

heat. 

 

8.4.3 MCP3424 4 channel analog to digital converter (ADC) 

The most important component on the board is the ADC, which measured both the 

current and voltage values of the cell. A MCP3424 ADC [4] was chosen. This was due to 

its, 4 channels, 18 bit resolution combined with a 2.048 V internal reference and a 1x / 

2x /8x PGA. The integrated PGA means the need of an OPAMP to amplify the voltage 

drop over the Shunt resistor could be excluded.  
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8.4.4 Shunt resistor 

The shunt resistor for the board was chosen to be a 0.1 Ohm or 1 Ohm resistor de-

pending on the internal resistance of the solar cells to test. For cells with a lower cur-

rent and a high internal resistance the use of higher valued shunt resistor would give a 

higher resolution. 

 

8.4.5 Voltage divider 

Due to the 2.048V reference of the ADC, a voltage divider was applied to enable use of 

voltages higher than this. First version uses an equal resistor 2-1 divider with two 20 

kOhm resistors in parallel. 

 

8.4.6 Resulting parameters 

The resulting range for the current measurement would be a 0.256 V range, with a 2 

µV resolution, which for a 1 Ohm Shunt resistor gives a 0.256 A range with 2 µA resolu-

tion. The voltage measurement could be completed with a resolution of 18 bits also, 

giving a resolution down to 30 µV. The control of the device by the I2C bus means the 

number of pins required from a microcontroller is reduced to 2 data pins, a ground 

(GND) and a positive supply of either 3.3 V or 5 V regulated DC. 

 

8.5 Board design and layout of components 

 

Design of the PCB was done using the freeware version of Cadsoft EAGLE 6.3, which is 

limited to a maximum board size of 10 x 10 cm2. The board was laid out in a Arduino 

form factor of 53 x 73 mm2 size with the full pin header set mountable (2 x 8pins on 

upper side and 2 x 6 pins on lower side).  Three HST 2 mm connectors were laid out for 

connection of 1) a solar cell 2) Current measurement 3) Voltage measurement, ena-

bling use of all four channels of the ADC. The ADC was put on the upper half of the 

board, with the voltage divider and the current channel shunt resistor. The DAC was 

placed at the center part of the board and the OPAMP at the bottom part of the board 

closest to the solar cell connector. These parts, which handle measurements, were all 
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offset towards the (right) rear edge of the board. On the left side the layout was com-

plemented with an optional real time clock (RTC) circuit and a microSD socket (alt-

hough the microSD socket would only be useful when running on a 3.3 V supply). A 

switch for selecting the measurement board supply voltage was put in near the supply 

pins, made by putting a surface jumper, which can be closed by bridging with a dap of 

solder. 

 

 

Figure 8.2: First generation measurement board. Left is the board top layer layout and right is the bot-

tom side layout. The layout is based on an Arduino shield form factor (size 53x73 mm2). It contains a 

DAC circuit with a 4.096 V range and a 200 mA buffer amplifier for sourcing, while a 4 channel ADC 

with 18 bit resolution handles data collection. 

 

Routing of the signals was done using the auto-router function and afterwards cor-

rected for a more appropriate layout. Headers were put in to allow connection to the 

I2C bus on two locations on the board and the Arduino SPI terminals on one location. 

 

8.6 Enabling data logging  
 

An alternative to the use of the shield and Arduino as a computer controlled 

sourcemeter, the Arduino can be fitted with a SD card, or an Arduino compatible board 

such as the Seeedstudio Stalker can be used for a self-contained measurement board, 

which can be mounted at remote locations.  
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Figure 8.3: Seeeduino Stalker board. An Arduino compatible board, with a build in microSD socket, 

temperature sensor, RTC clock, lithium polymer battery connector and solar cell connector with 

charge controller.  

 

The board can be setup to log the temperature and time and take an IV curve for the 

connected cell and store the information on the microSD card. The board will be driven 

from a solar cell and a lithium-polymer battery through the built in lithium battery 

charge controller. This is of relevance for remote test studies such as the round robin 

experiments [5,6] and for cases with multiple cell tests [7]. In these cases the associat-

ed cost and complexity of a standard source measure units for each test stand be-

comes too high. 

 

8.6.1 Sensors 

For solar cell testing the use of other sensors, than only the tracing of the solar cells IV 

curve can be quite beneficial. Factors such as the temperature, both of the surround-

ings and of the solar cell, the humidity level around the solar cell and the intensity of 

the illumination used is very important for judging the solar cells performance. 

 

Examples of sensors which can be used together with the boards are such as below:  

 

Light intensity: Registration of the intensity of incoming light can be done by several 

methods. The most accurate and often used is calibration via a pyranometer, which 

registers the heating caused by the incoming radiation and outputs a voltage signal as 

a function of the incoming intensity. Another approach is the use of a small solar cell or 
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a photodiode, where the measurement of the short circuit current will be approxi-

mately proportional to the incoming irradiation. A third option is the use of a light sen-

sitive resistor, which is what is most often used together with Arduino electronics, 

however not due to its accuracy but due to the easy measurement of a change in re-

sistance with the Arduino. 

 

Temperature sensor: The temperature can also be measured with a variety of sensors, 

were for many situations KT100 or similar sensors are used, which will give a small 

voltage difference with the change of temperature due to the work function of a junc-

tion between to metals. For embedded electronics the Dallas DS18 one wire digital 

temperature sensors can be used, which is a digital temperature sensor which can be 

daisy-chained  together allowing many sensors to be connected without using many 

inputs on the board.  

 

Humidity sensor: Measuring the humidity with an Arduino can be done with a DHT11 

or DHT22 temperature and humidity sensor. The sensor was a library already written 

for it for acquiring data. 

 

8.7 Manufacturing of board and soldering of components 

 

The choice of manufacturing technology was done on the base of having a board with 

a minimum of components which needed to be mounted and with all components be-

ing surface-mount devices (SMD) type devices. The printed circuit boards were manu-

factured out of house, due to a cost of 30 $ for the manufacture of 10 test board PCBs.  

 Soldering of the components was done with a Nordson EFD SolderPlus Sn96.3Ag3.7 

solder paste, which was applied to the solder pads with a 0.6 mm syringe needle. The 

melting temperature of the solder paste is 221 °C and reflow temperature is suggested 

to be between 25 °C to 50 °C above the melting point. The components were mounted 

in the solder paste and the print baked out on a hotplate set at 280 °C for 2 min. This 

melts the solder paste and the solder paste helps to draw the components to the cor-
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rect position due to the wetting of the solder paste occurring only on the solder pads 

of the PCB. 

 

Figure 8.4: The finalized board design with the 2-layer PCB (left), test connectors (white, middle), 

board headers (top right) and the microchips and resisters (lower middle). 

 

8.8 Programming of the microcontroller and defining the interface. 

 

Using the DAC and ADC together with the Arduino board, was vastly simplified by the 

availability of open source libraries for both components. A library for the DAC was 

made available on the Arduino forum [8] and a library for the ADC was made available 

on the Adafruit forum [9] .  

The interface for making the Arduino do a measurement and report values back to the 

user, was completed in an initial version that was compatible with the IVy Processing 

application, which was used in the MIT DIY solar cell tester [2]. This allowed an easy 

way to get a graphical interface with control and plotting capabilities.  
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Figure 8.5: Ivy GUI for solar cell measurement. Applet was made by the MIT pv-solar test lab. [2] 

 

The interface was then changed to allow use with an in-house developed IV-test pro-

gram, originally developed for taking data with the Keithley 2400. The GPIB command 

for device id, “*IDN?” was implemented, enabling automation of choosing the COM 

port. The board is connected by sending a “C” over the serial port, and a measurement 

is started by sending a “S” for starting the measurement, with the standard start volt-

age, end voltage and number of steps. For setting these parameters separately a 

command of the form “S V_start V_end Steps” is used to start the measurement. 

 

8.9 A demonstrator suitcase for showcasing tandem and single solar 
cells 

 

The simultaneous work completed on tandem solar cells was to be presented at an EU 

project meeting, of which a demonstrator suitcase was made. The suitcase was to help 

present the produced double side illumination tandem cells, with the higher voltage.  
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Figure 8.6: Double sided illumination tandem solar cell demonstration. A rugged case with two LED 

torches, a multimeter, wires, crocodile clips and an Arduino with the measurement board attached. 

The case was developed to help demonstrate what and how the roll coated solar cells look and per-

form.  

 

 For the measurement a set of wires, a multimeter two LED flashlights an Arduino 

and the testboard was put in the suitcase. Two cases with single cell devices in one and 

tandem devices in the other was also added. Connecting a cell, shining light with the 

two torches on the cell and doing an IV sweep with the testboard and an attached 

computer showed the desired voltage difference between the tandem and single cells. 

 

8.10 An Advantage of open source building blocks  
 

Since the test board is based on the Arduino form factor, Arduino compatible shields 

can be used with the board and Arduino to add extra functionality. Two examples of 

such extra functionality are shown in this chapter with using a Bluetooth serial shield 

as the first example and a network shield as the second example. 
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Figure 8.7: Example of compatible shields. Left is a Bluetooth shield for serial to Bluetooth conversion 

and right is an Ethernet shield.  

 

8.10.1 Bluetooth Shield 

Adding Bluetooth to the tester setup gives the possibility of using the board from a 

separate power supply, such as an USB phone charger or 7 V to 20 V DC, instead of a 

pc and with the interface to the measurement being a phone or tablet. This would en-

able the use of an inexpensive tablet with a graphical app as the only extra needed in-

stead of a bulky laptop. The use of a smart phone would allow the possibility of doing 

data collecting in remote locations with the phones build in modem sending data of for 

central collection, all at a significant easier fashion than what would be possible with a 

laptop, laptop supply and network connections.  

An example of running the testboard and Arduino from a terminal on an android 

phone can be seen in Figure 8.8 
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Figure 8.8: Serial terminal on an android phone connected to the measurement board via Bluetooth. 

The left screenshot shows a dark measurement of a 1cm2 solar cell. The right screenshot shows an 

example of the error reporting of the Arduino libraries. An error message is thrown due to the ADC 

not responding (the test board was not actually connected for the test, only the Arduino) 

 

8.10.2 Ethernet Shield 

An Ethernet shield can be added to the setup to allow uploading of data to a server. 

The Ethernet shields can be had with Power-over-Ethernet (POE) requiring a single ca-

ble for connecting the tester to its surroundings.  

 

8.11 Example of measurement 
 

A measurement completed with the board with the OPAMP circumvented is shown in 

Figure 8.9, with a comparison between the measurement of a roll-coated normal ge-

ometry solar cell with an area of 1cm2 under 1000W/m2 AM1.5G illumination complet-

ed with the Arduino based sourcemeter and a Keithley 2440 sourcemeter. The meas-
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urement shows the Arduino to trace the same measurement curve as the Keithley with 

a slight deviation at the higher currents where the build-in buffer amplifier of the DAC 

has issues in with sinking the current. 

 

 

Figure 8.9: Measurement of 1 cm2 solar cell under 1000W/m2 AM1.5G illumination with both the Ar-

duino based sourcemeter and a Keithley 2440 sourcemeter.  

Measurements done with the version of the board with the integrated amplifier ena-

bled allows the full 200mA. An example of a measurement of a dark curve measure-

ment of a tandem solar cell is shown in Figure 8.10. 
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Figure 8.10: Dark measurement of tandem solar cell from -4 V to 4 V.  

 

8.12 Summary 
 

The construction of an alternative measurement solution for testing of solar cells was 

completed and showed the possibility of replacing the standard test equipment used 

by most OPV research groups around the world with a significantly cheaper test unit, 

which has the added benefit of enabling several other measurements, such as temper-

ature, humidity and light intensity to be collected simultaneous and even running au-

tonomously with reporting to SD card s or directly to a central network service. This 

work implemented a initial version of the test board and microprocessor firmware, 

with option of running from a windows GUI software or standard serial terminal. 
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9. Conclusion and Outlook 

Through this thesis the focus has been on the improvement of manufacturing by the 

development of the mini roll coater machine, which through the previous chapters of 

this thesis has proven to allow optimization of slot-die coated solar cells, electro-

chromics and light emitting electrochemical cells in a lab scale setting, while using a 

minimal amount of materials and time. Furthermore, the advantage of using the slot-

die technique in the lab setting is the more direct transfer of optimizations from the 

lab scale to the production scale setting. 

 Water based nanoparticle inks have been investigated, with characterization of the 

nanoparticle morphology using both X-ray and TEM methods to find the shape of the 

particles and estimate the chemical distribution of the polymer and acceptor species. 

 It has been shown that fully wet processed solar cells can be manufactured using a 

single machine and even tandem solar cells with a wet processing of 12 separate layers 

can be completed in this fashion. Performance of tandem solar cells produced by this 

technique has shown the series connection of two solar cells through wet processing 

to output a voltage just below that of two separate cells, indicating the effectiveness of 

the technique. However, performance levels of the herein developed tandem solar 

cells have not yet reached the state of the single cells, due to lower extracted currents. 

 Lastly, a test setup was completed which allows a smaller and easier method of do-

ing testing of solar cells in an outdoors setting or for demonstrating efficiencies or cur-

rent voltage characteristics of the solar cells.  

 

 A future use of the lab scale roll coating technique presented herein is expected to 

make the path towards finding new polymers suitable for roll coating and essentially 

finding the best conditions for roll coating polymers to make efficient solar cells, which 

has so far been far from an easy task. The development of better performing tandem 

solar cells, which might even lead to a fully wet processed tandem solar cell with a bet-

ter performance than that of the single solar cells, is expected to be performed. Fur-

ther investigations of nanoparticle based inks could lead the way towards less solvent 
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intensive production, however the morphology shown from water processed films is 

apparently not yet sufficient enough to match the efficiencies attained by solvent pro-

cessing methods. This however will be an area where the combination of different inks 

and testing of a large range of roll coating parameters might show the possibilities and 

further support the hope of a controlled solar cell morphology. 

 The test platform which was developed is hopefully going to help in completing 

outdoor tests and in replacing expensive research scale equipment where possible. A 

key in this being the further development of the testboard and software, to enable 

registration of cell temperatures, humidity levels etc. in an automated way, allowing a 

more thorough investigation of the direct causes of failure of solar cell devices. 
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a b s t r a c t

A simple and low cost thin film solution processing system comprising a single roll coating machine has

been developed to allow direct investigation of variable parameter effects in roll-to-roll processing.

We present roll coating of the active layers in polymer solar cells and validate the instrument by

reinvestigating the well known effect of solvent on performance. We obtained a maximum power

conversion efficiency of 1.6% for the reference cells, which compares well with reported roll-to-roll

coated cells according to ProcessOne, with a relative deviation caused by solvent type nearing 40% on

roll coated cells, confirming the solvent to have a significant influence on the performance of the

finished cell. We further present a slot-die coating head with an ultra low dead volume allowing for the

preparation of roll coated polymer solar cells on flexible substrates with nearly no loss of solution,

enabling roll coating testing of new polymers where only small amounts are often available.

We demonstrate the formation of 450 solar cells (each with an active area of 1 cm2) with printed

metal back electrodes using as little as 0.1 mL of active layer solution. This approach outperforms spin

coating with respect to temperature control, ink usage, speed and is directly compatible with industrial

processing and upscaling.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

The polymer and organic solar cell (OPV) is a new photovoltaic
(PV) technology that potentially solves the problems of scale,
speed and materials abundance that most of the current PV
technologies are faced with [1,2]. Even though manufacture of
OPVs have been demonstrated on a reasonable scale [3] and OPVs
have been demonstrated [4,5] and integrated into product proto-
types [6], there is a significant amount of development needed
before the technology answers well to the environmental con-
cerns. Life cycle analysis (LCA) studies show that the energy
payback time (EPBT) is comparable to the current device lifetimes
achieved [7] and when integrated into products the EPBTs are
significantly longer than the anticipated operational lifetime of
the assembly driven by the OPV, which limits the usability of OPV
to cases where they can efficiently replace a more environmen-
tally damaging device [8]. While this does comprise usefulness it
also limits the scope and applicability of the technology unless
the challenges are efficiently addressed. The majority of polymer
solar cells reported to date have been prepared by a combination
of spin coating and vacuum evaporation of the layers in the
device. This approach has proven highly successful on the

laboratory scale where device power conversion efficiencies
exceeding 8% has been reported by a few companies [9]. The
technology in the available form only presents power conversion
efficiencies in the range of 1–2% [10,11] as reported by many
independent laboratories. One of the possible reasons for this is
the fundamental difference between the manner in which a
laboratory device is prepared and optimized and the manner in
which an industry would approach the manufacture of the OPV
technology. The implications of this are that new developments
are thus not readily upscaled or easily transferred to an industrial
setting and this in part may hold the explanation for the some-
what slow emergence of polymer solar cells as a technology that
is integrated in commercial products.

In this work we present a compact roll coater that enable the
preparation of polymer solar cells in a directly scalable manner
but on a very small scale that is in fact smaller than currently
employed spin coating and doctorblading methods. Very small
quantities of ink can be applied and a very accurate control of the
wet and dry thickness of the coated film is possible, which is in
stark contrast to spin coating. In addition the system enable
accurate control of the substrate temperature during deposition
and is compact enough to fit in an ordinary fume cupboard, a
glove box or a cleanroom as no large extraction systems are
needed. Toxic materials are also easily encompassed, since the
evaporation of solvent or additives can be kept within the fume
cupboard. The system is used to test dependence on solvents used
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for the P3HT:PCBM material in a slot-die coating process in
contrast to the spin coated test of solvent dependence [12,13].

2. Experimental

2.1. Roll coater

The roll coater (Fig. 1) is constructed to mimic the coating
performed on full scale roll-to-roll processing equipment [14,15]
making the transition from lab to production faster and enabling
optimization of the ink and processing directly at the lab scale
prototyping level.

2.1.1. Mechanics

The system is comprised of a single 300 mm diameter roll
where to a (PET) foil is attached. A slot-die coating head is
mounted at the top of the machine, on a 3-axis movable stage
allowing adjustment of height, angle of attack and horizontal
position relative to the foil. The roll is driven by a servo motor
through exchangeable gear wheels allowing for a large range of
web speeds. In these experiments speeds between 0 m/min and
2 m/min were employed. These speeds are comparable to what is
used in larger roll-to-roll processing equipment as described
earlier [15]. After the slot-die coating head a fan is mounted to
further help the drying of the coated material and an optional IR
heater is mounted for use at lower coating temperatures. The
system allows coating at controlled temperature, with a heated
roll on which the PET substrate is attached, meaning that the
substrate is kept at a constant controlled temperature while
coating and securing a much narrower temperature distribution
through the films when drying.

2.1.2. Coating head

The coating head (Fig. 2) is a slot-die coating head with a very
small dead volume of less than 50 mL, allowing use of a minute
amount of solution for processing. The head is comprised of two
brass parts held together by 4 screws. The front side of the head
has a 50 mm deep groove milled into it with a width of 13 mm,
between the brass parts, a 0.25 mm thick stainless steel foil is
placed with a meniscus guide of 13 mm width and protruding
0.5 mm from the bottom of the head. The meniscus guide has
been reported earlier in [16].

2.1.3. Pumping systems

For active layer ink delivery a syringe pump was used together
with Braun Medical 5 mL two-component syringes. The connec-
tion to the slot-die head was done via a 1.0 mm filter, a Luer to
HPLC 1/4 in.-28 thread and a 2 mm OD teflon tube or a stainless
steel HPLC tube. For PEDOT:PSS coating a purpose built pressure
chamber pump was used due to the higher viscosity (viscosity
�270 mPa s) of the PEDOT:PSS ink.

2.2. Materials

The coating was performed on ITO sputtered PET foil with a
thickness of 175 mm and a nominal sheet resistivity of
100 O&�1. The ITO layer was patterned into stripes of 13 mm
width. The foil was precoated with a doped ZnO layer [15]. Foil
areas of 1 m�15 cm were cut out and mounted on the roll coater.
P3HT (poly(3-hexylthiophene)) was obtained from BASF as Sepio-
lid P200 and PCBM ([6,6]-phenyl-C61-butyric acid methyl ester)
was obtained from Solenne BV (technical grade). The solvents
used were; chlorobenzene (CB), 1,2-o-dichlorobenzene (ODCB)
and 1,2,4-trichlorobenzene (TCB). The P3HT:PCBM concentration
was kept the same for all solvents at 21 mg/ml P3HT and 18.5 mg/mL
PCBM. The PEDOT electrode-buffer layer was based on Orgacon
PEDOT EL-P 5010 from Agfa mixed in a 2:1 (w/w) ratio with IPA.
The heat curable screen printing silver ink used was PV410 from
DuPont.

2.3. Coating procedure

2.3.1. Active layer

The coating of the P3HT:PCBM material was conducted at a
speed of 1.5 m/min. The roll was heated to 90 1C to allow a quick
and uniform drying of the films. The flow through the head was
set to 0.250 mL/min resulting in a wet thickness of 13 mm and an
estimated dry thickness of 0.4 mm. The coated stripe was offset
1 mm from the ITO stripe.

2.3.2. PEDOT

The PEDOT layer was coated with a 1 mm offset from the
active layer coating and coated with a flow of 1.25 mL/min for a
wet thickness of 65 mm. The layer was coated at a 70 1C roll
temperature followed by drying for 20 min.

Fig. 1. (A) Illustration of the roll coater showing the frame, roll, axis, motor translation stage, pump, heater and slot-die head. (B) Picture of the roll with a PET with ITO foil

mounted and two stripes coated on the substrate.
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2.4. Solar cell preparation

Solar cells were prepared from the coated stripes by dividing the
1 m stripe into sections for application of a 1 cm2 printed top
electrode. The pattern for the top electrode is shown in Fig. 3, where
10 cells are fabricated for each screen-print, with a length of foil
that is 10 cm. The screen printed solar cells were baked at 140 1C
directly after printing, for a period of 2 min, to remove the solvent
of the silver ink. Finally the cells were encapsulated using Alcan
barrier foil [3,10] and cut out to remove any crosstalk between cells
caused by the large ITO and PEDOT:PSS electrode layers.

