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Abstract

We prove that a graph admits a strongly 2-connected orientation if
and only if it is 4-edge-connected, and every vertex-deleted subgraph is
2-edge-connected. In particular, every 4-connected graph has such an
orientation while no cubic 3-connected graph has such an orientation.
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1 Introduction

Robbins [13] observed that every finite 2-edge-connected graph has a strongly
connected orientation. Nash-Williams [12] proved the much stronger result
that every 2k-edge-connected graph has a strongly k-edge-connected orienta-
tion, and Mader [10] also obtained this result from his general lifting theorem.
This motivated the following conjecture in [14], also discussed in [1] :

Conjecture 1 For every positive integer k, there exists a smallest positive
integer f(k) such that every f(k)-connected graph has a strongly k-connected
orientation.

∗Research partly supported by ERC Advanced Grant GRACOL
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The complete graphs show that f(k) ≥ 2k. Robbins’ theorem implies
that f(1) = 2. Frank [6] made the following stronger conjecture.

Conjecture 2 A graph has a strongly k-connected orientation if and only if
the deletion of any j vertices, 0 ≤ j < k, leaves a 2(k − j)-edge-connected
graph.

Berg and Jordán [2] verified Frank’s conjecture for k = 2 when restricted
to Eulerian graphs. The special case of 4-regular, 4-edge-connected graphs
was also done by Gerards [7]. Jordán [8] combined the result of [2] with a
result on the 2-dimensional rigidity matroid of a graph to prove that f(2) ≤
18. Cheriyan, Durand de Gevigney, and Szigeti [4] improved this to f(2) ≤
14. A referee points out that Frank’s conjecture is false for each k ≥ 3, and
that, for each k ≥ 3, it is NP -complete to decide if a graph has a strongly
k-connected orientation, as proved recently by Durand de Gevigney [5].

The ”only if” part in Frank’s conjecture is trivial. In the present paper
we verify the ”if” part for k = 2 by establishing an appropriate technical
extension. In particular, f(2) = 4. It is not known if f(3) exists.

2 Orientations

The notation and terminology are essentially the same as in [3] and [11]. We
repeat some of the most important concepts.

The graphs in this paper are not allowed to contain loops, but they may
have multiple edges. If G is a graph and A is a set of vertices in G, then
G(A) is the subgraph of G induced by A, that is, G(A) has vertex set A
and contains all those edges of G which join two vertices in A. If A is a
set of vertices in G, then the edges with precisely one end in A is called an
edge-cut. An edge-cut with k edges is called a k-edge-cut. We call A and its
complement the sides of the cut. If some edges of the graph have been given
an orientation, and all edges leaving A have the same direction, then the cut
is a directed cut. A directed graph is a graph where every edge has been given
an orientation. If an edge e = xy is directed from x to y, then x is the tail
of e, and y is the head of e.

A directed graph is strongly connected, or just strong, if, for any ordered
pair of vertices x, y, the graph has a directed path from x to y. A strongly
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connected component, or just strong component, is a maximal strong sub-
graph.

A graph (respectively directed graph) is k-connected (respectively strongly
k-connected) if it has at least k + 1 vertices and the deletion of fewer than
k vertices always leaves a connected graph (respectively strongly connected
directed graph).

We now review the ideas in the proof. We allow a vertex y0 to have degree
3. This means that the graph is not 4-edge-connected (as required in Frank’s
conjecture) but we require it to be almost 4-edge-connected in that there is
only one 3-edge-cut. In the conclusion of the theorem we shall require that
any graph G−v is strongly connected or almost strongly connected in that it
may have two strongly connected components, one of which is y0. The idea
in the proof is simple: If y0 has degree 3, we delete an edge yy0, suppress
y0, that is, we replace the remaining two edges incident with y0 by a single
edge, and then we use induction where y now plays the role of y0. When
we have applied induction, there may be a multiple edge between x, z, say,
such that all edges have the same direction. If that happens we reverse an
orientation of one of those edges so that not all edges between x, z have the
same direction. The resulting directed graph will still satisfy the conclusions
of the theorem.

The proof has some resemblence with the proof of the weak 3-flow con-
jecture [15]. However, there is an important difference in the two results
and their proofs: In [15] we may pre-orient all edges incident with a vertex
of small degree. This is convenient when dealing with small edge-cuts, and
such a pre-orientation might also be helpful in the present proof. However,
this is not possible, even in the 4-regular case. For, if we pre-orient some
edges, we must make sure that no vertex-deleted subgraph contains a di-
rected edge-cut. And even if this additional condition is added, there are
still counterexamples. So it is perhaps of independent interest to decide to
which extent it is possible to pre-orient a few edges in the theorem below.