2.5. Solar cells test and measurement

Solar cells were measured with a Keithley 2400 sourcemeter
under a KHS 575 solar simulator with an AM1.5G 1000 W/m2 output.

The produced cells were measured after an initial soak period to
stabilize efficiency [10,11]. All cells were put under illumination and
measurements were started on the first cells after 40 min of light
soaking. The recordings on the last cell were finished after 105 min.

3. Results and discussion

3.1. Coating and simplicity

The coating procedure and the quality of the coated films are
very similar to the large scale roll-to-roll coating, while the time
involved and amounts of material used are much less. The smaller
fabricated cells used here allows for a much denser sampling of
parameters with the use of 1cell/cm coated length while in earlier
work Alstrup et al. [12], employed a coated length of 8 cm/cell.

Fig. 2. (A) Coating head brass backpiece. (B) Illustration of the meniscus guide (top) with the actual steel insert with the 13 mm�2 mm meniscus guide (bottom).

(C) Illustration of inlet and liquid groove (top) with the front coating head brass piece, showing the groove for ink passage and the ink inlet (bottom).

Fig. 3. Screen printing mask for the silver top electrode, which defines the cell area. The pattern was printed across the coated stripe allowing up to E90 cells to be

produced per coated stripe. The cell area was 1 cm2.
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3.2. Quality of films

The film quality from slot-die coating can vary quite signifi-
cantly with even small changes in parameters, however the
coatings performed with the three solvents at a 90 1C temperature
showed an even optical film quality, although the uniformity at
the edge (picture framing) of the coated stripe was slightly worse
for ODCB based films and more so for TCB based films, as seen in
Fig. 4A.

The PEDOT:PSS coating showed a tendency to develop holes in
the coated film during drying, which lowered the performance of
the roll coated cells slightly (Fig. 4B). This can be attributed to the
slow drying of the PEDOT:PSS layer at the 70 1C coating tempera-
ture used, which due to the heating from below did not allow the
PEDOT:PSS to skin, thereby causing the drying defects.

3.3. Performance

The maximum performance of the cells produced was
obtained for the spin coated reference sample with a performance
of 1.6%, as seen in the IV curve in Fig. 5. The roll coated cell
performance was normalized to the maximum performance for
the ODCB roll coated cells, with the performance of the cells
averaged over modules shown in Fig. 6.

3.4. Effect of solvent

The effect of changing between solvents for the P3HT:PCBM
ink showed a distinct difference in the performance of the
produced cells. The use of higher boiling point solvents allows a
longer drying time and thereby a longer time for the crystal-
lization of the P3HT:PCBM heterojunction. Use of CB as a solvent
is often reported for R2R produced solar cells, and resulted in the
most even coatings in this study with a reasonable performance.
However, the cells coated with ODCB showed a substantial
increase in fill factor, open circuit voltage and current (Fig. 7).
The even higher boiling point TCB solvent was expected to give a
further increase in performance, which was not observed,
although this might be attributed to the quality of the coated
TCB based films being less uniform than the CB and ODCB films.
The drying times of the films at a temperature of 90 1C were

Fig. 4. (A) Film uniformity of as coated P3HT:PCBM before the coating of PEDOT,

showing from left to right; CB based material, ODCB based material and TCB based

material. (B) PEDOT coated stripe showing a hole-like structure.

Fig. 5. IV-plot for a reference cell. Scans were conducted from �3 V to 3 V with

100 mV steps (only �1 V to 1 V is shown).

Fig. 6. Plot of the solar cell parameters, including efficiency (PCE), open circuit voltage (Voc), short circuit current (Isc) and fill factor (FF), shows the distribution of the cell

performances. All parameters have been normalized to the performance of the ODCB cells.
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estimated to be 3 s for CB, 6 s for ODCB and about 15 s for TCB.
The time the film is subjected to heat is of course longer as the foil
is physically attached to the heating element (the roller). The total
heating time is then limited by how fast the foil can be removed
after coating. Since (in a typical experiment) several stripes were
coated using different solvent and this involved cleaning of the
pump and coating head the first stripe would be on the heated
roll for significantly longer than the lastly coated stripe. The
coating of the stripe itself was here carried out at 1.5 m min�1 for
the active layer implying that the entire coating experiment takes
40 s. After that the foil could be removed in less than 20 s
meaning that a single stripe can be coated and removed from
the heater within a minute. A typical coating experiment with
4 separate stripes from the same solvent could be completed in
less than 5 min. After this of course the film is further heated to
70 1C for 20 min while coating and drying PEDOT:PSS and finally
2 min at 140 1C while curing the printed silver back electrode. The
roughness of the films in the even regions away from the edges
were in the range of the reported values for slot-die coating
(20–40 nm RMS) [3].

4. Conclusions

A novel system for testing roll coating parameters has been
developed and the proof of concept experiments completed. The
system show great potential to help develop a thorough under-
standing of the coating factors for ink viscosity, coating speed and
general optimization of parameters. The initial experiments even
showed a distinct difference between coating with the use of the
three different solvents, with a benefit to use ODCB in both Voc, Isc

and FF.

Acknowledgments

We would like to thank Kristian Larsen, Jan Alstrup and Torben
Kjær for constructing the machine. This work was supported by
the Danish Strategic Research Council (DSF 2104-07-0022).

References

[1] T. Markvart, L. Castaner, Solar Cells: Materials Manufacture and Operation,
Elsevier Science, 2005, pp. 1–555.

[2] T.D. Nielsen, C. Cruickshank, S. Foged, J. Thorsen, F.C. Krebs, Business, market
and intellectual property analysis of polymer solar cells, Solar Energy
Materials and Solar Cells 94 (2010) 1553–1571.

[3] F.C. Krebs, T. Tromholt, M. Jørgensen, Upscaling of polymer solar cell
fabrication using full roll-to-roll processing, Nanoscale 2 (2010) 873–886.

[4] A.J. Medford, M.R. Lilliedal, M. Jørgensen, D. Aarø, H. Pakalski, J. Fyenbo,
F.C. Krebs, Grid-connected polymer solar panels: initial considerations of
cost, lifetime, and practicality, Optics Express 18 (S3) (2010) A272–A285.

[5] F.C. Krebs, T.D. Nielsen, J. Fyenbo, M. Wadstrøm, M.S. Pedersen, Manufacture,
integration and demonstration of polymer solar cells in a lamp for the
Lighting Africa initiative, Energy & Environmental Science 3 (2010) 512–525.

[6] F.C. Krebs, J. Fyenbo, M. Jørgensen, Product integration of compact roll-to-roll
processed polymer solar cell modules: methods and manufacture using
flexographic printing, slot-die coating and rotary screen printing, Journal of
Materials Chemistry 20 (2010) 8994–9001.

[7] N. Espinosa, R. Garcia-Valverde, A. Urbina, F.C. Krebs, A life cycle analysis of
polymer solar cell modules prepared using roll-to-roll methods under ambient
conditions, Solar Energy Materials and Solar Cells 95 (2011) 1293–1302.

[8] N. Espinosa, R. Garcia-Valverde, F.C. Krebs, Life-cycle analysis of product
integrated polymer solar cells, Energy & Environmental Science 4 (2011)
1547–1557.

[9] PCE¼8.5% (/www.Mitsubishi.comS), PCE¼8.3% (/www.Konarka.comS),
PCE¼8.13% (/www.Solarmer.comS).

[10] F.C. Krebs, S.A. Gevorgyan, B. Gholamkhass, S. Holdcroft, C. Schlenker,
M.E. Thompson, B.C. Thompson, D. Olson, D.S. Ginley, S.E. Shaheen,
H.N. Alshareef, J.W. Murphy, W.J. Youngblood, N.C. Heston, J.R. Reynolds,
S. Jia, D. Laird, S.M. Tuladhar, J.G.A. Dane, P. Atienzar, J. Nelson, J.M. Kroon,
M.M. Wienk, R.A.J. Janssen, K. Tvingstedt, F. Zhang, M. Andersson, O. Inganäs,
M. Lira-Cantu, R. de Bettignies, S. Guillerez, T. Aernouts, D. Cheyns, L. Lutsen,
B. Zimmermann, U. Würfel, M. Niggemann, H.-F. Schleiermacher, P. Liska,
M. Grätzel, P. Lianos, E.A. Katz, W. Lohwasser, B. Jannon, A round robin study
of flexible large-area roll-to-roll processed polymer solar cell modules, Solar
Energy Materials and Solar Cells 93 (2009) 1968–1977.

[11] S.A. Gevorgyan, A.J. Medford, E. Bundgaard, S.B. Sapkota, H. Schleiermacher,
B. Zimmermann, U. Würfel, A. Chafiq, M. Lira-Cantu, T. Swonke, M. Wagner,
C.J. Brabec, O. Haillant, E. Voroshazi, T. Aernouts, R. Steim, J.A. Hauch, A. Elschner,
M. Pannone, M. Xiao, A. Langzettel, D. Laird, M.T. Lloyd, T. Rath, E. Maier,
G. Trimmel, M. Hermenau, T. Menke, K. Leo, R. Rösch, M. Seeland, H. Hoppe,
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Abstract: The use of hydrated vanadium(V)oxide as a replacement of the commonly 
employed hole transporting material PEDOT:PSS was explored in this work. Polymer solar 
cells were prepared by spin coating on glass. Polymer solar cells and modules comprising 
16 serially connected cells were prepared using full roll-to-roll (R2R) processing of all 
layers. The devices were prepared on flexible polyethyleneterphthalate (PET) and had the 
structure PET/ITO/ZnO/P3HT:PCBM/V2O5·(H2O)n/Ag. The ITO and silver electrodes 
were processed and patterned by use of screen printing. The zinc oxide, P3HT:PCBM and 
vanadium(V)oxide layers were processed by slot-die coating. The hydrated 
vanadium(V)oxide layer was slot-die coated using an isopropanol solution of  
vanadyl-triisopropoxide (VTIP). Coating experiments were carried out to establish the 
critical thickness of the hydrated vanadium(V)oxide layer by varying the concentration of 
the VTIP precursor over two orders of magnitude. Hydrated vanadium(V)oxide layers were 
characterized by profilometry, scanning electron microscopy, energy dispersive X-ray 
spectroscopy, and grazing incidence wide angle X-ray scattering. The power conversion 
efficiency (PCE) for completed modules was up to 0.18%, in contrast to single cells where 
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efficiencies of 0.4% were achieved. Stability tests under indoor and outdoor conditions 
were accomplished over three weeks on a solar tracker. 

Keywords: roll-to-roll printing/coating; polymer solar cells; solution processing; 
PEDOT:PSS free; hydrated vanadium(V)oxide 

 

1. Introduction  

Polymer solar cells [1-3] have seen remarkable progress in recent years and have developed from 
being a scientific curiosity to an emerging technology that can be manufactured industrially [4-8] and 
demonstrated in real applications [9-13]. Polymer solar cells have been heralded as the photovoltaic 
(PV) technology solving all the problems current PV technologies are faced with by providing 
convincing solutions to problems of cost and abundance of the materials that constitute them. The 
largest challenges to overcome this far have been the low performance and the short operational 
lifetime. Today they present power conversion efficiencies in excess of 8% [14] and estimated 
operational lifetimes in the range of 2–5 years [15]. The typical polymer solar cell is a multilayer 
structure with typically five layers stacked on top of each other. The active layer responsible for light 
absorption and generation of free charge carriers is typically the middle layer sandwiched between two 
charge selective layers, as shown in Figure 1. The two outer layers are highly conducting electrodes 
for extraction of the generated electrical current. One of those must be transparent. The electron 
selective layers have been developed recently but have otherwise been limited to the intentional use of 
low work function metals alone or in combination with very thin wide band gap insulators such as LiF 
and MgF2. Relatively recently, a new class of moderately conducting electron selective layers have 
been explored (ZnO, TiO2, Nb2O5) [16]. The hole selective layer has been limited almost exclusively 
to various formulations of PEDOT:PSS. The reasons for this are mostly historical and PEDOT:PSS 
was first employed as an intermediate layer that served to stabilize the work function of ITO and to 
planarize it, thus enabling formation of nearly defect free thin films on top [17]. PEDOT:PSS has 
evolved and now exist in various formulations that provide exceptionally high conductivity and 
transparency. In addition, PEDOT:PSS is highly stable photochemically and is stable towards  
oxidative conditions. 

Figure 1. Schematic of inverted polymer solar cell structure with typical layer  
thicknesses shown. 
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The Achilles heel of PEDOT:PSS, however, is its hygroscopic nature. This problem is normally 
never encountered under laboratory conditions where experimenters work under relatively dry indoor 
conditions or in a glovebox environment with nearly no humidity. At higher humidity levels such as 
those encountered under outdoor conditions (>50% relative humidity) this has been found to be a 
detrimental and stability limiting factor. This affinity for water also represents a problem when 
depositing by a roll-to-roll method, due to the high surface tension of the PEDOT:PSS solutions. From 
this point of view, there are clear incentives to find a humidity stable alternative to PEDOT:PSS. For 
the purpose of this study, we constructed two different types of polymer solar cell modules: one type 
that was a standard device with PEDOT:PSS and another type where PEDOT:PSS had been replaced 
with hydrated vanadium(V)oxide. Global resources are estimated to exceed 63 million tons; making 
vanadium the 13th most-abundant element in the Earth's crust. The materials employed are shown  
in Figure 2. 

Figure 2. Chemical structures of materials employed in this study: P3HT, PCBM, 
PEDOT:PSS, and VTIP, R2 = C6H13.  

Binary combinations of vanadium and oxygen have a rich phase diagram with a wide range of 
stable compounds with different valence states for vanadium. In addition, it is common to have 
xerogels of these compounds with water layered between vanadium oxide sheets [18]. Processing 
temperatures for films on polyethyleneterphthalate (PET) substrates are limited to 140 °C. In this 
work, we evaluate hydrated vanadium(V)oxide as a PEDOT:PSS replacement for polymer solar cells 
prepared under industrially relevant conditions. We employ solutions of vanadyl-triisopropoxide 
(VTIP) in isopropanol and demonstrate roll-to-roll (R2R) coating of this layer in functional polymer 
solar cells and modules in contrast to previous OPVs [19] and OLEDs [20] where vanadium oxide 
films were prepared via thermal evaporation or from a spin casting powder in alcohol [21]. We further 
test these against a PEDOT:PSS equivalent under accelerated indoor and outdoor conditions. In this 
study, we have three different classes of devices, as shown in Figure 3, with active areas of 0.5, 4.2, 
and 360 cm2 for glass, gradient, and module studies, respectively. 
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Figure 3. Image of a typical glass cell, gradient cell, and 16 cell module (from left to right) 
with a mm scale. 

 

2. Results and Discussion 

2.1. Spin Coated Cells on Glass Substrates 

Small devices were prepared with a four cell substrate with ITO patterned in stripes giving 0.5 cm2 
active area for each cell. Cells having different concentrations of VTIP in isopropanol (3.5, 6.5, 12.5, 
25, 50 and 100 mg/mL), as HTL in the devices, and different numbers of layers were fabricated. Best 
results, shown in Figure 4, were achieved with one or two layers of 12.5 mg/mL of VTIP, yielding 
efficiencies around 0.4%. 

Figure 4. IV curves on small devices under 1,000 W/m2 illumination, using several VTIP 
concentrations, and a similar cell with PEDOT:PSS.  

 
 

These initial test results indicated that there is a range of concentration between 6.5 and 25 mg/mL 
for which the cells have an acceptable performance for spin coated films on glass substrates. It is clear 

Appendix - A2



Materials 2011, 4                    
 

 

173 

from Figure 4 that the currents supported by the hydrated vanadium oxide films are lower than the 
PEDOT control sample. 

2.2. Gradient Study on R2R PET Cells 

One critical aspect when developing new inks for R2R coating is to establish the relationship 
between the thickness of the dried layer that is to be coated and the coating parameters for the wet 
film. We have developed a method for variation of the ink properties of any layer during coating 
enabling identification of the optimal thickness, the critical thickness or the optimal blend ratio 
between donor and acceptor. In our case, we coated a gradient of the VTIP solution from zero 
concentration and up to 100 mg/mL. Complete devices without the hydrated vanadium oxide layer are 
not functional, and once the covering layer is already on top of the others, devices become functional. 
This is shown in Figure 5 for three series of 50 individual cells with active areas of 4.2 cm2. 

Figure 5. Plot of solar cell efficiency as a function of VTIP concentration in R2R gradient 
experiments. Estimated film thicknesses are noted on the top axis. 
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2.3. Characterization of Hydrated Vanadium(V)Oxide 

Hydrated vanadium(V)oxide films were prepared on glass, silicon, and PET substrates and 
characterized by optical spectroscopy, ellipsometry, profilometry, scanning electron microscopy 
(SEM), energy dispersive X-ray spectroscopy (EDX), and grazing incidence wide angle X-ray 
scattering (GIWAXS). Measurements with GIWAXS on silicon substrates combined with the 
structural model of (H2O)n [22], indicate that the films in this study are largely low-crystalline 
hydrated vanadium pentoxide V2O5·(H2O)0.3 with an interlayer spacing of 1.11 nm, as seen in the 
measurements shown in Figure 6. The hydrated vanadium pentoxide is always of low crystallinity, 
typically characterized as ―nano-crystalline‖, and the locally ordered structure was therefore 
determined by pair distribution function analysis [22]. EDX data confirm the relative vanadium and 
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oxygen concentrations. A SEM image of a cleaved cross section through a 15 nm-thick film is shown 
in Figure 7. It is clear that the conductivity of the hydrated vanadium(V)oxide films is a limiting factor 
in our devices. This is a major difference between this study and previous studies where vanadium 
oxide films were prepared by different methods [19,21]. It has been reported that for hydrated 
vanadium(V)oxide films the conductivity in thicker films increases with the annealing temperature as 
long as the film retains the layered slab structure with a bilayer of vanadium oxide stacked between 
layers of water molecules. However, annealing at higher temperatures transforms the hydrated oxide to 
crystalline V2O5 with much lower conductivity, presumably because of the formation of grain 
boundaries [23]. Compared to the previously reported measurements on vanadium(V)oxide xerogel 
films which were cast from gel solutions [18,23], our VTIP cast films are extremely thin, with a much 
higher surface to volume ratio. This makes dehydration effective at much lower temperatures, so that 
our 120–140 °C anneal results in n values of ~0.3, comparable to much higher temperature annealing 
processes on the gel based films where similar n values required annealing over 250 °C.  

Figure 6. Left: The GIWAXS data as measured, with intensities represented on a color log 
scale. The strongest scattering feature near the center of the image corresponds to the 001 
reflection, whereas the weaker scattering at the edges of the image, correspond to the 110 
and 11-1 reflections [22], showing that the crystallites are preferentially oriented with the 
ab-plane parallel to the substrate surface. Right: Integration over 001 peak, assuming 
sample to detector distance of 121 mm, yields a d-spacing of 11.1 Å. 

 

Figure 7. SEM cross section (tilted 17°) of 15 nm-thick cleaved V2O5·( H2O)0.3 film on a 
crystal silicon substrate showing film thickness and uniform morphology on the  
film surface. 
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Thickness of the roll coated films on PET were calculated using a dry film density based on this 
model and the known parameters of the wet coating process with Equation 1, 

VTIPd

OVw

MWS
Mf

t









2
52  (1)  

where f is volumetric flow, ρw and ρd are the densities of the VTIP solution and the dry V2O5·(H2O)0.3 
film, MV2O5 and MVTIP are molecular weights, and S and W are the coating speed and width of the stripe.  

For a PET sample coated with 15 mg/mL, a profilometer measurement of the dry film thickness 
showed a range with an average of 34 ± 9 nm, in agreement with the 27 nm predicted by our model.  

2.4. Full R2R Fabrication of 16 Cell Modules  

A number of A4 size 16 cell modules with an active area of 360 cm2 were produced with a VTIP 
concentration of 15 mg/mL on PET substrates in a full R2R process. These 50 modules showed a 
reasonable yield, as seen in Figure 8, with a few modules around module number 360 that did not 
function. For the remaining modules the performance varied slightly, as seen in Table 1. 

Figure 8. Comparison of the open-circuit voltage, Voc, the short-circuit current, Isc, the  
fill-factor, FF, and the photon conversion efficiency, PCE, for R2R modules made with a 
VTIP concentration of 15 mg/mL. They were measured under two different sun simulators 
and 5 modules (367–371) were measured in outdoor conditions as well. 
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Furthermore, the use of an R2R simulator, an AM1.5G sun simulator and outdoor testing showed a 
significant difference between the performances of the modules. On the R2R simulator the Voc was 
generally lower than what was measured later on the stationary sun simulator. Interestingly, the 
outdoor measurements showed even greater performance with the four outdoor modules showing an 
increase in PCE to almost double of the indoor measurement for the modules without extra 
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encapsulation, while the modules encapsulated in polycarbonate (PC) show a performance similar to the 
indoor measurements. 

Table 1. Performance and standard deviations for the 15 mg/mL R2R modules produced 
and measured. The outdoor test includes both PC and PET encapsulated modules. 