Theorem 1 Let G be a graph with at least 3 vertices, and let y0 be a vertex
in G. Assume that G, y0 satisfy the following assumptions.

(a1): G is 2-connected.
(a2): G is 3-edge-connected.
(a3): Either G is 4-edge-connected, or else y0 has degree 3, and the only

3-edge-cut of G consists of the three edges incident with y0.
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(a4): For each vertex v of G, G− v has at most one bridge. Moreover, if
G − v has a bridge e, then G − v − e has precisely two components, one of
which is y0. (In other words, if G − v has a bridge e, then y0 has precisely
two neighbors, namely v and and another neighbor which is joined to y0 by
precisely one edge, namely e.)

Then there is an orientation D of G satisfying the following conclusions:
(c1): D is strong.
(c2): For each vertex v in G, either D−v is strong, or D−v has precisely

two strong components, one of which is y0. In this case y0 has either precisely
two neighbors, one of which is joined to y0 by a single edge, or else y0 has
precisely three neighbors each joined to y0 by a single edge.

Before we prove Theorem 1 we note that each 4-edge-connected graph
G with the property that each vertex-deleted subgraph G − v is 2-edge-
connected also satisfies the assumptions in Theorem 1 with any vertex playing
the role of y0. Thus Theorem 1 proves the case k = 2 in Frank’s conjecture
and also proves that f(2) = 4.

Proof of Theorem 1: The proof is by induction on the number of vertices
of G. The theorem is easily verified for graphs with 3 vertices: As G is
2-connected, there is an edge between any two vertices. As G is 3-edge-
connected, there is at most one edge which is not part of a multiple edge.
Now we orient the edges such that every edge (except possibly one) is part
of a directed 2-cycle. So assume that G has at least 4 vertices.

We now assume that the theorem is false and let G be a counterexample
with as few vertices as possible and (subject to this) with as few edges as
possible.

We may assume that

(1): No two vertices of G are joined by 3 or more edges.

Proof of (1): Suppose (reductio ad absurdum) that x and y are joined by
3 or more edges, then we delete one, say e. Let G′ = G−e. We claim that G′

satisfies the assumption of the theorem and has the desired orientation, by
the minimality of G. Clearly, G′ is 2-connected. Also, G′ − v has the same
bridges as G − v. Therefore, it suffices to consider the case where G′ has a
3-edge-cut with sides A,B say, consisting of the edges e1, e2, e3 which is not
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a 3-edge-cut in G. Then we can choose the notation such that e, e1, e2 join
the same two vertices x, y where x ∈ A and y ∈ B. Let x′ be the end of e3
in A, and let y′ be the end of e3 in B. As G is 2-connected, we may assume
that e3 is not incident with x, that is, x′ 6= x. Also, G(A) is connected. Then
e3 is a bridge of G− x. The assumption of the theorem now implies that y0
is a component of G− x− e3. Then either y0 = x′ and A consists of x, x′, or
else y0 = y′ = y. The former cannot hold because otherwise, y 6= y′ (as G is
2-connected and has more than 3 vertices), and G − y would have a bridge
e3, but y0 would not be a component of G− y − e3. Hence y0 = y′ = y. We
have proved that any 3-edge-cut of G′ consists of the edges incident with y0.
Hence G′ satisfies the assumption of the theorem. This contradiction to the
minimality of G shows that (1) holds.

(2): y0 has at least three neighbors.

Proof of (2): As G is 2-connected, every vertex has at least two neighbors.
Now suppose (reductio ad absurdum) that y0 has only two neighbors x, y.
By (1), and since G is 3-edge-connected, y0 has degree 3 or 4. Choose the
notation such that y0 is joined to x by two edges. Then contract the edges
between y0 and x. The contracted vertex is called v′, and the resulting graph
is called G′. We claim that G′ satisfies the assumption of the theorem and
has the desired orientation, by the minimality of G.

As contraction of edges does not create new edge-cuts, it suffices to discuss
the case where G′− v′ = G− y0− x has at least one bridge e. Then e is also
a bridge in G − x. But this bridge is not incident with y0, a contradiction.
Also, if y0y is a single edge, then x has degree at least 5, since otherwise,
there would be a 3-edge-cut whose deletion leaves a graph with a component
with vertices x, y0. Hence G′ satisfies the assumption of the theorem and
has the desired orientation, by the minimality of G. We give the edges
between y0, x opposite directions, and the resulting orientation of G satisfies
the conclusions of the theorem, a contradiction which proves (2).