Measurement # of Modules PCE (%) Voc (V) Isc (mA) FF (%) 

R2R Simulator 40 0.025 ± 0.011 2.6 ± 0.5 −13.5±3.6 24.8 ± 0.3 
Sun Simulator 40 0.050 ± 0.018 5.1 ± 0.9 −13.8 ± 3.6 25.6 ± 1.2 

Outdoor 5 0.12 ± 0.06 6.0 ± 2.0 −25.4 ± 4.8 26.8 ± 1.1 
 

The increased voltage obtained with the sun simulator and the outdoor measurement compared to 
the R2R simulator is caused by higher contact resistance in the R2R test system and by incomplete 
photochemical activation of the zinc oxide layer of the initially processed modules. Longer exposure 
(typically 20 minutes) to a high intensity of UV light in the sun simulator fully activates the zinc oxide 
and enhances the performance of the cells. 

2.5. Stability Measurements 

Lifetime studies were carried out under the sun simulator for all types of cells in this study. Spin 
coated cells on glass showed a degradation of the PCE dominated by loss of current density. The time, 
T80, for a cell to decay to 80% of its initially activated value while under AM1.5G illumination 
increases with film thickness, up to 18 hours for the thickest films, as shown in Figure 9. The 
activation of the zinc oxide layer can be seen at the beginning of the study and was similar for all the 
cells and modules presented here. 

Figure 9. Time study over 20 hours on a glass cell with V2O5·(H2O)0.3 (25 mg/mL). 

 
 

In contrast, cells from the gradient experiments on the R2R process had a T80 < 30 minutes 
dominated by a decrease in open circuit voltage. Modules made on the R2R process were observed to 
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have different D80 values depending upon their encapsulation, where D80 is the dose causing a decay 
to 80% of initial value. The bare PET modules having D80~50 MJ/m2 and D50 > 300 MJ/m2, while 
two polycarbonate clad modules show D80 > 150 MJ/m2 and 300 MJ/m2. It should be noted that 
modules 369 and 371 were mounted for outdoor measurements without an initial soaking in the solar 
simulator to photo activate the zinc oxide layer, resulting in an initial increase in performance and 
enhanced observed stability. Reference PEDOT modules showed minimal degradation, with  
D80 > 300 MJ/m2, with the polycarbonate again showing a reduced efficiency with enhanced stability. 
The full set of performance characteristics for module 367 can be seen in Figure 10. The Jsc has been 
scaled by the irradiance, and the dominant decay factor for the modules is the decrease in the Voc 
which clearly tracks the PCE data. The 300 MJ outdoor dose corresponds to a 28 day period with a 
variety of weather conditions. The pyranometer data for this period is shown in Figure 11. 

Figure 10. Plots of PCE for all data measured with a solar irradiance above 800 W/m2 
plotted as a function of accumulated irradiance. The upper graph shows reference modules 
made with Process One using PEDOT. The middle graph shows the modules made with 
hydrated vanadium oxide. The full characterization, PCE, Voc, FF, and Jsc (scaled by 
irradiance) plotted versus dose for module 367 is shown on the bottom graph. Modules 
encapsulated in polycarbonate have the prefix PC. 
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Figure 10. Cont. 

 
 

Figure 11. The pyranometer data on the tracking platform for the duration of the outdoor 
measurements reported in this study.  

 

3. Experimental Section 

3.1. Materials 

A sputtered layer of 90 nm of ITO on PET was used as the anode. ZnO nanoparticles were prepared 
by caustic hydrolysis of Zn(OAc)2·2H2O as described previously [4,7,9] and were used for ink 
formulations using Acetone as solvent. The ZnO ink was filtered through a 0.45 micron filter before 
coating. The ink for the active layer was prepared by dissolving P3HT (18–24 mg/mL) purchased from 
BASF (Sepiolid P200), and PCBM (16–22 mg/mL) purchased from Solenne B.V. in half the final 
volume of 1,2-dichlorobenzene at 120 °C for 3 h, followed by addition of the second half of the final 
volume of chloroform. The ratio between P3HT and PCBM was typically 10:9. PEDOT:PSS, was 
purchased as EL-P 5010 from Agfa and was diluted slowly with isopropanol using stirring until a 
viscosity of 270 mPa s was obtained. The hydrated vanadium(V)oxide layer was prepared by dilution 
of VTIP purchased from Sigma Aldrich in isopropanol. The silver ink employed, which is screen 
printable and heat curable was purchased from Dupont (PV 410). The adhesive for encapsulation was 
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467 MPF from 3M and the barrier material was purchased from Amcar and has a UV filter with a 
cutoff at 380 nm. 

3.2. Grazing Incidence Wide Angle X-ray Scattering 

By orienting the substrate surface just below the critical angle for total reflection with respect to the 
incoming X-ray beam (~0.18°), scattering from the deposited film is maximized with respect to 
scattering from the substrate. In the wide scattering angle range (>5°), the X-ray scattering is sensitive 
to crystalline structure. The GIWAXS data were acquired using a camera comprising an evacuated 
sample chamber with an X-ray photo-sensitive image plate with a rotating Cu-anode operating at  
50 kV/200 mA as X-ray source, focused and monochromatized (Cu Kα, λ = 1.5418 Å) by a 1D 
multilayer [24]. Verification of the crystalline structure was done by simulating the GIWAXS pattern of 
the published V2O5·(H2O)n structure [22] using the simulation software developed by Breiby et al. [25]. 

3.3. Processing Methods 

The experiment was performed in a roll-to-roll method, following a procedure previously published 
and known as ProcessOne [4]. This procedure consists of slot-die coating consecutively on PET 
covered with ITO, zinc oxide, the active layer, and the VTIP, in a slot-die coater [4,7]. The VTIP layer 
was deposited in each stripe with a different gradient of concentration, starting from higher to lower, 
listed in Table 2. Details of the gradient coating technique are outlined in a previous publication [26]. 
Six gradients with 50 steps were employed in this study, comprising 300 4.2 cm2 cells. In addition, 50 
modules with an active area of 360 cm2, each consisting of 16 cells in series, were produced with a 
fixed VTIP dilution of 15 mg/mL in isopropanol. The silver back-electrode contact was printed by 
means of a roll-to-roll screen printer Alraun, presented in previous publications [9]. Cells and modules 
were encapsulated in a barrier film with a UV filter with a cut off at 380 nm. Selected modules were 
further encapsulated in polycarbonate sheets with a polyurethane adhesive with an effective UV cut off 
at 390 nm. 

Table 2. Summary of cells used in this study, each line represents ̴ 50 devices (400 total). 

Substrate Device [VTIP] (mg/mL) Active Area (cm
2
) 

Glass Spin Cast Single Cells 0.3–50 0.5 

PET R2R Cells Stripe 1 0–100 4.2 

PET R2R Cells Stripe 2 0–15 4.2 

PET R2R Cells Stripe 3 0–50 4.2 

PET R2R Cells Stripe 4 0–50 (butanol) 4.2 

PET R2R Cells Stripe 5 0–25 4.2 

PET R2R Cells Stripe 6 0–100 4.2 

PET R2R 16 Cell Modules 15 360 
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3.4. Test Conditions 

All cells were measured by collecting IV curves with a Keithley 2400 sourcemeter under 
illumination from a solar simulator (KHS Solar Constant 1200) calibrated for AM1.5G with an 
automated roll to roll testing system for an initial screening, followed by an annealing soak (KHS 
Solar Constant 575, AM1.5G) for 20 minutes with characterization at regular intervals to activate the 
ZnO layer and maximize the cell performance. Modules both with and without polycarbonate 
encapsulation were measured outside on a solar tracking platform subjected to rain, frost, temperatures 
(0–13 °C), and solar radiation up to 1135 W/m2 at Risø DTU (Latitude: 55°41'42 N,  
Longitude: 12°4'16 E) Seven modules were characterized over 600 hours at 3 minute intervals 
throughout October 2010. The modules were open circuit between measurements (90% of the time.) 
Solar irradiance was recorded at 2 seconds intervals on the same tracker as the modules using a 
pyranometer (Eppley Lab PSP) Outdoor measurements exceed Level 1 guidelines established at the 
ISOS workshops [27].  

4. Future Perspectives and Conclusion 

A major perspective of this work lies in processing. Hydrated vanadium(V)oxide has been 
employed in the fabrication of inverted PEDOT:PSS free polymer solar cells compatible with all 
solution processing of all layers. The use of a coating gradient in a R2R system enables a fast and 
efficient way to vary device parameters. In this case, the concentration of VTIP determines hydrated 
vanadium(V)oxide layers of varying thickness and enables us to discern the influence this has on 
device performance. We observe that a minimum critical thickness for the hydrated vanadium(V)oxide 
layer in our process is 8 nm, beyond which device performance reaches a plateau. Overall, the 
performance of the devices is limited by the resistance of the hydrated vanadium(V)oxide and interface 
layers, which reduces the current density in comparison with optimized cells manufactured with 
PEDOT:PSS. Outdoor stability studies show that modules encapsulated in polycarbonate are superior 
to PET barrier layer materials alone.  
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a b s t r a c t

Fully roll-to-roll processed polymer solar cell modules were prepared, characterized, and laminated.

Cell modules were cut from the roll and matched pairs were selected, one module with exposed cut

edges, the other laminated again with the same materials and adhesive sealing fully around the cut

edges. The edge sealing rim was 10 mm wide. Cell modules were characterized by periodic measure-

ments of IV curves over extended periods in a variety of conditions, as well as by a variety of spatial

imaging techniques. Data show significant stability benefits of the edge sealing process. The results of

the imaging experiments show that the ingress of atmospheric reactants from the edges leads to

degradation. In the case of edge sealed devices the same effects are observed but significantly slowed

down. In particular, the fast nonlinear degradation is eliminated.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Major advances are being made in the field of organic polymer
photovoltaics [1]. Cell efficiencies of over 8% have been achieved
[2,3] and cell manufacturing techniques have been developed
to the level that industrial production of cells and modules
is technically feasible with continually decreasing costs [4,5].
Stability of organic photovoltaic (OPV) devices has become a
more active area for research as well [6–10]. While progress has
been impressive in all three of these areas individually, the next
challenge is to bring these research successes together in a single
device structure. In this work we focus on two of these three
areas, combining economically viable full roll-to-roll fabrication
processes with enhanced cell module stability. The stability of
polymer solar cells is affected by a complicated mixture of
different processes that all result in device degradation. Degrada-
tion at interfaces and photochemical degradation are some of the
most important mechanisms that involve atmospheric compo-
nents such as oxygen and water [11]. Methods to improve
stability of the polymer solar cells and modules not only include
improvement of the inherent stability of the materials and
interfaces [12], but also prevention of ingress of atmospheric

components through encapsulation [13,14] and reduction of the
most reactive part of the electromagnetic spectrum through
filtering UV-light [15]. It is of course possible to completely seal
the device from the surroundings but the available methods are
both tedious and not competitive in terms of cost and processing
time. Ideally the encapsulation should be compatible with the
manufacture of the solar cells and modules, which is through roll-
to-roll processing. In the case of ProcessOne (described below) it
is possible to seal the device in a fast roll-to-roll process although
the seal is not complete at the edges of the device after it is cut
from the roll [7]. In this case a second seal would be needed. In
this work we thus aim at establishing the differences between the
partially sealed (but easily accessible) device and the edge sealed
device (that requires more processing time). Our approach is to
look at the established ProcessOne fabrication method, which
uses a polyethyleneterephthalate (PET) substrate coated with
a transparent front electrode of indium-tin-oxide (ITO), an electron
transport layer of ZnO, an active layer comprised of a blend of poly(3-
hexylthiophene) (P3HT) as the donor and the phenyl-C61-buytric
acid methyl ester (PCBM), a hole transport layer of poly(3,4-ethyle-
nedioxythiophene):poly(styrene–sulfonate) (PEDOT:PSS) and a Ag
back electrode all laminated on the roll with a UV filter and barrier
film. Modules were prepared with (edge sealed) and without (control)
a second level of lamination to form a barrier against diffusion
through the cut edges of the devices. We characterize the devices
by periodically measuring their IV curves and following their
performance under a variety of illumination conditions over time.
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In addition we image the devices to spatially map their induced
photocurrent [16,17], and induced temperature variations under
forward and reverse bias [18,19].

2. Material and methods

Polymer solar cell modules were fabricated using ProcessOne
by slot die coating in a fully roll-to-roll (R2R) process in an
ambient laboratory environment as part of the ISOS-3 workshops
held in October 2010 at Risø DTU. Each module consists of 16
individual cells in series. The active area of each module is
nominally 35.5 cm2. Each cell has an inverted architecture con-
sisting of a transparent PET foil substrate coated by a layer stack
of ITO/ZnO/P3HT:PCBM/PEDOT:PSS/Ag and laminated with a UV
filter and barrier layer. The inverted architecture has light entering
through the substrate and ITO, which serves as a collector for
electrons from the active layer, while the holes are collected
through the PEDOT:PSS to the Ag electrode. The advantages of
this architecture include the elimination of reactive low work
function metals used as the electron collector in the normal

architecture and enhanced stability in the presence of water
vapor. [7] A sputtered layer of 90 nm of ITO on a PET substrate
was used as the anode. ZnO nanoparticles were prepared by
caustic hydrolysis of Zn(OAc)2 �2H2O as described previously
[7,20,21] and were used for ink formulations using Acetone as a
solvent. The ZnO ink was filtered through a 0.45 mm filter before
coating. The ink for the active layer was prepared by dissolving
P3HT (18–24 mg/mL) purchased from BASF (Sepiolid P200), and
PCBM (16–22 mg/mL) purchased from Solenne B.V. in half the
final volume of chlorobenzene at 120 1C for 3 h, followed by
addition of the second half of the final volume of chloroform. The
ratio between P3HT and PCBM was typically 10:9. PEDOT:PSS,
was purchased as EL-P 5010 from Agfa and was diluted slowly
with isopropanol using stirring until a viscosity of 270 mPa s was
obtained. The silver ink employed, which is screen printable and
UV curable was purchased from Toyo (FS18). Each cell has a full
silver back electrode and series connection to adjacent cells, and
large silver contacts for the anode and cathode contacts of the
module. The adhesive for encapsulation was 467 MPF from 3 M
and the barrier material was purchased from Amcor and has a
UV filter with a cutoff at 380 nm. The barrier has a water
vapor transmission rate �0.1 g m�2 day�1 [38 1C, 90%RH] and
an oxygen transmission rate o0.01 cc/g m�2 day�1 bar [23 1C,
50%RH] as reported by Amcor. The transmission rates for the
adhesive are not reported, but are expected to be much higher.
After the first level of lamination, modules were cut from the roll
leaving open edges on the perimeter of the lamination, �1 cm
from the active cell region. Modules were fully characterized and
matched pairs were made with similar performance, typically
with a power conversion efficiency, PCE, from 1–2%, and pairs
were selected with PCE values within 0.2%. Cu tape (3 M) was
applied to the silver electrodes to extend the electrical contact
away from the device region. The edge sealed samples (one from
each pair of modules) were then laminated a second time with an
adhesive seal �1 cm wide around the perimeter of any edges.
There is no evidence that the edge sealing lamination process
changed initial module performance. Metal snap fasteners (#20)
are used to pierce the Cu to form the electrical terminals (similar
to a 9 V battery) on all the modules.

Electrical characterization was performed by collecting IV
curves with a Keithley 2400 sourcemeter under illumination from
a metal halide solar simulator (KHS Solar Constant 1200) cali-
brated for AM1.5G at 1000 W/m2 with an automated roll-to-roll
testing system for an initial screening, followed by an annealing
soak (KHS Solar Constant 575) for 40 min to activate the ZnO

layer and maximize the module performance. Long term stability
was measured under four illumination conditions: full sun (KHS
Solar Constant 575, AM1.5G at 1000 W/m2, T�55 1C) halogen lamps
(Osram Halopar 64845FL, 250 W/m2, T�30 1C), indoor fluorescent
lighting (Osram FQ Lumilux HO, 100 W/m2, T�45 1C), and dark
storage (T�20 1C). The calibrated irradiance spectra of all three
lighting conditions are shown in Fig. 1.

Photocurrent measurements were taken with a novel high
speed light beam induced current (LBIC) system developed at Risø
DTU. Adjustable gain and offset optimize visualization of patterns
within each module image but absolute photocurrent cannot
be compared across images. Spatial images of minute thermal
fluctuations resulting from dark charge injection into the modules
are measured by dark lock-in thermography (DLIT) and highlight
ohmic power losses in the cell modules.[19] A high frame rate
IR-camera combined with computer controlled charge injection
and digital lock-in detection employed at TU Ilmenau enables
measurement of thermal variation below 0.1 mK [18].

3. Results

The ZnO nanoparticles in ProcessOne modules require an initial
activation, typically by exposure to UV [22]. Fig. 2 shows LBIC and
IV characterizations of an edge sealed module before and after an
initial 40 min soak to activate the ZnO. (The data is similar for the
control module without the edge seal). The activation is not
permanent, and is one way to see the effect of the edge sealing
on the modules. A module with a full edge seal remained fully
activated when stored in the dark for periods over 100 h, while the
control module without an edge seal reverts to its initial deacti-
vated state over the same period.

The effect of the edge sealing is most apparent on the samples
under full sun illumination. Fig. 3 shows the degradation of a
matched pair of modules over 800 h. The red curve represents the
edge sealed module with a linear degradation, while the purple
curve represents the control module and appears to have an
exponential decay. LBIC images are shown at the end of the curves
as insets. These modules also display significant visual differences
in polymer bleaching and electrode oxidation as they degrade, as
seen in Fig. 4, a photo taken after soaking the modules for over
900 h. The left image shows the edge sealed sample is visually
unchanged from when it was sealed. There is no bleaching or
oxidation apparent. The right image shows significant bleaching
of the polymer near the open edges of the control module and
along the top cell. A substantial darkening of the printed silver
due to oxidation is also present, in marked contrast to its
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appearance prior to the soaking. Similar differences in photo-
bleaching (albeit to a lesser degree) were seen in the sample pairs
soaked under the halogen and fluourescent lamps, although no
darkening of the silver was observed in those cases, where the
temperatures are lower.

After soaking modules were imaged by both DLIT and LBIC.
Fig. 5 shows the data for the modules under the full sun
illumination after soaking for over 900 h. The DLIT in reverse bias
largely highlights warm shunts in the devices and is not shown, as
these shunts appear as a subset of the warm (red) features in the
forward bias DLIT images as well. There are many additional
warm regions in the forward bias DLIT. The DLIT measurement
occurs in the dark with a square wave applied bias from 0–14 V
at 10 Hz resulting in rectified AC currents of �3 and �4 mA,
respectively in the edge sealed and control modules. These

currents are lower than the currents generated under full sun
illumination at the maximum power point, but much larger than
the currents induced in the LBIC measurements. In comparing the
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DLIT images of the two modules in Fig. 5, it is clear that the edge
sealed module has a largely uniform heat distribution across 14 of
16 cells in the module, while the control module is heated
dominantly at point like shorts on 13 of 16 cells in the module.

The LBIC data correlate with these images showing the most
photocurrent generated in cells that have the most uniform heat
distributions. In some cases specific defects can be seen in both
the DLIT and LBIC images, but this is not always true and the two
techniques complement each other well, characterizing mobile
charge transport and mobile charge generation respectively.

Similar results are observed in the samples exposed to the
lower intensity halogen and fluorescent lamps for over 1000 h as
observed in Fig. 6. In these cases the edge sealed modules appear
to show no significant degradation at all. Visual differences are
also reduced, although the modules without the edge seal con-
tinue to display some polymer bleaching. In contrast the modules
stored in the dark showed no significant degradation with or
without the edge sealing over more than 3000 h.

In an effort to better understand the changes occurring during
the degradation, we have repeated the full sun experiment with
LBIC and DLIT imaging both before and after the degradation of the
modules on a matched pair, which had been in dark storage
(ambient environment) over 120 days without significant degra-
dation. The modules were placed under a full sun simulator
(KHS 1200 AM1.5G 1100 W/m2) for �330 h and characterized
at 15 min intervals. The degradation in PCE, open circuit voltage,
Voc, the short circuit current, Isc, and the fill factor, FF, were
consistent with the initial longer term study and are shown
normalized to highlight the changes observed in Fig. 7. Fig. 8
shows the module pair imaged by LBIC and DLIT both before and
after soaking. We have also performed a full complement of
experiments with modules fabricated with Plextronics PV2000
for the active layer. The composition of PV2000 is proprietary, but
it has a higher Voc (�0.7 V) than P3HT:PCBM blends and an NERL
certified PCE approaching 6% [23]. In this case the bleaching and
oxidation were similar, but while the edge sealed modules did
demonstrate higher stability, they still showed some nonlinear
degradation under full sun, and overall the effects were less
pronounced, in part because the initial currents were very low
before the degradation began.
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4. Discussion

While the dark storage shows no significant difference between
the edge sealed and the control samples, Figs. 3, 6 and 7 demonstrate
that edged sealed samples clearly degrade significantly less than
control samples in use, independent of the source spectra. The
relative degradation increases with the cell temperature during
soaking presumably due to enhanced diffusion of atmospheric
components through the modules. The typical degradation in PCE

of the control samples shows an initial rise due to the activation of
the ZnO nanoparticles as previously described [22] followed by a
nonlinear decay. The exact mehcanisms of the degradation in OPV
cells are complex and likely due to several competing phenomena
including photo-oxidation, diffusion of molecular oxygen and water,
degradation of interfaces, active materials, electrodes, and charge
transport layers both from chemical and morphological changes
[6,24]. In the case of inverted devices prepared by ProcessOne,
Norrman, et al. identify changes in humidity and the hygroscopic
nature of PEDOT:PSS on the phase separation of bulk PEDOT:PSS
followed by oxidation at interfaces of the PEDOT:PSS as the
dominant degradation mechanism [11]. After the initial 500 h of
soaking, the degradation changes to a much more gradual linear
decay in the PCE. The edge sealed modules in this study show a
similar initial rise in PCE associated with the activation of the ZnO
naonoparticles, but in dramatic contrast to the control samples,
there is no nonlinear decay in the PCE over the first 500 h. Rather,
the edge sealed modules display a slow linear decay, as seen in
Figs. 3, 6 and 7a, which is consistent with the longer term decay seen
in the control modules from 500 to 1000 h.

To further understand the nature of the degradation, one can
look first at the key parameters extracted from the periodic
characterization, which contribute to the final PCE. Fig. 7b–d
shows the relative behavior of Voc, Isc, and FF, for the edge sealed

(red) and the control (purple) modules shown in Fig. 8 over the
intial 300 h of degradation. The trend is similar for the other
module pairs in this study. It is clear that the relative decline in
PCE of the control sample compared to the edge sealed sample is
dominated by the decline in Isc, but that there is also a contribu-
tion from the weaker decline in Voc. In addition, we see a dramatic
loss in the FF of the control module compared to the edge sealed
sample, an indication that there is both a decrease in the shunt
resistance and an increase in the series resistance in the modules.

The origins of these changes are a continuing area of study, but
their spatial distribution in the modules can be examined by LBIC
and DLIT imaging. There is a significant difference in complexity
between individual cells and modules of 16 cells connected in
series as in this study. Not only does the number of interfaces
increases by a factor of 16, there is a mixing of series and shunt
resistances, charging effects, and other complex phenomena. The
LBIC and DLIT images clearly show that in many cases we are not
getting equal contributions from the 16 cells in each module, nor
is each cell itself homogenous. In high speed LBIC on modules
without an applied bias voltage or flood illumination, the detailed
mechanism for charge transport through dark cells is still under
investigation. Similarly, the reverse bias DLIT of modules is
complicated by the blocking of charge transport by cells in series.
Despite these complexities, both the LBIC and forward bias DLIT
of modules show clear and reproducible spatial maps that
correlate with cell and module performance. The LBIC identifies
regions of exciton creation and charge separation, while the DLIT
identifies local heating associated with bias induced charge
transport in the absence of illumination. In both imaging meth-
ods, the currents are significantly smaller than the currents
generated under full sun illumination, and the measurements
should not induce significant changes in the cells or modules. In
both imaging techniques the ideal module would create largely
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homogenous stripes for each of the 16 serial connected cells in
the module. While our best modules have achieved this, many
modules have some cells with imperfections including point
defects, short circuits, layer misalignment, delamination, etc.
Defects can be both localized within a cell or circumvent opera-
tion of an entire cell in the module.

Fig. 5 shows the dramatic difference of two modules soaked for
900 h in the solar simulator (same modules reported in Figs. 3 and 4)
that were initially selected for their similar performance. In compar-
ing the images, one should note that the signals from the edge sealed
module are greater than for the control module but that color tables
are optimized individually for each image. In the LBIC and DLIT
measurements the driving stimulus (photon flux and applied for-
ward bias) is the same for both modules. From the IV measurements
we know that the drop in PCE of the control sample is dominated by
the decrease in FF and Isc. The most striking difference in the imaging
data is localization of many hot spots along the left side in the DLIT
image of the control sample, which are characteristic of shorts, which
enable recombination and reducing the shunt resistance and current.

In an effort to understand the temporal changes in the images,
we repeated the measurements with imaging both before and
after soaking. The edge sealed module shows a relative improve-
ment in the top two cells in the LBIC image (Figs. 8a and c) after
soaking. The DLIT of the same sample (Figs. 8b and d) shows a
corresponding loss of localized hot spots in the upper left edge of
these same cells, suggesting that some shorts have been burned
out over the 330 h of soaking. The LBIC images of the control
sample (Figs. 8e and g) show that after 330 h of soaking there is a
decline in the performance of the 8th cell and an improvement in
the performance of the 4th cell as counted from the bottom of the
images. Careful examination of the DLIT images of the control
module in Fig. 8 shows an apparent decrease in the heat
generated near the edges of the module after soaking. This
suggests that the degradation is faster near the open edges as
might be expected if atmospheric components are entering form
the unsealed edges and slowly diffusing into the body of the
module. However, this pattern is not consistently observed in all
the control samples, suggesting that the rate of diffusion along the
layer interfaces in some cases is faster than the rate of ingress
from the edges.

The application of LBIC and DLIT imaging in this study makes it
clear that these modules have many initial manufacturing defects
prior to the soaking studies. It should be noted that these modules
were manufactured as part of the ISOS-3 demonstration work-
shops where most of the workers were experiencing the proces-
sing techniques for the first time. The best modules from the
workshops were used in other studies or given to the participants,
and the modules in this study represent working devices, but not
the optimal modules achievable from the process. The effect of
the soaking on the LBIC and DLIT images (Fig. 8), demonstrates
that the situation is complex, with some cells in the modules
improving and others decaying within the same 16 cell module.
Both techniques help us understand the spatial characteristics of
the degradation process and reveal the high complexity of the
range of processes underlying the changes observed in the IV
characterization of the 16 cell modules represented by Figs. 3,
6 and 7.

The improved stability of the edge sealed samples in this study
is consistent with previous encapsulation studies with full glass
encapsulation, glass/adhesive/glass, or glass/adhesive/metal plate
and other encapsulation schemes [13,14,25–30]. The focus in our
work is on cost effective encapsulation for large scale production
of solar cell modules. The double lamination edge seal process
applied here was performed manually on samples, but industrial
roll-to-roll equipment with a kiss cut to define the 1 cm wide
edge seal around the modules in situ on the web prior to the

second lamination step is common in the manufacturing sector,
and makes this process economically viable for large scale
production. This was the simplest edge seal technique and it
significantly improves in module stability. A cold lamination
adhesive formulated to have low permeability could enhance
the process without additional processing complexity and cost.

5. Conclusion

We have observed significant improvements in the stability of
flexible OPV modules consisting of 16 serial cells with a total
active area of 35.5 cm2 produced in an entirely roll-to-roll
compatible and economically viable manufacturing technique.
The application of a roll-to-roll compatible second level of
lamination with a 1 cm wide edge seal is compared to control
devices with exposed cut edges. This simple edge seal eliminates
the initial phase of nonlinear degradation seen in all the key
parameters extracted from the current voltage curves. Modules
were studied for 1000 h and imaged by both high speed LBIC and
DLIT to further understand the failure modes in these complex
devices.
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Morphological study of low band gap polymer:PCBM 
nanoparticles for organic photovoltaics (OPVs) 
Henrik F. Dama, Natalie P. Holmesb, Thomas R. Andersena, Thue T. Larsen-Olsena, Frederik C. 
Krebsa, Paul Dastoorb* 
 

Abstract 

Nano scale particles consisting of polymer and acceptor material were investigated using 
scanning transmission x-ray microscopy (STXM) and transmission electron microscopy (TEM) 
with the purpose of identifying the inner structure of the nanoparticles and their shape and 
agglomeration. The low bandgap polymer  PSBTBT (poly[4,8-bis(2-ethylhexyloxy)benzo(1,2-
b:4,5-b′)dithiophene-alt-5,6-bis(octyloxy)-4,7-di(thiophen-2-yl)(2,1,3-benzothiadiazole)-5,5′-
diyl] ) is investigated and compared to the commonly used P3HT ( poly[3-hexylthiophene-2,5-
diyl] ) polymer. A core-shell morphology was found from STXM data for nanoparticles 
consisting of PSBTBT polymer and PCBM similar to what has been reported for P3HT:PCBM 
nanoparticles, however with a difference in the shape of the nanostructures. Devices produced 
from the same materials have shown, for nanoparticle based polymer solar cells, a high 
efficiency of 1.29%. 

a Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde, Denmark. 
b Department of Physics, Newcastle University Australia, University Drive, 2308 Callaghan, Australia.  
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A rational method for developing and testing stable flexible
indium- and vacuum-free multilayer tandem polymer solar
cells comprising up to twelve roll processed layers
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a b s t r a c t

We demonstrate a method for the preparation of multijunction polymer solar cells without the use of
vacuum evaporation methods or indium tin oxide (ITO). The entire layer stack is prepared by printing or
coating of each layer. The number of layers typically employed in complete devices exceeds ten and to
efficiently identify layers and interfaces that are not robust we developed a double sided illumination
method and demonstrate how layer thicknesses can be optimized with respect to the roll processing in
the aim of achieving functional tandem devices. The devices were prepared directly on barrier foil and
were later encapsulated. In this study the same active material comprising poly-3-hexylthiophene
(P3HT) and phenyl-C61-butyric acid methyl ester ([60]PCBM) was employed using nanoparticle based
zinc oxide for electron selectivity and several different PEDOT:PSS formulations for hole selectivity,
electrode- and recombination layer formation. A novel slanted comb silver grid electrode structure was
employed to enable efficient double sided illumination and minimize shunts. The operational stability of
the tandem devices evaluated under ISOS-D-2 conditions demonstrated less variation in stability
between devices than similar single junctions prepared in the same manner for reference.
We demonstrate lifetime studies for 480 h without any sign of degradation and estimate that the
tandem or multijunction polymer solar cells are as stable as single junctions.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The polymer tandem solar cell has been reviewed several times
[1,2] and until now it has mostly been reported with a very small
active area on rigid glass substrates using indium tin oxide (ITO) as
the semitransparent front electrode and vacuum evaporated back
metal back electrodes. In many cases the recombination layer has
also been vacuum processed and thus only the two active layers
have been solution processed. In some cases the recombination
layer has been solution processed [1,2] but in the majority of cases
most processing has been carried out in a glovebox and using
vacuum deposition for many of the layers. The polymer tandem
solar cell prepared without the use of semitransparent indium–

tin-oxide electrodes and vacuum steps using only ambient condi-
tions for roll-to-roll printing and coating on flexible substrates
undoubtedly represents the ultimate challenge and the pinnacle of
complexity within the field of printed and organic electronics [3].
It is also likely that all these requirements will be necessary before

tandem polymer solar cells can become useful outside academic
reports. The motivation for preparing the polymer tandem solar
cell is clearly the desire to reach the highest achievable perfor-
mance and the tandem approach or multi-junction approach to
photovoltaics in general is the undisputed route to the highest
performance in terms of power conversion efficiency. The tandem
solar cell also presents the drawback of being more complicated
with a significantly larger room for error and the effort is only
justified provided that the process is robust and the extra effort
required for its making is returned as a higher efficiency at lower
process intensity and a lower embodied energy. The increased
complexity is quite possibly also the reason why tandem polymer
solar cells initially did not attract so much attention as compared
to single junctions as shown in Fig. 1 where it is clear that the
number of tandem solar cell publications did not increase sig-
nificantly beyond 10 articles per year until 2010 [3]. In spite of this
much lower number of publications by two orders of magnitude
the tandem solar cell is rapidly approaching the best reported
single junctions.

Printing and coating of polymer solar cells [4] has already been
demonstrated to be a fast and viable approach to the manufacture
of polymer solar cells while there has been a significant gap
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between the reported record efficiencies for small laboratory cells
and the well corroborated performance of large area polymer solar
cell modules. In addition to this, early printed polymer solar cells
still employed indium–tin-oxide as the semitransparent front
electrode while several life cycle analysis studies showed that an
alternative to indium based electrodes is mandatory for rational
use of polymer solar cells including tandem polymer solar cells [5–8].
It was also established that vacuum processing steps require very
high polymer solar cell performance to be justified and that
printed or coated (vacuum free) polymer solar cells can reach
much shorter energy payback times even with a lower perfor-
mance [9]. While the justification for avoiding both vacuum and
indium is compelling it has taken an enormous effort to find
convincing alternatives due to the enormous complexity of print-
ing and coating thin 2-dimensionally patterned multilayer films.
Traditional processing has limited the number of wet coating steps
and has employed vacuum processing wherever possible and this
has elegantly avoided the unforgiving challenge of interfacing
many thin layers without shunting. Recently a very efficient low
cost flexible semitransparent electrode was developed which is in
fact so cheap to process that it is freely available to academics [10].
This electrode and processing philosophy serves as the foundation
in this work and is explored for processing of tandem polymer
solar cells. The largest challenge for the tandem solar cell is how
the thicknesses of the individual layers critically influence the
overall device performance and imposes firm requirements on the
processing conditions as subsequently processed layers must not
adversely affect or change previously processed layers. This can to
a certain extent be solved through vacuum processing of some
layers such as the electrodes and oxide layers. The industrially
relevant processes are however expected to employ only printing
and coating which does represent a very challenging task and the
successful development of functional tandem devices following
that approach does require a novel protocol that enables fine
tuning of the individual junctions and the interlayers such that
a functional device is guaranteed during development even if the
given device does not represent the optimal choice. There are two
points that must be rationally addressed to achieve this, the first
point is that one must be able to address the individual junctions
optically such that their individual performance can be established
and optimized and the second point is the optimization of the
processing conditions for the secondly processed junction such
that the performance of the first junction is not adversely affected.

We have in the past successfully prepared tandem solar cells
through use of thermocleavable materials [11] whereby the active
layers and the interlayers are insolubilized after processing thus
enabling solution processing of subsequent layers without affecting
underlying layers. The performance was however relatively poor
for this approach and required temperature stable glass sub-
strates. In a second embodiment full roll-to-roll processing was
employed in all layers on flexible ITO substrates by use of water
based emulsions for the back junction [12]. The performance was
also found to be poor in this case even though the devices had a
large active area.

In this work we present our approach to optimize fully printed
and coated flexible tandem polymer solar cells and we successfully
demonstrate how this method allows for establishing the process
windows for new materials combinations in multilayer tandem
polymer solar cells. The use of organic solvent based inks was
deemed necessary and an optimization of the intermediate layer
towards a higher degree of solvent resistance was achieved. For
testing of the device performance, and in particular the efficiency
of the intermediate layers, a specialized illumination geometry
was developed where the device is illuminated from both sides
thus enabling controlling the incident light intensity on each
junction.

2. Experimental

Solar cells were manufactured on a barrier material substrate
(Amcor) with a silver grid/conductive PEDOT:PSS/ZnO electrode.
This ITO-free semitransparent electron accepting front electrode
known as Flextrode has been previously described [10] and can be
obtained freely at www.plasticphotovoltaics.org. Cells were pre-
pared directly on the Flextrode and consisted of a fully slot-die
coated layer stack. The final metal back electrode was printed
using the flexo technique. The machinery employed has been
described [13,14]. ZnO was employed as an electron transport
layer, P3HT:PCBM as the active layer, the intermediate recombina-
tion layer with a compatibilizing layer comprising PEDOT:PSS
and ZnO.

2.1. Materials

Poly-3-hexylthiphene (P3HT from Plextronics) had a Mn of
40.000 Da. Phenyl-C61-butyric acid methyl ester ([60]PCBM, from
Solenne) had a purity of 99%. The P3HT:[60]PCBM ink used was
20:20 mg mL�1 ink dissolved in chlorobenzene with 10% chloro-
form and 3% chloronaphtalene, for 100 nm thick active layer a
10:10 mg mL�1 solution was used for coating. Electron transport
layers (ETL) were coated using a stabilized ZnO nanoparticle
solution in acetone (49 mg/mL). Several hole transport layers
(HTL) were employed in the process of optimizing the method.
V2O5 was employed where stated as a HTL and compatibilizer
layer between the first active layer and the poly(3,4-ethylenediox-
ythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer and com-
prised of a vanadium(V)oxiiso-propoxide:isopropanol (IPA) (1:100;
1:1000; 1:2000) solution. Several PEDOT:PSS HTL formulations
were used; Clevious P VP Al 4083 or Clevios F-010. In the case of
AL 4083 PEDOT:PSS it was mixed in a ratio of 1:2 with IPA and 2%
ethyl glycol. PEDOT:PSS (Clevios F-010) was diluted 7:3 with IPA to
enhance wetting properties. A MoOx precursor solution in isopro-
panol was employed as a second HTL and/or compatibilizer
where stated from a neutralized IPA solution. The printable silver
back electrode used was PV410 from Dupont. The substrate used
was Flextrode with a honeycomb (as described in Ref. [10])
or line silver pattern as developed in this work (see Fig. 2). The
cells were encapsulated between two 18�18 mm2 glass slides with
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Fig. 1. The number of scientific reports on OPV as a function of time (black squares,
left y-axis) as compared to the number of tandem solar cell reports (red squares,
left y-axis) shown on a logarithmic scale. The maximum reported PCE (%) for each
year for single junction cells (black spheres) and tandem cells (red spheres). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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a UV curable epoxy resin (DELO LP655) adhesive and cured for 2 min
under the solar simulator (1000Wm�2, AM1.5G).

2.2. Printing and coating

The silver grids (bottom and top layers) were printed using
flexographic printing whereas the remaining 9 layers all were
fabricated by slot-die coating on lab scale roll-coater [13]. Flex-
trode comprising a large scale roll-to-roll processed silver grid,
PEDOT:PSS (Heraeus Clevious PH1000) and ZnO on barrier mate-
rial was used as substrate in all the experiments. The parameters
presented are used as standard parameters with variations for the
optimization of the individual layers. The first coated active layer
had a thickness of 450–500 nm with a width of 13 mm and was
coated with a web-speed of 1 m min�1 at 60 1C. The intermediate
layer was coated in 3 steps; V2O5-layers were coated with a web
speed of 2 m min�1 at 30 1C and a wet-thickness of 11.5 mm, the
HTL PEDOT:PSS coating had a wet-thickness of 31 mm with a web
speed of 1 m min�1 at 60 1C, and the last layer in the intermediate
layer, ZnO, was coated at 60 1C with a web speed of 2 m min�1 and
a wet-thickness of 7.7 mm. To minimize the risk of solvent
penetration through the intermediate layer the second active layer
was coated at 80 1C for faster evaporation. The thickness of this
layer was approximately 200 nm coated with a web speed of
1 m min�1. The top electrode also consisted of 3 layers; a MoOx

HTL coated with a web speed of 2 m min�1 at 70 1C and a wet
thickness of 5 mm. On top of the MoOx, a conducting F010 PEDOT:
PSS from a 7:3 solution with IPA was employed, coated with a web
speed of 1 m min�1 at 70 1C and a wet thickness 23 mm. The top
silver grid was printed as previously reported [14]. In this study
two versions of the Flextrode design was used. The already
reported honeycomb pattern was used in the initial cells and as
a reference, while we focused on the improved Flextrode with
slanted grid lines (+51) reported here. In combination with a
slanted back electrode comb structure (�51) we achieve max-
imum two direct overlaps (worst case) from each front and back
electrode finger that minimizes the chance of silver–silver shorts.
Since both sides of the solar cell present the same slanted comb
structure and the same shadow loss this is optimal for double
sided illumination and comparison of the two individual junctions.
The design is also independent from the web-directional registra-
tion. Photographs of fully printed and coated tandem cells are
shown in Fig. 2

2.3. External quantum efficiency

Quantum efficiency (QE) measurements of the tandem devices
were performed. The approach of QE measurements for tandem
devices is significantly more complex than that for the single

junction devices. Tandem devices require measuring each subcell
individually within the device and therefore, the process includes
a set of additional steps (see e.g. Gilot et al. [15] or ASTM standard
E2236-10 [16]). In particular, in order to measure the QE of one
subcell in a multijunction device one has to saturate all the other
subcells not being measured, which is done via a bias light. To do
so, a light with spectrum in the absorption range of the subcells
not being measured is used to bias these assuring that the tested
sample is the one limiting the current within the multijunction.
Additionally, a bias voltage is applied to the tandem device equal
to the sum of Vocʼs of the subcells not being measured to cancel
out the potential of all the junctions not being measured. This
assures that the tested sample is at a state of short circuit when QE
is measured. In our studies however the QE testing was signifi-
cantly simplified by the property of double side illumination. Since
only double junction devices were in question, it was possible to
saturate the bottom subcell by illuminating it from the bottom
using simple white light. Most of the light would be absorbed by
the bottom subcell due to the thick film assuring that the top cell is
the limiting one. This was proved by absorption measurements,
which showed that most of the light was absorbed by the first
subcell facing the illumination and thus, the second subcell limited
the current. The QE was measured using an IPCE setup, which was
calibrated with a photodiode with a calibration against NIST
standard 1755. The tandem device was placed in the IPCE system
such that the bottom subcell faced the bias light and the top
subcell faced the testing monochromatic beam. Bias voltage was
applied to the sample with the magnitude equal to the Voc of the
subcell not being measured. After measuring the QE of the front
junction, the sample was flipped and the back junction was
measured in the same fashion.

2.4. Stability measurements

To study the stability, the devices were encapsulated using a
glass and a UV curable adhesive. ISOS-D-2 testing procedure [17]
was used to make a quick assessment of the stability of the
completed devices. For that purpose the samples were placed in
the dark in an oven with temperature set to 65 1C and low relative
humidity level. During the storage the solar cells were periodically
(once every few days) removed from the oven and tested for
photovoltaic performance using a class A solar simulator.

2.5. Bending test

A bending test was completed on flexible tandem cells encap-
sulated with Amcor barrier foil. The test was carried out to
establish the resilience of the tandem devices towards bending.
The test was completed on a Mecmesin Multitest 2.5-i tensile and
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Fig. 2. Photographs of encapsulated tandem solar cells with our slanted grid design. In this left case each finger from front (light lines) and back-electrode (dark lines) has
only one direct overlap. In the middle photograph the slanted front electrode has multiple overlaps with the printed honeycomb back electrode. The right photograph
displays a tandem cell comprising two honeycomb electrodes. The arrows indicate the edge from the active layer of each subcell.
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compressive test bench, which was set in compression mode for
0, 1, 10, 100, 1000 times. The resulting bending radius was 1072 mm.

3. Results and discussion

3.1. Solvent resistance tests for the intermediate layer

One of the first obstacles of using printed electrodes is the
inherent roughness of many of the coating methods. In the
Flextrode substrate the general surface roughness is low, however
distinct spikes are present in the flexographically printed silver
grid in the range of 300–600 nm after printing of both PEDOT:PSS
PH1000 and ZnO as seen in Fig. 3A. Fig. 3B displays a thin (200–
250 nm) first coated active layer with the intermediate layer on
top. A solubility test with chloroform on top of the intermediate
layer selectively dissolves the active layer around the silver grid
lines in the Flextrode. This led to a necessity for thick active layers
to avoid dissolution and shunting of the first coated cell and
intermediate layer in the tandem cell.

Since thick layers are necessary from a processing standpoint,
tandem solar cells fabricated this way suffers from poor perfor-
mance. This is the case since one active layer absorbs the main
fraction of light, as seen in Fig. 4. This issue must of course be
solved for tandem solar cells to be functional in a reasonable way.

Further, for tandem solar cells it is critically important that the
materials absorb different parts of the spectrum since otherwise
the tandem cell would not be an improvement over a standard
cell. However before tandem solar cells can be developed to fulfill
all operational requirements, useful information can be extracted
from thick layered tandem cells during the development phase,
especially when the aim is to be able to process functional
multilayer stacks.

3.2. The double sided illumination method

The preparation of homo tandem cells with the same active
layer material in both sub cells is the most rational way of testing
losses incurred by intermediate layers and poor transport in the
tandem cell. In order to do tests on these types of tandem solar
cells illumination from both sides was found to be very useful and
enabling the identification of failure in each discrete sub cell. This
is of course only possible when both electrodes are somewhat
transparent or ideally equally transparent.

For this study a mirror setup was constructed which allows
double sided illumination under a standard solar simulator. The
setup consists of two mirrors mounted 45 degrees to normal.
When the cell is placed between the mirrors, light reflects from
each mirror ensuring equal illumination from both sides.

3.3. Oxide based recombination layers

From previous publications reporting partially solution pro-
cessed tandem devices, a stack as shown in Fig. 5 was used with
the intermediate layer consisting of a vanadium-oxide layer and
ZnO [18] or PEDOT:PSS 4083 and (Al)ZnO [19]. Firstly an inter-
mediate layer comprising vanadium oxide and ZnO was attempted
with limited success. Improvements, in single junction cells, have
been shown by the use of molybdenum-oxide as a hole selective
material [20] and has therefore been used as an alternative to
vanadium-oxide. Trials with molybdenum-oxide was carried out
with similar results and the main issue being cracks in the
intermediate layer (shown in Fig. 6) leading to mixing of the first
and second coated active layers. This resulted in poorly performing
single junction cells following a device geometry as outlined in
Fig. 7.

The same structure as presented in [19] was tried but dewet-
ting occurred when attempting to slot-die coat the 4083 PEDOT:
PSS layer on top the active layer, therefore the V2O5-layer was
coated as a compatibilizer, which has been shown to work in the
tandem stack by [18]. Using a PEDOT:PSS 4083 layer in the
intermediate stack solved the issue seen with cracks forming as
shown in Fig. 6B.

Optimization of the intermediate layer was conducted by
variation of the thicknesses of all three components (p-type oxide,
PEDOT:PSS, n-type oxide). Firstly, we varied the thickness of the
V2O5 layer by varying the VTIP:IPA concentration and keeping the
wet-thickness constant. The results for this thickness variation can
be seen in Supplementary information Fig. S2A, the VTIP:IPA
1:1000 out-performed both the thicker and thinner V2O5 with a
PCE of 0.83% where the largest enhancement is seen for the short
circuit current with an increase from respectively �0.28 and
�1.40 to �2.40 mA/cm2. The lower performance for 1:2000
VTIP:IPA solution could be found in the loss of the ability to work
as a compatibilizer, when coating the following 4083 PEDOT:PSS
layer, as coating defects were observed. V2O5 films with different
thicknesses can be seen in Fig. S2B and S2C. Fig. S2B is a V2O5 layer
with a theoretical thickness of 60 nm, showing a film with discrete
pinholes. Fig. S2C has a theoretical solid thickness of 3 nm, the film
is however not fully covering and displays discrete crystals and
island formation.
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Fig. 3. (A) Height profile of the edge of a silver stripe on the Flextrode measured by
a Dektak Profilometer. The height profile shows that four silver spikes are present
within a scan-length of 300 mm, varying from around 300 to 600 nm in height.
(B) The first coated active layer (thin 200–250 nm) dissolved around the silver grid
when depositing chloroform on top of the intermediate layer.
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Fig. 4. Transmission through a P3HT:PCBM layer printed on Flextrode directly
printed on barrier foil. The absorption of the P3HT film shows that less than 40% of
the incoming light remains after a 182 nm layer while less than 10% is left after
passage through a 481 nm layer (when integrating the transmission from 350–
800 nm). This confirms the almost complete optical separation of the two subcells
when using the same polymer in both layers.

T.R. Andersen et al. / Solar Energy Materials & Solar Cells ∎ (∎∎∎∎) ∎∎∎–∎∎∎4

Please cite this article as: T.R. Andersen, et al., A rational method for developing and testing stable flexible indium- and vacuum-free
multilayer tandem polymer solar cells..., Solar Energy Materials and Solar Cells (2013), http://dx.doi.org/10.1016/j.solmat.2013.07.006i

Appendix - A5



IV-curves for devices prepared with a variation in the thickness
of the intermediate 4083 PEDOT:PSS layer can be seen in Fig. 8A.
They show a tradeoff between current and voltage. Thicker PEDOT:
PSS layers yield devices with a higher current but lower voltage
than those with a thinner 4083 PEDOT:PSS layer. The thinnest
4083 PEDOT:PSS however lost solvent resistance. Devices with
different PEDOT:PSS thicknesses in the intermediate layer were
coated from the same 1:2 (4083:IPA) solution by variation of the
wet-thickness. The last layer in the intermediate layer is ZnO,
Fig. 8B shows the IV-characterization for devices fabricated with

two different thicknesses of the ZnO layer. The current appears to
be unchanged by the thickness variation whereas there is a small
difference in voltage that however can be explained by the need
for less light soaking when activating the ZnO in the thinner layer.
Once we had defined the process conditions and interlayers we
found that a device geometry as illustrated in Fig. 7 was robust.
It comprised a total of 11 printed and coated layers applied to a
flexible barrier substrate.

3.4. EQE measurements of each junction

After examining the IV-curves obtained from the optimization
of the intermediate layers it is seen that the currents are still
very low. To investigate the reason for these low currents, EQE
measurements were recorded on the fabricated devices for both
the 1st and 2nd active layer. The EQE data obtained can be seen in
Fig. 9, the data for the 1st active layer show a large peak which
tops at 530 nm with an EQE of around 23%. The EQE data for the
2nd active layer however displays a drop in EQE from 420 to
500 nm. This drop in EQE correlated well with the absorption peak
for P3HT, therefore the drop could be caused by strong absorption
in the top of the 2nd active layer, making the distance from the
dissociated electrons to the electrode long, giving larger possibility
for recombination.

To avoid this drop in EQE in the 2nd active layer a variation of
the layer thickness was conducted. Devices with a 2nd active layer
estimated thickness of 100 nm, 200 nm, and 300 nm were coated.
From the I–V curves presented in Fig. 10A it can be seen that
a thickness of 200 nm outperforms both 100 nm and 300 nm.
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Fig. 5. (A) Illustration of the geometry used for illuminating the tandem solar cells when testing. The intensity received by the cell was effectively 1.4 suns with an equal
distribution from both sides. The exploded view of the cell shows the stack of a standard tandem cell but with both top and bottom electrodes being transparent. (B) Image of
the mirror test setup with a fully printed ITO-free flexible tandem solar cell in the center (red box). (For interpretation of the references to color in this figure legend, the
reader is referred to theQ3 web version of this article.)

Fig. 6. Cracks in different intermediate layers. (A) Intermediate layer with only MoOx and ZnO. (B) An intermediate layer containing MoOx, PEDOT:PSS P VP AL4083 and ZnO.

Fig. 7. The material stack first shown to work in a fully printed and roll coated
flexible tandem stack on a honeycomb grid electrode. An intermediate layer
consisting of a metal-oxide hole selector, PEDOT:PSS hole conductor and zinc-
oxide electron selector was used.
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For the 100 nm thickness coating defects started to occur more
frequently, leading to shorting through the active layer.

EQE measurements for the 2nd active layer with the thickness of
200 nm can be seen along with previously shown 480 nm thick 2nd
active layer in Fig. 10B. The previously observed drop in EQE where
P3HT absorbs the most has been effectively removed by reducing the
layer thickness. As expected there is a minor peak in EQE around
340 nm, which is due to the illumination through the top electrode
and thereby the light doesn't get absorbed in the ZnO layer.

3.5. The revised 12-layer tandem stack

Homo-junction tandem solar cells based on P3HT:PCBM were
studied and achieved a maximum voltage of 1.00 V with a quite
significant fill factor at 44% for initial devices with an active area of
1 cm2. The current of �2.66 mA cm�2, was however still very low,
compared to a single junction P3HT:PCBM device at 700 W/m2

illumination intensity. This was attributed to the thickness of V2O5,
which was found to significantly influence the current that could be
extracted from the device, as can be seen in Fig. S2 However, a
minimum thickness was required to ensure wetting for the follow-
ing 4083 PEDOT:PSS layer. This led to the investigation of whether
MoOx or F010 PEDOT:PSS could provide the same layer coating
performance without the restriction in current. IV-curves for the
tandem devices are shown in Fig. S3, which clearly shows that
the tandem cells with the best overall performance are prepared
with F010 PEDOT:PSS as compatibilizer for AL P 4083 (Fig. 11).
Devices obtained have similar VOC as devices with V2O5 but the
currents are much higher, with a JSC of �5.11 mA cm�2, where

devices containing V2O5 only have a JSC of approx. �2.7 mA cm�2. A
reference single junction solar cell using the same electrodes,
overall active layer thickness and active area is also shown. As
expected the single junction perform better than the homo tandem
junction and the deficit in performance is indicative of the losses
incurred by the recombination layer and tandem stack processing.
This loss of around 30% thus has to be counteracted by a wide
bandgap/low band gap polymer couple for tandem devices that are
more efficient than their individual single junction counterparts
following the strategy and device geometry employed here.

This led to a simplified stack comprising silver, PEDOT:PSS, ZnO
and P3HT:PCBM as shown in Fig. 12, with the intermediate layer
stack offering good solvent resistance and an efficient recombina-
tion between holes from the 1st coated subcell and electrons from
the 2nd coated subcell.

The specific coating parameters for the optimized tandem
device with a stack as Fig. 11 can be seen in Table 1. It is note-
worthy that all coating temperatures has been conducted at 60 1C,
all speeds were 1 m per min. or faster, which for the small roll
coater, where these experiments were conducted, is one minute or
less per layer, and that the annealing step after coating of the first
layer was found to be unnecessary.

3.6. Stability of 12-layer all printed flexible tandem solar cells
according to ISOS-D-2

The best performing tandem cell structure, presented in Fig. 12,
was chosen to evaluate the lifetime properties of the tandem
devices. The stabilities of those were compared to the single
devices (active layer thickness is around 480 nm) by performing
testing of both types under the same conditions. Three samples of
each structure were used for the studies. The efficiency for the
single junction devices varied between 1.7 and 2.4%, while for the
tandem devices between 0.8 and 1.3%, mainly due to the lower
photocurrent of the latter, when measuring with the double
illumination setup. For the stability measurement the light inten-
sity were approx. 570 Wm�2 pr. side. The comparison of the
stability curves of the normalized PV parameters for the single and
tandem devices are shown in Fig. 13. The results revealed a similar
stability performance during the period of 20 days, which con-
firms that the additional layers in the tandem structure did not
affect the stability for the devices with the studied configurations.

3.7. Stability of devices to bending

The devices were tested for their stability towards bending. It is
well known that ITO does not support bending and device
performance is normally significantly reduced or destroyed after
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Fig. 8. (A) I–V curves for devices prepared with different thickness of PEDOT:PSS in the intermediate layer. (B) I–V curves from characterization of devices prepared with
different thicknesses of the ZnO layer in the intermediate layer by varying the wet thickness in the coating but keeping the concentration constant.

Fig. 9. EQE measurements of the 1st and 2nd active layer in a tandem device.
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Fig. 11. IV-curves for a cell based on the revised stack comprising F010-ALP4083-ZnO as the intermediate layer and a single junction cell with same active layer thickness as
the combined active layer thickness of the tandem cell. The performance given in the curve and table are all shown for a measurement performed with a light intensity of
1.4 suns (700 Wm�2 pr. side).

Fig. 12. The final stack, optimized by use of the mirror system, here shown with the slant type electrode.

Fig. 10. (A) I–V curves from experiments with variation of the thickness of the 2nd active layer. The thicknesses given of the second cell are estimated from the
concentration, wet thickness, and film density. (B) EQE measurements of the 2nd active layer of tandems cell prepared with two different thicknesses of the 2nd active layer.

Table 1
The coating parameters used for the developed coating stack as shown in Fig. 12.

Layer Material Concentration Temperature (1C) Speed (m/min) Flow (ml/min) Twet (mm)

Substrate Flextrode
1st active layer P3HT:PCBM 20:20 mg/ml 60 1.0 0.20 15
Compatibilizer PEDOT F010:IPA 1:4 vol/vol 60 1.0 0.10 8
HTL PEDOT 4083:IPA 1:2 vol/vol 60 1.0 0.30 23
ETL ZnO 39 mg/ml 60 2.0 0.10 3.8
2nd active layer P3HT:PCBM 20:20 mg/ml 60 1.0 0.08 6
Compatibilizer PEDOT F010:IPA 1:4 vol/vol 60 1.0 0.10 8
HTL PEDOT 4083:IPA 1:2 vol/vol 60 1.0 0.30 23
Conducting layer PEDOT F10:IPA 1:1 vol/vol 60 1.0 0.40 31
Top electrode Ag PV410 60 1.2
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a couple of bending cycles [21]. In this case with the added
number of layers and interfaces for the tandem stack there
could be a higher risk of delamination or having layers cracking.
The tandem cells however showed no signs of these effects, as
seen in Fig. 14, suggesting that the stack, although being made up
of twelve individual layers, have a good adhesion between the
layers and that the layers are not damaged by crack formation or
delamination during bending [22].

4. Conclusion

We have shown fully wet processed large area tandem solar
cells comprising 12 layers on flexible substrates using only roll

processing techniques and highlight a technique to optimize the
individual sub cells in the tandem structure by starting with the
use of thick active layer thicknesses with a gradual reduction in
thickness until the optimum is found. This was enabled through
use of transparent electrodes on both sides enabling double sided
illumination. Different tandem cell architectures have been pre-
pared with variations in both active layer thicknesses and inter-
mediate layer composition and thicknesses with IV- and EQE-tests
performed to show the variation in the tandem cell performance.
Finally, a stability study according to ISOS-D-2 was carried out to
test the tandem solar cell stability compared to the single cell
structure. We found that the tandem solar cells were as stable as
the single junctions and that they seemed to exhibit less variation
in performance.
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ABSTRACT: Electrochromic devices (ECDs) were prepared on flexi-

ble substrates using spray coating and slot-die coating methods.

The electrochromic materials were the conjugated electro-

active polymers, poly((2,2-bis(2-ethylhexyloxymethyl)-propylene-

1,3-dioxy)-3,4-thiophene-2,5-diyl) as a vibrantly colored active

material (ECP-Magenta) and poly(N-octadecyl- (propylene-1,3-

dioxy)-3,4-pyrrole-2,5-diyl) as a minimally colored, charge balanc-

ing material (MCCP). Two electrolyte systems were compared to

allow development of fully printable and laminated devices on

flexible substrates. Devices of various sizes, up to 7 � 8 cm2, are

demonstrated with pixelated devices containing pixel sizes of 4 �
4 mm2 or 13 � 13 mm2. The transmission contrast exhibited by

the devices, when switched between the fully bleached and fully

colored state, was 58% at a visible wavelength of 550 nm, and

the devices exhibited switching times of <10 s. Additionally, we

demonstrate the utilization of printed organic photovoltaic devi-

ces (with or without the use of a lithium-polymer battery) to

power the devices between the colored and bleached state, illus-

trating a self-powered ECD. VC 2012 Wiley Periodicals, Inc.

J Polym Sci Part B: Polym Phys 50: 536–545, 2012

KEYWORDS: adhesion; conjugated polymers; coatings; electro-

chemistry; electrochromism; interfaces; processing; thin films

INTRODUCTION Thin, functional, organic, and polymeric
films for electronic devices have attracted significant interest
industrially due to the promise of enabling manufacture of
equivalents to existing solutions much more efficiently and
at much lower cost. Examples of this include organic light
emitting diodes (OLEDs),1 white OLEDs2 and light emitting
electrochemical cells,3,4 light harvesting devices such as
small molecule photovoltaics5 and polymer photovoltaics
(OPVs),6 color changing devices for displays such as e-paper,
LCDs, and electrochromics (ECs),7 logic circuitry such as
transistors,8 diodes,9 and memory elements,10 and energy
storage devices such as thin film batteries11 and supercapa-
citors.12 Advantages of the many organic-based materials dis-
cussed above, over their well-established inorganic counter-
parts, include processability to yield printable materials,
mechanical flexibility to allow use of flexible and organic
substrates, and lower power consumption in many cases.13

Organic and polymeric ECs also fall into this category as, in
the past decade, full classes of materials have been developed
that are processable from common organic and aqueous
solvents, the use of flexible and all-organic electrodes has
been demonstrated, and the full color palette of polymeric

electrochromes has been developed through use of structural
modification to achieve the subtractive primaries, cyan–
magenta–yellow and red–yellow–blue along with black.14,15

When considering organic materials for active devices, the
use of roll coating and roll-to-roll printing methods is an
advantage that would allow low-cost and high-throughput
processing as demonstrated for OPV devices. These polymer
solar cells have been demonstrated in product-integrated
applications comprising the light energy harvesting polymer
solar cell, a thin film battery for energy storage, and a LED
as a light source.16–18 The poor match between the relatively
power hungry LED and low power density OPV is managed
through the battery and the intentional use of the applica-
tion where light is used intermittently.

In this work, we demonstrate the use of polymer solar cells
to drive EC display devices. The EC devices (ECDs) were fab-
ricated using roll coating methods onto indium tin oxide
coated flexible substrates (ITO/polyethyleneterphthalate
(PET)) and switch between a vibrantly colored magenta state
and a near colorless bleached state with low current density.
These devices exhibit switch times on the order of several

Additional Supporting Information may be found in the online version of this article.
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seconds with use of a printed, crosslinked electrolyte. With
the low current required to switch, combined with the bist-
ability that the ECDs exhibit, we are able to show that there
is a good match between the power density of an OPV and
the power requirements of EC displays by integrating both
into printed module devices wherein one OPV powers a
switch to the colored state and a second OPV powers a
switch to the bleached state. In situations where constant
lighting is not available, modules were constructed and dem-
onstrated where a lithium battery stores the charge har-
vested by the OPV and further powers the ECD.

EXPERIMENTAL

All chemicals and solvents were used as received unless other-
wise noted. The polymer inks used for the poly(methyl-
methacrylate) (PMMA)/propylene carbonate (PC) devices had
an electrolyte content equivalent to that of the electrolyte-binder
layer (w/w) to avoid cracking in the polymer film. Chloroform
was used as the solvent because of the solubility of both poly-
mer and salt, while having a reasonably low vapour pressure
for roll coating. The ElectroChromic Polymer (ECP)-Magenta had
a Mn of 76 kDa and the MCCP had a Mn of 56 kDa. The concen-
trations of inks were varied according to coating method. Solu-
tions of 5 mg/mL were used in the spray coating experiments.
In the spin coating experiments, a 20 mg/mL concentration of
polymer was used, whereas the concentration used for slot-die
coating varied between 20 and 40 mg/mL in CHCl3.

The electrolyte solution was a mixture of PMMA (Mn 80,000
kDa; 4.4 g), tetrabutylammonium-hexafluorophosphate
(TBAPF6; 2 g), and PC (40 mL). The suspension was stirred
at 100 �C until the PMMA was completely dissolved (3–4 h).
To this was added a UV curable binder mixture comprising
of EbecrylV

R

150 (44 g), EbecrylV
R

116 (3.5 g), AdditolV
R

BCPK
(tradename of Cytec) (2.5 g; all from Cytec), and Zonyl FSO
(trade name of Dupont)-100 (1.5 g). A typical electrolyte:-
binder solution was a 2:1 mixture, which was mixed well
and sonicated before use.

The ionic liquid electrolyte solution was made according to
Watanabe with a slight modification.19 Methylmethacrylate
(MMA) and the crosslinking agent ethyleneglycol-dimethacry-
late was purified by distillation and degassed before use.
Benzoylperoxide was recrystallized from chloroform/methanol
before use. MMA (0.02 mol), the crosslinker ethylenedimetha-
crylate (2 mol %) and 1-ethyl-2-methyl-imidazolium-bis(tri-
flouromethane sulfonyl)imide (0.02 mol) were mixed in a
round-bottomed flask and benzoyl peroxide (BPO) (0.5 mol %)
was added. A condenser was added and the solution stirred at
85 �C for 4 h, after which acetonitrile (10 mL) was added. Fur-
ther stirring (12 h) at 85 �C yielded a slightly yellow viscous
solution that was used without further purification.

Roll Coating
Roll coating was performed on a small-scale roll coater with
PET foil substrates.20 The foil came prepared with a 175 lm
sputtered ITO layer, etched into stripes of 4 mm or 13 mm
with a nominal sheet resistivity of 100 X/h. Lengths of 1 m
were coated at a time and with a coating width of 50 mm,

thereby overlapping three of the ITO stripes. ECP-Magenta,
MCCP, and electrolyte were coated on the machine with a
high degree of uniformity.

EC Assembly
The ECDs were assembled manually due to the adhesiveness
of the electrolyte. The ITO covered PET substrate was
cleaned with isopropanol prior to coating. After coating of
the various layers, 1 cm of ITO was carefully made available
for electrical contact by removing the polymer and electro-
lyte layer with isopropanol. The two films were assembled
perpendicular to each other. After assembly, the device was
run through a laminator effectively forming a laminate joint.

Polymer Solar Cells and Demonstrator Assembly
The polymer solar cell modules used in this study were fully
roll-to-roll processed and has been described in use for the
Organic Electronics Association (OE-A) demonstrator.18 The
typical performance when initially prepared comprised a
power conversion efficiency of 2%, open circuit voltage of
7.5–8.5 V, a device short circuit current of 10–15 mA, and a
fill factor of 30–35%.

RESULTS AND DISCUSSION

Over the last several decades, the availability of EC polymers
exhibiting a wide range of neutral state colors, switching to
highly transmissive, has made the use of these materials in
vibrantly colored displays, such as e-paper and e-readers, a
serious possibility.14 What has advanced this possibility even
further is that many of these materials are also solution proc-
essable, allowing for use of film casting and patterning meth-
ods not previously used, such as spray casting, inkjet printing,
slot-die coating, and several others. However, as the process-
ability has improved, the characterization methods have
remained the same with application of the polymer film to a
small transparent electrode (typically ITO/glass), immersed in
a 1 cm cuvette, for electrochemical and optical characterization.
Further application of these materials to device platforms has
also remained relatively small, and on rigid substrates, while
little effort has extended to the use of roll coating and roll-to-
roll coating methods for large area, flexible devices, or
demonstrators. Additionally, little effort has been put toward
understanding the power and energy requirements for such
devices regarding the needs for switching between extreme
states or maintaining a constant state. It is expected that the
energy requirements are relatively low, as these devices are
redox devices and that they exhibit memory, in that a specific
color state, after an initial voltage hold, will remain after taken
to open circuit. 21–23 The extent of time allowed to pass at
open circuit before a refresh pulse is needed can vary based on
fabrication conditions and redox potential of the device, but the
energy requirements are significantly lower than those seen for
solution-based ECDs, such as viologens in solution.

Here, we present the development of a printed ECD in a
demonstrator where the device is powered by printed OPVs.
In general, there are several opportunities and challenges for
EC technology as presented in Figure 1. We have these bro-
ken down into three main points (materials, addressability,
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and device manufacture). As mentioned previously, recent
work has addressed the challenges involving color availabil-
ity and processing, allowing for a full color palette of solu-
tion processable polymers, not previously available. However,
little effort has focused on using these materials in full de-
vice manufacture, looking at use of flexible substrates and
large area processing, let alone addressability of matrix dis-
plays and integration of electronics drivers.24 As an effort to-
ward use of EC materials in commercial applications, such as
currently available in auto mirrors, the development process
for ECDs is at a stage where further progress has to center
on efficient production methods combining high output, reli-
ability, and low cost. To realize these important parameters,
where conjugated polymers are concerned, the employment
of roll coating onto flexible substrates emerges as the tech-
nique of choice. The success of using these techniques in
polymer photovoltaics manufacture has stimulated the use of
similar techniques in ECDs. The research presented in this
article centers on the progress toward a demonstrator ECD
with effort focused toward printable electrolyte develop-
ment, printing methods, device lamination, and finally, incor-
poration into a photovoltaic-powered module, addressing
several of the points illustrated in Figure 1.

Materials and Coating Methods
The EC polymers used in this work were reported previously
by Reynolds et al. and were the poly((2,2-bis(2-ethylhexylox-
ymethyl)-propylene-1,3-dioxy)-3,4-thiophene-2,5-diyl) (ECP-
Magenta) that switches between a vibrant magenta color
when charge neutral and highly transmissive, nearly color-
less when oxidized,25 and the PProDOP-N-C18 (MCCP) was
used as the counterpolymer wherein the polymer provides
charge balance during device operation but lends minimal
color to the device optical properties. Both polymers are
highly soluble in common organic solvents and have been
routinely processed from solution using spray casting. In this
work, we examined use of spray processing and slot-die
coating onto flexible substrates. We initially used spray cast-
ing, as this technique is known to create an open morphol-
ogy in the film14 and is advantageous as it easily allows ions
from the electrolyte layer to be driven into the polymer film
when a current is applied. In unpublished trials, slot-die
coated films exhibited extensive cracking when switched
between the two redox states. This is because the slot-die

coated films are more dense than the spray cast films with a
compact film morphology.26 The observed cracking in slot-
die coated films is explained by ions being forced into the
dense polymer matrix on redox switching, causing swelling
and creating stresses in the polymer film.27 On reversal of
the redox potential, the current reversed, and the matrix
morphology collapses, resulting in cracking. Although the
spray casting avoids this issue and is compatible with roll
coating film formation, slot-die coating is a more reproduci-
ble method and was the method of choice for this work. The
issue with film cracking was resolved by incorporating elec-
trolyte ions into the polymer film during coating. A further
advantage of incorporating ions in the polymer film during
printing is minimization of the absorption change of the
polymer when initially switched between the different redox
states. This phenomenon, known as electrochemical anneal-
ing, results from the irreversible reorganization of the EC
polymers caused by the initial applied current.14,28 The setup
used is shown in Figure 2(a–d) for roll coating, whereas the
incorporation of spray processing on a roller is shown in
Figure 2(e). For slot-die coating, the substrate is attached to
the rotating drum and moved while the dispensing head is
maintained stationary. The coating conditions are provided
in the Experimental section. In short, both ECP-Magenta and
MCCP were printed on ITO/PET films on a small-scale roll
coater.20 The coating solution contained the polymer dis-
solved to 20 mg/mL, TBAPF6 to 4 wt % in chloroform. The
electrodes consist of PET coated with 4 or 13 mm-wide ITO
stripes or full ITO. The electrodes were coated with a layer
of either MCCP or ECP-Magenta and afterward a layer of
electrolyte mixed with a UV curable binder was applied.

Central to the preparation of an ECD that is flexible and roll-
to-roll compatible is the development of a solid electrolyte
system that enables laminate formation of the device while
maintaining fast and robust switching. We explored two
approaches in this work to establish advantages/disadvan-
tages between the use of an electrolyte system comprised of
a dissolved electrolyte salt in a printable/coatable photocur-
able prepolymer with a swelling agent and a system com-
prises a printable/coatable polymer mixed with ionic liquid.
The need for a printable electrolyte is crucial if one wants to
gain all the benefits of a roll coating process, where a liquid
electrolyte will not work. The electrolyte layer in the ECD
serves multiple purposes. The first being that it serves as a
source of moveable charge carriers (i.e., ions), which are
able to counterbalance the induced charges on the ECPs dur-
ing redox switching. This is accomplished by dissolving an
appropriate salt in an ion conducting solvent, typically PC.
PC being a polar aprotic solvent is widely used in ECD stud-
ies, as it fulfils many of the requirements for an electrolyte
solvent. The high polarity of PC allows it to dissolve the elec-
trolyte salt and its high relative permittivity/dielectric con-
stant introduces capacitance in the system allowing charge
to build up on the ECPs. Additionally, its excellent properties
as a plasticizer are used to modulate the plasticity of PMMA.
The second role of the electrolyte in laminated devices is
that it acts as an adhesive layer when sandwiched between

FIGURE 1 Challenges and possibilities in ECD development.
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the two active layers during lamination. The device pre-
sented in this report either made use of a PC/PMMA system
or a PMMA/ionic liquid electrolyte. For the former, variation
of the PC/PMMA ratio allows for an electrolyte system with
a viscosity compatible with roll coating while enabling curing
at a later stage for sealing. In the case of the PMMA/PC elec-
trolyte system, the required viscosity was achieved by mix-
ing of the PMMA/PC/salt system with an UV-curable acrylate
oligomer, EbecrylV

R

. Subjecting this electrolyte layer to
approximately 1700 mJ/cm2 of UV light dosage made the
surface adhesive, which allowed for curing of the laminate
joint after lamination. When the devices were examined for
function in outside light exposure (powered by OPVs), the
curing process continued inside the device resulting in ECDs
with limited switching abilities after full sun exposure for
about an hour (1000 W/m2, AM1.5G). The result was a hard-
ened and brittle electrolyte layer with poor ion mobility and
consequently poor switching. The challenge in using the elec-
trolyte layer as a sealant in addition to the other required
properties arises because of counteracting properties of ion
mobility (switching speed) and adhesive properties. This
was then addressed by exploring the use of ionic liquids as
the swelling agent/plasticizer in combination with ion con-
ducting properties of such agents. The latter approach
proved superior due to the fact that the system was fully
cured and no longer subject to photochemical crosslinking
when the device was assembled, yet exhibited sufficient ion
mobility to allow switching of the device. We thus present

here data for the most successful method that uses a poly-
mer (PMMA) mixed with ionic liquid where we found reli-
able and fast switching and good adhesion between the ECP-
Magenta and MCCP electrodes. The binder mixture was used
as a sealant as well, thereby avoiding the tedious and slow
process of using double-sided adhesive or epoxy liner. When
the binder was appropriately cured, as detailed in the Exper-
imental section, the two electrodes were combined with the
architecture detailed in the following section and shown in
Figure 3.

ECD Assembly and Testing
One of the strengths in using polymers in ECDs lies in their
mechanical flexibility and, as such, the electrode material
ideally should posses this ability as well. The flexibility is
challenged by use of inorganic oxides (i.e., ITO on PET) as
electrode material, as cracking during extensive stressing can
be a problem, in addition to availability of high quality
coated ITO films.29 In the literature, this has been addressed
by use of polyethylenedioxythiophene-polystyrenesulphonate
(PEDOT:PSS) as electrode material in all polymer ECDs.30,31

However, as PEDOT:PSS electrodes exhibit a light blue hue
and affect the ultimate bleached state achieved, as well as
dissolving and cracking during processing and device curing,
ITO/PET was chosen as the electrode material in this report.

The devices were assembled by coating individual layers
onto the transparent ITO/PET electrodes from opposite
sides, followed by sealing the device using a UV curable

FIGURE 2 Roll coating of (a and c) ECP-Magenta from a 20 mg/mL solution and (b and d) MCCP from a 20 mg/mL solution. (e) A

spray-coated substrate coated with 20 mg/mL ECP-Magenta.
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electrolyte binder. The electrolyte binder was chosen to act
as a sealant for the device rather than peripheral adhesives
as, from a production point of view, the use of double-sided
adhesives is challenging in that they are not compatible with
fast processing using batch methods (i.e., only a dedicated
in-line machine can handle this efficiently). Fabricating the
device in this way enables roll coating of the individual
layers using either spray or slot-die coating as film forming
techniques, followed by printing of the electrolyte-binder
layer onto one electrode and laminating the two sides to-
gether. This multilayer approach is not without its limita-
tions. Although it is possible to use roll coating with this as-
sembly method, the multilayer approach is not directly roll-
to-roll compatible, as the coated surfaces of two electrodes
are to be joined through a lamination step with a sticky elec-
trolyte. A ‘‘bottom-and-up’’ approach can solve this challenge
but raises others regarding coating and manufacture. Build-
ing a device in one direction is the preferred method incor-
porating roll-to-roll coating techniques but the coating of
individual layers needs to be orthogonal to each other.32

This means that the coating of succeeding layers does not
influence the already coated layer(s); typically by dissolution
or oxidation. A typical challenge is dissolution of previous
layers by the solvent as the materials used are often soluble
in the same solvents. This can be solved by modification of
the materials making them postcoating processable by hy-
drolysis33 or heat34 or by coating some layers from water
and others from organic solvents.32 Despite the aforemen-
tioned shortcomings, the multilayer approach was chosen as
a starting platform for the development of the EC
demonstrators.

The assembled devices switched efficiently with low current
densities as illustrated for large area devices with an active

area of >10 cm2 as shown in Figure 4. As can be seen the
initial voltage switch (62 V) induced a peak in the current
with a maximum of 1 mA/cm2, which decayed rapidly to a
background current of �0.05 mA/cm2. Between these two
voltage extremes, the devices were switched from fully col-
ored, vibrant magenta to fully bleached, nearly colorless, as
shown in the photographs in Figure 4.

On monitoring the optical changes during switching, a
change in transmission (DT) was found to be 44%, with a
transmission in the clear state of �54% and a transmission
as little as 10% in the colored state (at 550 nm) as shown
in Figure 5(a). As seen in the figure, the response time
remains constant for a period of 45 min with 30 s between
switches (i.e., 90 switches), with minimal DT drop during
that time.

To achieve 100% switching (DT ¼ 44%), 10 s was required.
As a substantial portion of the redox process occurs in the
beginning of the voltage pulse, as seen by the initial current
spike at the beginning of a switch, and the optical changes
noticeable to the human eye are in the 90–95% range of the
full switch, it is common to report the time periods required
to reach these percentages of the full switch.14 As shown in
Figure 5(b), the full 100% switch is achieved in 10 s,
whereas that for 95% of the full switch is reached in 5 s.
These values are longer than those reported previously as
we are using a crosslinked electrolyte with an expected ionic
mobility less than that for the gel-type electrolytes. To deter-
mine the full DT across the visible region for this device
type, a difference spectrum was measured and is shown in
Figure 6. A difference spectral setup was used as there is dif-
ficulty in obtaining exactly matched sample and reference
devices where optical effects (i.e., interference effects and re-
flective losses) are eliminated, especially where there are
thin multilayer films as in these devices. We thus used a
setup where two identical devices are counterdriven in,
respectively, the reference and sample channel. We obtain
the plot in Figure 6 that shows that the achievable DT with

FIGURE 3 Assembly of the ECD. The foils consist of PET with

ITO stripes or solid ITO. MCCP (top) and ECP-Magenta (bot-

tom) is coated onto the foils followed by a layer of electrolyte.

The foils are placed on top of each other with the ITO stripes

perpendicular. An area of 1 cm on each foil is cleaned of poly-

mer for connection to an external power source.

FIGURE 4 Current (left axis)/voltage (right axis) switching of a 10

cm2 device, when switched between �2 and 2 V. The colored

(reduced ECP-magenta) and bleached (oxidized ECP-Magenta)

states for a device are shown in the photographs to the right.
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this device is around 58% at 550 nm. This value takes a
bleached reference sample into account, thereby subtracting
absorption by PET, ITO, reflections, and the polymeric elec-
trolyte. The practically obtained DT of 44% [Fig. 5(a and b)]
is obtained without a reference sample constituting the dif-
ference in transmission as seen by the eye. It is thus very

satisfactory showing that our device is well constituted and
unlikely to be improved much further. In addition, taking the
inverse values of the plot where the reference is colored and
the sample is clear (Fig. 6, green line), one should obtain val-
ues corresponding to a setup where the reference is
bleached and the sample colored (Fig. 6, red line). Any dif-
ference between the values arises from nonmatched samples.
For the values reported here, this corresponds to only 1%.

Demonstrator Assembly
As a large optical contrast can be effected by use of a rela-
tively low voltage (þ/�2 V) and low current (<100 lA/
cm2), use of polymer solar cells as power sources was ideal.
The solar cell devices used in this study were prepared
according to ProcessOne35 following a device structure and
outline as recently described for the OE-A demonstrator.18

The polymer solar cell modules used to drive the ECDs in
this study were prepared on a scale of more than 10,000
units and typically presented a Voc in the range of 7.5–8.5 V
and an Isc in the range of 5–10 mA under illumination with
1 sun (AM1.5G, 1000 W/m2). The solar cells were directly
laser cut from the roll and used for direct incorporation into
the prototypes developed here.

The demonstrator was prepared using printed electronic cir-
cuitry and assembly that was previously developed in an
earlier study for an OPV/lithium-polymer battery powered

FIGURE 5 Transmission of a device at 550 nm while switching from 2 to �2 V for 30 s at each potential. (a) Optical transmission

data for a 45-min period (90 switches) causing a slight decrease in DT is observed. (b) Response times for the 600–750-s interval.

The colors represent various degrees of switching. (c) Table showing response times corresponding to the lines in (b).

FIGURE 6 Difference plot. The green line results from the refer-

ence device being colored and the sample device bleached.

The red line represents the opposite, that is, a bleached refer-

ence device and a colored sample device. The middle (purple)

line results from both devices being bleached.
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FIGURE 7 The electrical diagram for the demonstrator showing how the two independent circuits can be used to switch the ECD

between the colored and transparent state. The switches are push buttons that are pressed alternately. In the case where the de-

vice is powered solely by the OPVs, the circuit elements marked optional are not included (top). The flexible printed circuitry is

shown below for the version with battery and blocking diode (in dashed square box). The display area measures 40 � 40 mm2.

FIGURE 8 Illustration of the schematic circuit diagrams for devices powered by OPV alone (top) or OPV/lithium-polymer battery

(bottom).
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flashlight17 by replacing the white LED with the ECD. As the
ECD needs to be driven electrically to switch states by pass-
ing a current through the device in opposite directions, we
powered the ECD through two independent OPV circuits or
OPV/lithium-polymer battery circuits as illustrated in Figure
7 where the circuit diagram is shown. The lithium-polymer
battery presents a voltage in the range of 3.7–4.2 V depend-
ing on the state of charging and can supply a large current
at this voltage. This resulted in fast switching times on the
order of 2 s, but such large voltages can also lead to degra-
dation of the various components in the device.36 The
switching times when powered by the solar cell alone
depend on the incident light intensity and at full sun the
switching time was on the order of 3 s.

The demonstrator circuitry was prepared by printing silver
lines using sheet fed screen printing of a silver paste
(Dupont 5007E) onto an optically clear polyester foil with a
thickness of 130 lm that was cured at 140 �C for 10 min. A
graphite paste was subsequently printed over the areas of
the switch and the material again cured at 140 �C for 10
min. The circuit diagram for the devices is shown in Figure
8 for the demonstrators with the OPV alone [Fig. 8(a)] or
with the OPV/lithium-polymer battery combination [Fig.
8(b)].

A 2.5-mm thick polyester plate was then prepared on each
side with a 50-lm thick lined pressure sensitive adhesive
(MP467 from 3M). The polyester sheets carrying the

FIGURE 9 Demonstrator assembly. (a) Laser cutting of electrical circuit. (b) Lamination of adhesive polyester. (c) Polyester plate

with lithium batteries and nickel sponges. (d) OPV module with on/off switches.

FIGURE 10 Demonstrator device, powered by polymer solar

cells (far left and far right), with ECP-Magenta/MCCP ECD in

the center. Contact to the ECD is made with printed circuitry

from the solar cells to nickel sponges (seen around the periph-

ery of the ECD), and the device is switched by pressing of but-

tons located at the bottom of the device.
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adhesive was laser cut [Fig. 9(a)] into the desired shape of
the demonstrator by cutting holes for the batteries, discrete
component (1N4148 blocking diode), switches, and the
nickel sponge via connections. The adhesive liner was then
removed at one side and the printed circuit was applied to
the adhesive [Fig. 9(b)] followed by mounting of the nickel
via connections and the batteries [Fig. 9(c)]. Finally the solar
cells [Fig. 9(d)] were applied over the batteries, the switch
components inserted, and the ECD mounted followed by a
final lamination to complete the device.

The completed device is shown in Figure 10 and movies of
the device switching indoors (powered by the batteries) and
outdoors (powered solely by solar cells) is supplied as Sup-
plementary Information. Future work should address the
possibility for crosslinking the electroactive polymers and
electrolyte system or some other means of in-solubilization
thus enabling both the bottom-and-up approach and ensure
better thermomechanical properties such that the final devi-
ces become robust toward delamination during processing,
handling, and operation. Although devices could be delami-
nated in the laminate joint by manual force, they are quite
well joined and we estimate the fracture energy (Gc) to be
significantly above >1 J/m2 based on earlier studies for
delamination of polymer solar cells.37 Development of elec-

trolyte systems with higher fracture energies would be a
valid research goal.

Of significant importance is also the hold time and the tempo-
ral and photochemical stability of the devices during opera-
tion as these devices would be intended for use as variable
shading of sunlight (e.g., in a window) or as a display unit
(e.g., a billboard applied outdoors with backlight). We per-
formed experiments to establish how long the bleached state
is maintained after the power supply is removed from the de-
vice. The stable state for the ECD is the colored (reduced)
state. Here, it is stable for extended periods of time. After
bleaching, it takes on the order of 4 h to revert to the colored
state (Fig. 11). This is of some importance for large area appli-
cations as a short hold time would use constant power con-
sumption. Based on this result, it would seem that these ECDs
have a large potential for display and shading applications
with very low power consumption either through self power-
ing using a solar cell as demonstrated here or through brief
updates of the color state every 30 min. The devices prepared
here were not encapsulated in a barrier to oxygen and water
and in spite of that seem quite stable. We illuminated an
operational device with a solar simulator (AM1.5G, 1000
W/m2, 45 �C) for 100 h continuously and found that the
degree of photobleaching was limited.

FIGURE 11 The hold time for a bleached device showing the gradual loss in transmission due to reversion from the oxidized to

the reduced (colored) state when the electrical supply is removed (top left). A photobleaching experiment for a complete device

under continuous illumination (AM1.5G, 1000 W/m2, 45 �C) for 100 h leading to a 20% loss in absorbance (top right). The loss in

switching capacity as a consequence of the 100-h illumination condition was 25% (lower left). The effect of photobleaching is

shown with red arrows on a photograph of the photobleached device. It is also observed as ingress all around the edge (lower

right).
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The device lost 20% in absorbance and when switching about
25% of the transmission change was lost (Fig. 11). The photo-
bleaching was just visible to the eye and most significant in
areas around the edges where slight delamination had occurred
allowing for ingress of water and oxygen. This is a convincing
result and we estimate that operation for many years is possi-
ble provided that water and oxygen are excluded from the ECD
through a suitable barrier material. The shelf life is encourag-
ingly long for practical development and use. We were unable
to detect any decrease in absorbance or performance for devi-
ces stored or cycled in the dark for 4 months.

CONCLUSIONS

In this report, we have demonstrated that large area EC dis-
plays with high contrast and relatively fast response times
can be achieved using EC polymers in combination with a
printed and cured adhesive electrolyte. The devices were
prepared by using roll coating methods on flexible substrates
followed by lamination. The devices exhibited 58% DT when
fully switched and �44% DT with switch times of <5 s. The
power required for the devices were low with þ/�2 V
applied and <100 lA/cm2 max current with a 5 lA/cm2

background current. These low energy requirements paired
well with the power output of printed polymer photovoltaic
devices, allowing fabrication of a self-powered OPV/ECD
module. We also established a preliminary assessment of the
photochemical and temporal stability for the devices and
found that full sun illumination (AM1.5G, 1000 W/m2, 45
�C) of an ECD for 100 h led to a decrease in absorbance of
20% and a loss in DT of 25%.
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The grand vision of manufacturing large-area emissive devices with low-cost roll-to-roll 
coating methods, akin to how newspapers are produced, appeared with the emergence of 
the organic light-emitting diode about 20 years ago. Today, small organic light-emitting 
diode displays are commercially available in smartphones, but the promise of a continuous 
ambient fabrication has unfortunately not materialized yet, as organic light-emitting diodes 
invariably depend on the use of one or more time- and energy-consuming process steps under 
vacuum. Here we report an all-solution-based fabrication of an alternative emissive device, 
a light-emitting electrochemical cell, using a slot-die roll-coating apparatus. The fabricated 
flexible sheets exhibit bidirectional and uniform light emission, and feature a fault-tolerant  
 > 1-µm-thick active material that is doped in situ during operation. It is notable that the initial 
preparation of inks, the subsequent coating of the constituent layers and the final device 
operation all could be executed under ambient air. 
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With tantalizing goals such as the projected multi-billion-
dollar market for low-cost and environmentally friendly 
illumination panels in sight1, it comes as no surprise that 

tremendous efforts have been directed towards the development of 
high-throughput and cost-effective fabrication methods of quali-
fied lighting technologies. The organic light-emitting diode (OLED) 
is one such technology2–7, and numerous scientific and company 
reports related to the partial fabrication of OLEDs under ambient 
air using low-cost printing and coating methods, such as inkjet8–10, 
screen11,12, and gravure13,14, are today available. However, despite 
these achievements, to our knowledge, no single report on an unin-
terrupted fabrication of a functional OLED under ambient condi-
tions has appeared to date. This is particularly problematic not only 
because it makes today’s OLEDs prohibitively expensive for many 
large-scale applications4 but also because the current dependency 
of OLEDs on, first, an electron-injection layer/cathode with low-
work function and concomitant poor ambient stability, and, second, 
a thin active layer with extremely well-controlled thickness, make 
the future prospects for such a breakthrough bleak.

An alternative to the OLED is the more process-tolerant light-
emitting electrochemical cell (LEC) technology. LECs are charac-
terized by the existence of mobile ions in the active layer, which can 
redistribute to allow for electrochemical doping following the appli-
cation of an external voltage. This in-situ electrochemical doping 
process brings the attractive consequence that the LEC operation 
is notably insensitive to the above-specified problematic require-
ments of the OLED, and that LECs thus can be expected to be well 
suited for the hitherto elusive uninterrupted manufacturing under 
ambient conditions. Relatively few studies on a potentially scal-
able fabrication of LECs can be found in the literature, but we note  
Mauthner et al.’s15 report on inkjet printing of the active material 
in an open planar device geometry, and recent demonstrations of 
metal-free16,17 and stretchable LECs18,19.

Here we show that it is possible to fabricate large-area LEC sheets 
under uninterrupted ambient conditions using a purpose-built roll-
coater apparatus. The constituent device layers consist of solely  
air-stable materials, which are deposited using the slot-die coating 
technique. The constituent device layers were found to be highly 
uneven, but the roll-coated LEC devices still exhibited uniform and 
strong light emission at low applied voltage. The realized LEC sheets 
are in addition flexible and feature bidirectional light emission as a 
result of the use of conformable and transparent electrode materials.

Results
Ambient fabrication using a roll-coater apparatus. For the fabri-
cation of LEC devices, we used the technique of slot-die coating.  
Figure 1a depicts schematically the successive deposition of a 
(yellow) active layer and a (blue) anode on top of a (pink) flexible 
cathode-coated substrate mounted on a roll. The dissolved material 
to be coated (the ink) is transferred from an external container via  
a pump to the (orange) slot-die head, where the coating width is 
defined by the width of the head’s bottom slot through which the 
ink flows onto the moving substrate, while the coating thickness 
is dictated by the ink flow rate and the substrate speed. The 
apparatus shown in Fig. 1b is a new type of slot-die roll coater 
specifically designed and developed for the challenging task of 
enabling a time- and material-efficient optimization of a continuous 
coating process20. The motorized roll can be heated to an elevated 
temperature of  > 180 °C and has a diameter of 300 mm, so that a 
flexible substrate with 1 m length can be mounted and dried directly 
on the roll. By using a small slot-die head (Fig. 1c), and allowing 
the head to be translated perpendicular to the coating direction 
following every complete revolution of the roll, it is possible to  
coat several stripes on one substrate and enable for an effective 
substrate length of several metres (Fig. 1b). When the coating 
system is equipped with the small slot-die head it requires a very 

small amount of dead volume ( < 50 µl), which makes the technique 
well suited for a screening of novel and expensive inks.

We prepared a relatively viscous active-material ink, free from 
binder and thickener additives, comprising a blend of the emis-
sive conjugated polymer superyellow (SY) and the electrolyte 
KCF3SO3 in poly(ethylene oxide) (PEO). The ink was deposited 
as multiple stripes (typically three) on a flexible poly(ethylene 
terephthalate) substrate, precoated with ZnO-on-indium-tin-oxide 
cathodic stripes21, at a coating speed of 0.6 m min − 1; see Fig. 1b,c. 
A matching number of anode stripes was thereafter coated on top 
of the active material from a diluted poly(3,4-ethylenedioxythio-
phene):poly(styrenesulfonate) (PEDOT:PSS) water dispersion at 
0.6 m min − 1. The ink formulation and coating took place under 
ambient air, with the roller kept at 40 °C to facilitate the drying of 
the films. The coated layers had a wet thickness of 100 µm and a 
dry thickness of 1–1.5 µm (Fig. 1d). The surface morphology map 
of the dry layers shown in Fig. 1e,f reveals rather uneven interfaces, 
with an root mean squared surface roughness for the cathodic and 
anodic interfaces of 4.5 and 20 nm, respectively. Figure 1g–i presents 
2×2 µm2 phase-contrast maps of the constituent layers, and we note 
that the active material (Fig. 1h) displays a relatively minor phase 
separation on the order of a few hundred nanometres between the 
hydrophobic conjugated polymer and the hydrophilic electrolyte, 
which is of the same order of magnitude as for spin-coated LEC 
films with similar composition22–24.

Performance of the roll-coated devices. Figure 2a,b shows the light 
emission from two roll-coated devices when driven with an applied 
voltage of V = 7 V. The emitting area is ~300 mm2, and we call atten-
tion to the bidirectionality and the uniformity of the light emission. 
The former is a consequence of both the anode and the cathode 
being transparent, whereas the latter is a direct manifestation of the 
unique operational mechanism of LECs. In fact, an OLED compris-
ing a similar thick and uneven layer for the active material (Fig. 1e,f) 
would emit with a much lower and non-uniform light intensity, if 
any. Moreover, as mentioned previously, the current generation of 
OLEDs depends on the existence of a highly air-sensitive (low-work 
function) material for the attainment of efficient electron injection, 
which on generic terms excludes a continuous fabrication process 
under ambient conditions.

So what is the key distinguishing feature between an LEC and 
an OLED that makes the former so much more fit for a low-cost 
continuous coating process in ambient conditions? The answer is 
the existence of mobile ions within the active layer (Fig. 2c)25. These 
ions redistribute following the application of a voltage to establish 
nanometre-thin electric double layers at the cathodic and anodic 
interfaces that allow for balanced and efficient electron and hole 
injection, respectively (Fig. 2d). The initial injected electrons and 
holes attract electrostatically compensating counter-ions in an elec-
trochemical doping process—n-type at the cathode and p-type at 
the anode—and these two doping regions grow with time, eventu-
ally making contact in the bulk to form a p–n junction structure  
(Fig. 2e)26,27. Such an in-situ formation of a p–n junction is particu-
larly attractive in the context of thick and uneven layers of active 
material that commonly result from a coating or printing process, 
as the p–n junction will form independent on the thickness of the 
active layer. In other words, the doped regions continue to grow 
until they make contact, at which point the limiting thickness of the 
device is the small and constant thickness of the p–n junction and 
not the large and spatially varying thickness of the active material.

The measured performance of the roll-coated LEC devices is 
quite promising, considering that these are the pioneering experi-
ments in the field. Figure 3a shows optoelectronic data recorded 
during a voltage sweep at 0.1 V s − 1, during which the brightness 
reaches B = 150 cd m − 2 at V = 10 V. The turn-on voltage at which 
the device begins to emit visible light (B > 1 cd m − 2) is V = 3.7 V  
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(see inset in Fig. 3a), which is close to the theoretical limit, as dic-
tated by the band-gap potential of SY; VBG (SY) = 2.4 V (refs 28, 29). 
The turn-on time is a critical and important parameter for LEC 
devices. Figure 3b presents the brightness versus time for a device 
driven at constant current density (j). We define the turn-on time 
as the time to reach B > 10 cd m − 2 for a pristine device, and find 
that the turn-on time is ~2 s at j = 770 A m − 2 (see inset in Fig. 3b). 
The operational stability of roll-coated LECs can be quantified by 
the time to reach half-maximum brightness22,30, which we find to 
be ~8 h at a drive current density of j = 77 A m − 2. The latter results 
were attained on devices that had been stored in a glove box for  > 6 
months. The highest recorded current efficacy is 0.6 cd A − 1 at a 
brightness of B = 50 cd m − 2. Finally, the fabrication yield of the 
roll-coated LECs is found to be very satisfying, primarily due to 
the fault-tolerant device geometry with a thick active layer and air- 
stable materials, and barring mistakes during transportation and 
contacting, all tested devices were functional and emitting light.

Discussion
In the above performance context, we mention that the herein used 
active material was chosen and optimized for the purpose of facile 
coating, but that, for example, its high electrolyte content has proven 
to be detrimental for the attainment of high efficiency and long-term 
stability31. We therefore foresee that the reported performance val-
ues can be significantly improved with further optimization of the 
constituent processes and the utilization of lower-electrolyte-content 
active materials, so that state-of-the art efficiency and operational 
stability values for polymer LECs of ~10 cd A − 1 and several 1,000 h, 
respectively, can be attained also for roll-coated LEC devices32–35.

The ink formulation and coating processes, as presented herein, 
were conveniently executed solely under ambient conditions, but 
during light emission the active material in LECs (and in OLEDs) 
must be free from oxygen and water vapour to enable a satisfying 
performance. This challenge should, however, be addressable in  
a manner compatible with ambient processing by including an  

efficient drying stage at an elevated temperature to drive out rem-
nants of O2/H2O/solvents followed by an immediately subsequent 
encapsulation stage, where a flexible barrier material is attached to 
the device with, for example, a simple pressure-sensitive adhesive. 
Figure 3c shows a photograph of such an encapsulated roll-coated 
LEC device during operation at V = 7 V under ambient conditions. 
This device could be operated without any signs of deterioration in 
performance following 3 days of ambient storage, despite the fact 
that the encapsulation material exhibits rather limited barrier prop-
erties (see ref. 36). Considering the current prohibitive significant 
cost for high-performance barrier materials37, this opportunity to 
utilize a material-conservative and time-efficient fabrication proc-
ess and a low-cost barrier material could thus indicate a viable path 
towards conformable emissive devices for low-end applications, at a 
cost that could be accepted by the market.

To conclude, we demonstrate that the entire manufacturing of 
emissive LEC sheets—from the initial preparation of inks, to the 
coating of the constituent layers, to the final encapsulation—can be 
carried out in air using a slot-die coating technique that is directly 
compatible with high-speed and low-cost roll-to-roll fabrication. 
The fabricated devices are attractively robust and fault-tolerant due 
to the utilization of air-stable materials and a micrometre-thick 
emissive layer. Furthermore, the introduced roll-coating apparatus 
is particularly fit for further optimization of the constituent proc-
esses and the device performance. We anticipate that transparent 
and metal-free plastic applications with good light-emission per-
formance should be a highly realistic option with the use of other 
available material combinations, and hope that our effort will pave 
the way so that long-term grand visions within the illumination 
community, notably an affordable ‘light-emitting wall-paper’, finally 
will turn into reality.

Methods
Materials and ink preparation. The dry materials, SY (Merck, catalogue no. PDY-
132), PEO (Mw = 5×106 g mol − 1, Sigma-Aldrich), and KCF3SO3 (Sigma-Aldrich), 
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Figure 1 | Coating process and morphology and thickness of the coated films. (a) schematic view of the slot-die roll coating of the (yellow) active layer 
and the (blue) semitransparent anode on top of a (pink) flexible cathode-coated substrate. The ink is transferred from an external container via a pump to 
the slot-die head (orange). (b) Photograph of the roll coater during the deposition of the active layer. (c) Close-up photograph of the slot-die head during 
coating of an active layer stripe. (d) Atomic force microscopy (AFm) data indicating the thickness of the anodic, active and cathodic layers in the LEC 
device stack. (e) Enlarged AFm data indicating the roughness of the anodic and the cathodic interfaces. (f) Exploded view of 10×10 µm2 AFm height maps 
of the three constituent layers. (g–i) 2×2 µm2 AFm phase-contrast images of (g) the PEDoT-Pss anode, (h) the active layer and (i) the Zno cathode.
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were separately dissolved in cyclohexanone in a 10 g l − 1 concentration. These 
master solutions were stirred for 24 h at 70 °C, before being blended in a (SY:PEO:
KCF3SO3) volume ratio of (1:1.35:0.25) to form the active-material ink. The  
ink was stored in 20-ml glass vials with Al lined screw caps for  > 5 days before  
deposition. The anode ink was a PEDOT:PSS dispersion (Orgacon 5015, Agfa) 
diluted with 75 volume % isopropanol. All ink formulation was done under  
ambient air.

Device fabrication. The LEC devices were manufactured on a slot-die roll coater 
developed at Risø DTU (Fig. 1b)20. A flexible poly(ethylene terephthalate) sub-
strate (length = 1 m, width = 0.15 m) was roll-coated with a 14-nm-thick ZnO nano-
particle layer on indium-tin oxide (60 Ω/) in a line pattern (line width = 4 mm, 
line separation = 1 mm)38 and attached to the roller using pressure adhesive tape. 
The active-layer ink was deposited onto the ZnO cathode with an ink-flow rate 
of 4.0 ml min − 1 at a substrate speed of 0.6 m min − 1 using a 13- or 50-mm-wide 
slot-die head. Following a 5-min intermission, the anode ink was deposited on top 
of the active layer at 1.0 ml min − 1 and 0.6 m min − 1 using a 13-mm-wide slot-die 

head. The entire coating process was executed at 40 °C under ambient air. The LEC 
devices were additionally dried at 100 °C for 12 h under N2 and thereafter stored 
under ambient air for  > 5 days before testing. Some devices were encapsulated on 
both sides with a 55-µm-thick barrier foil (U-barrier, Amcor Flexibles) to allow for 
light emission under ambient conditions, whereas non-encapsulated devices were 
tested in a N2-filled glove box ([O2], [H2O]  < 10 p.p.m.).

Device characterization. The roll-coated LEC sheets were characterized  
using a computer controlled source-measure unit (Agilent U2722A) and a  
calibrated photodiode equipped with an eye-response filter (Hamamatsu  
Photonics) connected to a data acquisition card (National Instruments  
USB-6009) via a current-to-voltage amplifier. The AFM data were recorded  
in tapping mode under ambient conditions using a MultiMode SPM (Veeco)  
and the recorded micrographs were visualized using the software Gwyddion.  
The photographs were recorded with a digital camera (Canon EOS 300D)  
using the following settings: shutter speed = 1/8 s, aperture = f/5.6, sensor  
sensitivity = ISO-3200. 
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Figure 2 | Key aspects of LEC operation. (a) Photograph of a slot-die–coated LEC, illustrating the bidirectional light emission and the device conformability. 
(b) Light emission from a semitransparent slot-die–coated LEC following  > 6 months storage in a glove box. The devices depicted in a and b were driven 
at V = 7 V. (c) schematic structure of a pristine LEC device, indicating the existence of mobile (red) cations and (blue) anions in the active layer and the 
rough (blue) anodic and (purple) cathodic interfaces. (d) The electric double-layer formation and the initial electron (solid circles) and hole (open circles) 
injection within the same device following the application of a voltage bias. (e) The light emission (yellow-green) from the in-situ formed p–n junction at 
steady state.
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Zno/{sY + PEo + KCF3so3}/PEDoT:Pss device during a voltage sweep at 0.1 V s − 1. Inset: the brightness data plotted on a logarithmic scale. (b) The 
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(c) Photograph of an encapsulated roll-coated device operating at V = 7 V under ambient conditions. note that the device had been stored under  
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erdens samlede ener-
giforbrug var i 2008 
omkring 16,5 TW, og 

i de kommende år forventes 
det, at dette tal vil vokse støt 
[1]. I dag kommer størstedelen 
af energien fra fossile brænds-
ler. Det er generelt accepteret, 
at der stadig er nok fossile 
brændsler tilbage til at under-
støtte dette forbrug i mange år. 
Da fossile brændsler kan have 
en katastrofal virkning på ver-
dens miljø, er dette imidlertid 
ikke en langsigtet løsning. 
Derfor må vores fremtidige 
energi stamme fra vedvarende 
og miljøvenlige kilder. Sol-
energi er en af disse vedva-
rende energikilder. Solen er en 
meget pålidelig energikilde, 
og på ethvert tidspunkt mod-
tager jorden ca. 1,2 × 105 TW 
fra solen. Dette alene ville i 
2008 dække verdens energi-
forbrug mere end 10.000 gan-
ge [2]. 
   Solcelleteknologien kan ind-
deles i tre generationer. Første 
generation (1G) er single junc-
tion-solceller, som hovedsage-
ligt er baseret på (krystallin-

ske) siliciumwafere, og disse 
har i dag en ydelse på lige 
over 20 %. 1G-solceller domi-
nerer på solpanelmarkedet. 
Selvom disse solpaneler har 
en høj ydelse, er prisen for 
hver produceret energienhed 
stadig højere end samme 
energienhed produceret af 
fossile brændsler, blandt andet 
på grund af dyre materialer og 
produktionsmetoder. 
   Andengenerationssolceller 
(2G) prøver at imødekomme 
disse to faktorer ved brug af 
billigere materialer (f.eks. 
amorft silicium), som gør det 
muligt at reducere produkti-
onsomkostningerne. 2G-sol-
celler har en ydelse på op 
imod 14 %, men også her er 
prisen per produceret energi-
enhed højere end for konven-
tionelle fossile brændstof-
baserede energikilder. 
   Tredjegenerationssolceller 
(3G) bruger alternative billige 
materialer. Blandt disse er 
plastik- eller polymersolceller, 
men 3G dækker samtidig også 
over dyre eksperimentelle og 
højtydende multi-junction- 
solceller. Polymersolceller til-
byder flere fordele såsom en 
enkel, hurtig og billig stor-
skalaproduktion, som kan op-
nås ved at printe solcellerne 
med allerede eksisterende  
rulle-til-rulle (R2R)-teknologi-
er. Selvom polymersolcellers 

ydelse og holdbarhed stadig er 
begrænsede i forhold til uor-
ganiske solceller, har de stort 
potentiale. Forskningsinteres-
sen inden for polymersolceller 
er steget markant de seneste år 
pga. en forventning om, at 
polymersolceller i fremtiden 
kan blive en konkurrence-
dygtig, vedvarende og miljø-
venlig energikilde [2, 3]. 
 
POLYMERSOLCELLERS 
VIRKEMÅDE 
Det, som gør en polymersol-
celle anderledes end konventi-
onelle solceller, er, at det ma-
teriale, som anvendes til at 
absorbere solens lys, udgøres 
af en polymer til forskel fra 
f.eks. silicium. 
   Det basale princip bag både 
polymersolcellen og andre 
former for solceller er dog det 
samme, nemlig omdannelsen 
af energien i elektromagnetisk 
stråling (lys) til elektrisk ener-
gi (en strøm og en spænding), 
et fysisk fænomen, der kaldes 
for den fotovoltaiske effekt. 
Denne energiomdannelse mu-
liggøres af de særlige materia-
leegenskaber, som besiddes af 
såkaldte halvledere. En gruppe 
af materialer, der – som nav-
net antyder – befinder sig midt 
imellem at være en isolator og 
en leder. Dette skyldes materi-
alernes helt særlige elektron-
struktur, der er udformet med 

V 
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et område af ’forbudte’ ener-
gier mellem de besatte og frie 
elektrontilstande, et såkaldt 
båndgab. For en halvledende 
polymer defineres båndgabet 
som forskellen mellem den 
højeste besatte molekylorbital 
(highest occupied molecular 
orbital, HOMO) og den lave-
ste frie molekylorbital (lowest 
unoccupied  molecular orbital, 
LUMO).  Så længe dette 
båndgab er større end de til-
gængelige termiske energi-
fluktuationer, vil elektronerne 
i materialet være ’låst fast’ og 
materialet kan således ikke 
lede en strøm.  Hvis en foton 
imidlertid rammer materialet, 
og denne besidder en energi, 
der er mindst lige så stor som 
energien i båndgabet, kan fo-
tonen afgive sin energi til en 
elektron i materialet ved at 
excitere denne til en ikke-

besat tilstand over båndgabet. 
Derved befinder elektronen 
sig i et område med frit til-
gængelige tilstande, samtidig 
med at der er skabt et ’hul’, 
hvor elektronen sad før. Dette 
gør, at elektronerne i materia-
let ikke længere er fastlåst, og 
materialet er derfor ledende. 
Dette princip er illustreret i 
Figur 1. 
   Elektronen og hullet kaldes 
tilsammen for en exciton, en 
såkaldt kvasipartikel, der   
betragtes som én enhed pga. 
den gensidigt tiltrækkende 
coulombkraft, der findes mel-
lem sådanne to modsat ladede 
partikler. For at få solcellen til 
at generere strøm, skal elek-
tronen og hullet løbe i hver sin 
retning og samles op ved hver 
sin elektrode. Dette kræver, at 
’exciton-båndet’ brydes. I en 
polymersolcelle gøres dette 

ved at kombinere to forskelli-
ge halvledende materialer med 
indbyrdes forskellig elektro-
negativitet og ioniseringsener-
gi i en såkaldt heterojunction. 
De to materialer kaldes hen-
holdsvis for en elektronaccep-
tor og en elektrondonor. Når 
forskellen i elektronegativitet 
over acceptor/donor-grænse-
fladen er tilstrækkelig til, at 
elektronen i excitonen hellere 
vil være i acceptor-materialet, 
vil der opstå en drivkraft, som 
adskiller elektroner og huller 
fysisk i hvert sit materiale.  
Elektroner og huller er der-
efter ”frie” og drives mod 
henholdsvis katode og anode 
af den iboende gradient i det 
elektrokemiske potential, kal-
det solcellens indbyggede 
elektriske felt. Det er netop 
dette indbyggede elektriske 
felt koblet med tilstede-

 
 

Figur 1. Solcellers virkemåde. Et halvledende materiale i mørke (a), hvor ingen strøm kan løbe, og i 
lys (b), hvor en foton exciterer en elektron til LUMO-niveauet og derved danner en fri elektron og et 
”hul”, som muliggør strømledning. Til højre (c) ses et materiale med et lille båndgab i forhold til den 
absorberede fotonenergi, hvorved overskudsenergien går tabt. 
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værelsen af frie elektroner og 
huller, der gør, at solcellen 
producerer strøm. Hele denne 
proces er illustreret i Figur 2. 
   En solcelle kan i sin simple-
ste form beskrives som en 3-
lags sandwichstruktur på et 
substrat, hvor et fotoaktivt lag 
er placeret mellem to elektro-
der. En sådan struktur kan 
med fordel betragtes i et 2-
dimensionalt tværsnit, som det 

er tilfældet i Figur 3. Det foto-
aktive lag er der, hvor lyset 
absorberes, hvilket fører til 
generering af ladninger (elek-
troner og huller), som derefter 
opsamles og videredistribue-
res af elektroderne. Det særli-
ge ved polymersolcellen er de 
halvledende polymerer, som 
bruges i det fotoaktive lag. 
   I Figur 3 er vist den til dato 
mest brugte materialekombi-

nation til polymersolceller, 
med polymeren P3HT som 
donor og en opløselig udgave 
af en C60 ’bucky-ball’ kaldet 
PCBM som acceptor. Mens 
det er disse organiske moleky-
lers særegne materialeegen-
skaber, der giver polymersol-
cellen dens mange fordele, 
sætter de også en række be-
grænsninger i forhold til ud-
formningen af solcellen. En af 

 

 

Figur 2. Skematisk tegning af polymersolcellens virkemåde. Lys absorberes og skaber excitoner (1). 
Disse diffunderer, indtil de møder en donor/acceptor-grænseflade, hvor excitonen deler sig i en elek-
tron og et hul (2) som derefter drives mod og opsamles ved hver sin elektrode (3). 
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disse begrænsninger ligger i 
de lysgenererede excitoner, 
som i halvledende polymerer 
har en så begrænset levetid, at 
de kun kan nå at bevæge sig 
ca. 10 nm, inden de rekombi-
nerer. Dette sætter dermed den 
maksimale afstand mellem en 
genereret exciton og den 
nærmeste donor/acceptor-
heterojunction. Det er her, at 
det simple, men banebryden-
de, koncept kaldet en bulk 
heterojunction kommer ind i 
billedet. Ved at lave det foto-
aktive lag af en opløsning, 
bestående af en makroskopisk 
set homogen opblanding af 

donor- og acceptor-materiale, 
fremkommer der en naturlig 
nanoskala-struktureret fase-
adskillelse mellem de to typer 
af materialer, som det er illu-
streret i figur 3. Ved på den 
måde at lade naturen klare 
udform-ningen af sin polymer-
heterojunction får man opti-
meret mængden af grænse-
flade i det fotoaktive lag så 
godt, at det endnu ikke har 
været muligt at gøre det bedre 
på mere kontrolleret vis [4]. 
 
FORSKNINGENS 
FOKUSOMRÅDER 
De store udfordringer for   
polymersolceller centrerer sig 
omkring ydelsen, stabiliteten 
og produktionsteknikkerne. 
Disse er forskningsmæssige 
udfordringer, som skal løses, 
før teknologien kan blive kon-
kurrencedygtig med eksiste-
rende solcelleteknologier.  
 
YDELSE 
Kommercielle solpaneler ba-
seret på siliciumsolceller lig-
ger i området 10–20 % i ydel-
se, afhængigt af kvaliteten af 
solcellen. Polymersolceller 
optimeret i laboratoriet ligger 
derimod på 5−8 %, og større 
paneler overstiger ikke 4 % 
[3]. Forklaringen på denne 
store forskel ligger i selve det 
materiale, som absorberer 
lyset. I en siliciumsolcelle 
anvendes en siliciumskive på 
ca. 50 µm til at absorbere ly-
set. Herved absorberes nær-
mest alt lys, som rammer sol-
cellens overflade. Desuden er 
silicium en halvleder med en 

langt højere ledningsevne end 
de halvledende polymertyper, 
som anvendes til polymer-
solceller, bl.a. pga. den høje 
krystallinitet, som silicium 
har. Følgen af dette er, at 
mange ladninger tabes under 
en ladnings-ekstraktionspro-
ces, hvorfor ydelsen reduceres 
yderligere.  
   Forskning i at øge ydelsen af 
polymersolceller er derfor i 
høj grad rettet mod at optime-
re de egenskaber, som kende-
tegner siliciumsolcellen. Disse 
egenskaber forsøges optimeret 
gennem syntese af nye poly-
merer, hvor andre kemiske 
grupper sammensættes for at 
efterligne siliciums egenska-
ber i polymermaterialerne – 
mere specifikt et energimæs-
sigt lavere og bredere bånd-
gab, højere absorptionsevne 
samt bedre ledningsevne. Fi-
gur 4a viser fire eksempler på 
halvledende polymerer depo-
neret på glassubstrater, hvor 
deres forskellige optiske egen-
skaber tydeligt ses i deres for-
skellige farver. De er alle ca. 
100 nm tykke, men fremstår 
alligevel forholdsvis mørke, 
hvilket illustrerer polymerer-
nes høje absorptionsevne. Fi-
gur 4b viser polymerernes 
absorption af synligt lys, 
sammen med solens spektrum. 
For alle de viste polymerer 
kan man se, at bindingstypen 
er skiftevis enkelt- og dob-
beltbindinger på hovedkæden, 
hvilket giver materialet dets 
halvledende egenskaber, hvor-
for polymererne kaldes konju-
gerede polymerer.  Nogle po-

 
 

Figur 3. Polymersolcellens 
opbygning og lagstruktur. 
Det fotoaktive lag er en så-
kaldt bulk heterojunction, der 
udnytter den naturligt frem-
komne finstrukturerede fase-
adskillelse (vist i den stiplede 
cirkel) mellem donor- og ac-
ceptormateriale til at maksi-
mere grænsefladearealet i 
laget. 
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lymerer absorberer den høj-
energetiske blå del af det syn-
lige lys og er derfor rødlige, 
hvorimod andre absorberer 
den lavenergetiske røde del af 
lyset og derfor fremstår blå. 
Tykkelsen af de polymerfilm, 
som anvendes i solceller, er et 
kompromis mellem at have en 
meget tyk film, der absorberer 
meget lys, eller en meget tynd 
film, hvor den elektriske led-
ningsevne gennem filmen er 
høj.  
 
HOLDBARHED 
Konventionelle siliciumsolcel-
ler forventes ved almindeligt 
brug at være stabile i mere end 
20 år, dvs. at ydelsen i perio-
den ikke er faldet drastisk. 
Siden de materialer, som an-
vendes i polymersolceller, er 

overvejende organiske, er de 
langt mindre stabile end silici-
um. For de halvledende poly-
mertyper gælder det som for 
de fleste organiske materialer, 
at eksponering til vand, var-
me, sol og ilt nedbryder mate-
rialerne – faktorer, der også 
kendetegner det miljø, hvor 
solceller anvendes.  
   Forskellige typer polymerer 
har forskellig holdbarhed i 
solceller under forskellige 
påvirkninger. Når en polymer 
udsættes for sollys, sker for-
skellige nedbrydningsmeka-
nismer. Konjugationen af po-
lymerkæden tabes gradvist 
ved, at kæden klippes over i 
mindre stykker. Dette kan 
observeres med det blotte øje 
ved at polymeren bleges, bli-
ver mere transparent, og der-

for absorberer færre fotoner. 
En anden udbredt nedbryd-
ningsmekanisme indebærer 
oxidation af sidekæderne, så 
de spaltes fra monomeren, 

 

Figur 4. Halvledende polymerfilm og absorptionsspektre. 
(a) 4 eksempler på halvledende polymerfilm med tykkelser på ca. 100 nm, hvor et billede af polyme-
ren deponeret på glas er vist sammen med deres kemiske struktur. (b) Normaliserede absorptions-
spektre af de 4 viste polymerer sammen med solens emissionsspektrum. 

 
 

Figur 5. Polymersolceller 
monteret på en soltracker. 
Sensorer til monitorering af 
solens intensitet ses monteret 
på de røde plader i midten. Et 
system til koncentrering af 
sollys gennem en linse er 
monteret i den gule kasse. 

   (R = 2-hexyldecyl) 
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hvorved de kemiske egenska-
ber ændres. Alt dette nedsæt-
ter polymerens ydelse i poly-
mersolceller. Derfor testes nye 
polymerer for fotostabilitet 
såvel i solsimulatorer inden-
dørs, der er lamper med lys-
spektrum og intensitet tilnær-
met solens spektrum, som 
udendørs i sollys. Figur 5 vi-
ser en soltracker på Risø 
DTU, hvor paneler af solceller 
testes løbende udendørs i læn-
gere perioder.  
   Nogle polymerer er meget 
stabile, og en fuld analyse af 
holdbarheden på solcellen vil 

derfor overstige år, hvis sol-
cellens holdbarhed testes på 
en udendørs tracker. For at 
opnå en hurtigere analyse af 
holdbarheden af disse materia-
ler anvendes aggressive miljø-
er, hvor bl.a. høj varme, fug-
tighed og lysintensitet med-
fører en højere nedbrydnings-
hastighed af materialet. På 
soltrackeren på Figur 5 ses et 
system til koncentrering af 
sollys monteret i den gule kas-
se. Den består af en glaslinse, 
som ved normalindfald foku-
serer lyset ind i et bundt af 
optiske fibre. Disse leder lyset 

ind i et laboratorium, hvor det 
intense lys anvendes til acce-
lererede nedbrydninger af po-
lymerer. Herved kan tidsram-
men for en analyse af stabilite-
ten af en polymer reduceres 
med en faktor 100, hvilket er 
en stor fordel, når potentialet 
af en ny polymer skal vurde-
res.  
 
RULLE-TIL-RULLE 
Solceller fremstillet rulle-til-
rulle (R2R) er et forholdsvis 
nyt fænomen, sammen med 
fleksible solceller. I 1G- og til 
dels også 2G-solceller anven-

 

1 

2 

3 

4 

5 

6 

7 

8 
9 

Figur 6. R2R solcellecoater installeret på Risø DTU. 
Folien rulles af rullen til venstre (1) og gennem maskinens folietilretter (2), videre gennem en folie-
renser (3) og gennem et flexoprintmodul ved (4). Et slot-die-coatehoved er normalt monteret ved (5), 
hvorefter folien tørres ved to passager gennem den første ovn (6). Herfra løber folien gennem en 
silketryksenhed (7) for at forsætte igennem den anden ovn på maskinen (8) og til sidst at føres tilbage 
på rullen yderst til højre (9). 
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des stive substrater og materi-
aler. Dette betyder, at meget af 
fabrikationen må foregå ved 
trinvise, serielle processer. 
Ved rullecoating af organiske 
solceller trykker man solcellen 
på et fleksibelt substrat af 
gennemsigtigt plastik (PET) 
og trykker kontinuerligt en 
rulle med nogle hundrede me-
ter folie ad gangen. 
   R2R-begrebet kommer af, at 
man på maskinens indgangs-
side har en rulle med folie, 
som derpå rulles af og føres 
igennem trykkemaskinen, som 
ses i Figur 6, hvorefter den til 
slut rulles op i maskinens an-
den side.  
   Teknikken, der anvendes, er 
tilsvarende til trykning af en 
avis ved offset-print, hvor man 
påtrykker en avisside via på 
hinanden følgende tryk af de 
forskellige farver, som ind-
holdet skal bestå af. I solcelle-
trykket er strukturen dog no-
get simplere, og i stedet for en 
maske med en avissides ind-

hold bruges en teknik, der 
kaldes slot-die coating, hvor 
man tilfører en kontinuert 
strøm af blæk til et coate-
hoved. Blækket føres i coate-
hovedet ud over en dråbe-
guide, som styrer bredden af 
den resulterende stribe af ma-
teriale på substratet (se Figur 
7a). 
   Fabrikationen af solceller 
ved rulle-til-rulle-coating er en 
mulig løsning til at sænke pri-
sen på solceller. Der anvendes 
en begrænset mængde mate-
riale, og spildet er lavt. Der 
pålægges lag på et substrat i 
rækkefølgen bundelektrode 
(katode), bufferlag for elek-
troner, aktivt lag, bufferlag for 
huller og til sidst topelektro-
den (anode). Efter hvert lag 
flyttes folien fra højre til ven-
stre side af maskinen (se Figur 
6). Derefter påføres det næste 
lag en smule forskudt på sub-
stratet for at danne en lag-
struktur og celle, som ses i 
Figur 7, hvor man belyser 

cellen fra bagsiden gennem 
PET-folien, ITO-elektroden 
og zinkoxidlagene. Buffer-
lagene, ZnO og PEDOT, bru-
ges for at forbedre solcellens 
ydeevne ved at blokere for, at 
elektroner og huller bevæger 
sig til den forkerte elektrode 
og rekombinerer. 
   De primære problemer ved 
rulle-coating er at finde mate-
rialer, der har både gode elek-
triske egenskaber, men også 
nemt kan coates. Problemer 
med dewetting kan ofte eksi-
stere, hvor et følgende lag kan 
have problemer med at hæfte 
til det foregående lag. Derfor 
er det ofte nødvendigt at ud-
forske et meget bredt parame-
terrum for at finde en velfun-
gerende kombination af poly-
merer, elektroder og opløs-
ningsmidler for at kunne fore-
tage en vellykket coating. 
   Hastigheden, hvormed man 
kan coate opløsningerne på 
substratet, er en anden udfor-
dring for fabrikationsproces-

Figur 7. (a) Trykkehoved monteret på maskinen med 2 x 16 parallelle striber af polymer er ved at 
blive påtrykt substratet. (b) Illustration af opbygningen af et færdigtrykt solcellemodul med en op-
bygning af serielt forbundne solceller (4 ud af de 16 striber vist). Modulet trykkes på en PET folie. 
Opbygningen af cellerne består af indiumtinoxid (ITO), zinkoxid, P3HT:PCBM (fotoaktivt lag), 
PEDOT:PSS og en sølv-topelektrode. Modulet belyses gennem bagsiden (nedefra på illustrationen). 

ITO 
ZnO 

Aktivt 
PEDOT:PSS 

Sølv 

PET 

a b 
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sen. Det coatede lag skal selv-
følgelig nå at tørre før det rul-
les på rullen på maskinens 
udgangsside. For nogle af la-
gene er det vigtigt, at de tørres 
hurtigt for at undgå gelering i 
laget, mens andre af lagene 
har brug for en langsom tør-
ring for at danne gode strøm-
førende baner.  
 
ENERGIREGNSKAB OG 
BÆREDYGTIGHED 
Den store udfordring for en-
hver ny energiteknologi er, at 
den skal levere bæredygtig og 
CO2-neutral energi. Derfor 
fokuseres der på at kunne 
fremstille polymersolceller 
ved brug af mindst mulig 
energi og ved brug af miljø-
venlige materialer. Dette kan 
opnås ved f.eks. at sænke pro-
duktionstemperaturen, udskif-
te giftige opløsningsmidler 
med vand og undgå brugen af 
sjældne grundstoffer. Et brug-
bart mål for bæredygtigheden 
er betegnelsen energi-tilbage-
betalingstid (ETBT), som de-
fineres ud fra den tid, det tager 
eksempelvis en solcelle at 
producere en mængde energi 
svarende til den totale energi 
brugt til at fremstille solcellen 
samt den energi, der er inde-
holdt i materialerne (den ind-
lejrede energi). ETBT er der-
for en vigtig parameter, når 
nye materialer skal bedøm-
mes. 
   Et eksempel på et demon-
strationsprodukt baseret på en 
organisk solcelle, som er ud-
viklet på Risø DTU i samar-
bejde med trykkevirksomhe-

den Mekoprint, er en solcelle-
lampe til projektet ”Lighting 
Afrika” (se Figur 8) [5]. Her 
er formålet at forlænge ti-
merne med lys i lande, hvor 
elektricitet ikke er allesteds-
nærværende. Konkurrenterne 
til solcellelampen er lamper 
med batteridrift og petro-
leumslamper. På denne type 
produkt, hvor den forventede 
levetid er kortere end fastmon-
terede solpaneler og investe-
ringen, som er mulig for bru-
gerne, væsentlig mindre, viser 
ETBT sig at være bedre end 
for batteri- og petroleumslam-
per. F.eks. har solcellelampen 
indtjent sin indlejrede energi 
på under 1 måned ved substi-
tution af batteribaserede lam-
per og under 2 måneder for 
petroleumsbaserede lamper 
[6]. Mekoprint A/S sælger i 
dag disse lamper. 

PERSPEKTIVET 
Allerede nu er der et stort po-
tentiale for polymersolceller 
ved implementering i mindre, 
forbrugerorienterede produk-
ter. Her betyder teknologiens 
klare fordele, som lave pro-
duktionsomkostninger, flek-
sible materialer og generelle 
alsidige udformningsmulighe-
der, helt nye potentialer for 
produktudvikling i forhold til 
konventionelle solceller. Det 
langsigtede perspektiv er dog 
uden tvivl, at polymersolceller 
skal kunne bidrage væsentligt 
til verdens energiproduktion. 
Som beskrevet tidligere, ligger 
der dog stadig store udfor-
dringer i at forbedre holdbar-
hed og effektivitet. Disse er 
faktorer, der skal forbedres 
væsentligt, før man vil se net-
tilsluttede polymersolceller 
monteret på hustage rundt 

 
Figur 8. Eksempel på prototype af solcellelampe. 
Lampen består af en plastiksolcelle produceret ved rulle-til-rulle-
metoden (se Figur 7), et lithium-polymerbatteri, et trykt sølv-
elektrodelag, en lysdiode og indpakning. 
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omkring eller i deciderede 
solfarme. 
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Forkortelser 

 
1G, 2G, 3G   Henholdsvis første-, anden- og 

tredjegenerationssolceller. 

ETBT Energi-tilbagebetalingstid  

HOMO Highest occupied molecular 
orbital. Højeste besatte mole-
kylorbital. 

ITO indiumtinoxid 

JC1 Efter Jon E. Carlé, se Figur 4 for 
struktur. 

LUMO Lowest unoccupied molecular 
orbital. Laveste frie molekylorbi-
tal. 

MEH-PPV   poly{[5-(2-ethylhexyloxy)-2-
methoxy-1,4-phenylen]ethen-1,2-
diyl}, se Figur 4 for struktur.  

MH200 Efter Martin Helgesen, se Figur 4 
for struktur. 

P3HT poly(3-hexylthiophen), se Figur 2 
for struktur. 

PCBM 4-(1’-phenyl-1,2-methano- 
[60]fulleren-1’-yl)butansyre-
methylester, se Figur 2 for struk-
tur.  

PEDOT  poly{2,3-dihydrothieno[3,4-b]- 
[1,4]dioxin-5,7-diyl} 

PET  poly(ethylenterephthalat) 

PSS poly(styrensulfonat) 

R2R  “Rulle-til-rulle” fremstilling, se s. 
6 for beskrivelse. 
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