It follows from Claim (2) and (a4) that, for each vertex v of G, G− v is
2-edge-connected. If G is 4-edge-connected, then every vertex can play the
role of y0. If G is not 4-edge-connected, then y0 has degree 3, and y0 has
three distinct neighbors, by Claim (2).

(3): G is 3-connected.

Proof of (3): Suppose (reductio ad absurdum) that x, y are vertices such
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that G − x − y is disconnected. Then G is the union of two graphs G1, G2

having only two vertices x, y and the edges joining x, y (if any) in common.
Since G− x is 2-edge-connected, there are at least two edges from y to each
component of G−x−y. Similarly, there are at least two edges from x to each
component of G−x−y. Using again the fact that G−x is 2-edge-connected,
we conclude that Gi has two edge-disjoint paths from two neighbors of x to
two neighbors of y. (These neighbors need not be distinct.) If y0 is one of
x, y, then y0 has degree at least 4 which implies that G is 4-edge-connected.
But then every vertex can play the role of y0. So we may assume that y0 is
in G2 − x− y. By Claim (2), G2 − x− y has a vertex distinct from y0.

Let G′i denote Gi with two edges added between x, y. It is easy to see
that G′i satisfies the assumption of the theorem for i = 1, 2. (One may think
of G′i as a contraction of G.) It is possible that G′1 has only 3 vertices.

So, we apply induction to G′i for i = 1, 2. G′1 is 4-edge-connected, so any
vertex can play the role of y0. Let Di be the resulting directed graph for
i = 1, 2. Then D1 ∪D2 satisfies the conclusion of the theorem. If G contains
none or precisely one edge between x and y, then we delete both or one of the
directed edges between x and y from D1 ∪D2, and the resulting orientation
of G satisfies the conclusions of the theorem. To prove this it suffices to show
that each of D1, D2 has directed paths of length at least 2 from x to y and
from y to x. As Di−x is strong, there is a directed edge from y to Di−x−y
and a directed edge to y from Di − x− y for i = 1, 2. Similarly for x. Using
these edges and their ends combined with the fact that Di−x and Di−y are
strong, it is easy to see that D1 has directed paths of length at least 2 from
x to y and from y to x. We now prove that D2 has directed paths of length
at least 2 from x to y. We let xz be a directed edge from x to D2 − x − y.
Now D2− x has a directed path from z to y unless z = y0 and y0 is a strong
component in D2 − x. Since D2 is strong, both edges incident with y0 in
D2 − x must leave y0. As D2 − x has only two strong components, D2 − x
has a directed path from z to y. This completes the proof of (3).

(4): If E is a 4-edge-cut with at least two vertices on each side, then
one of the sides has precisely two vertices, and each of these two vertices has
degree 4, and they are joined by two edges.

Proof of (4):
Assume that V (G) = A∪B such that E consists of the edges between A

and B.
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As G is 3-edge-connected and has at most one 3-edge-cut, it follows that
each of G(A), G(B) is 2-edge-connected. If one of A,B, say A, has precisely
two vertices v1, v2, then v1, v2 are joined by a double edge because G(A) is
2-edge-connected. By Claim (2), each of v1, v2 is incident with at least (and
hence precisely) two edges in E. So Claim (4) holds if A has precisely two
vertices.

Suppose (reductio ad absurdum) that |A| ≥ 3, and |B| ≥ 3. Put E =
{e1, e2, e3, e4}.

No three edges of E can be incident with the same vertex because G is
3-connected.

We let GA denote a graph obtained by adding two vertices a1, a2 to G(A).
We let two of the edges in E go to a1 and the other two to a2. We also add
two edges between a1, a2. We let GB be obtained in a similar way from G(B)
where the two new vertices are denoted b1, b2. Since each of G(A), G(B) is
2-edge-connected, it is easy to see that each of GA, GB satisfies the induction
hypothesis. We therefore apply induction to each of GA, GB. If all ends of
the edges in E are distinct, then GA can be chosen in three distinct ways.
Similarly for GB. There are three different ways of orienting the four edges
of E (up to reversal of edges). As two of them can be realized in GA and two
of them can be realized in GB, it is possible to apply induction to GA, GB

in such a way that the orientations of E agree in both GA and GB. (If two
of the edges in E, say e1, e2 are incident with the same vertex x in A, then
GA can be chosen in only two ways. However, if e1, e2 go from x to the same
vertex a1, then e1, e2 get distinct orientations, say e1 from A to B and e2
from B to A. But we may reverse these orientations such that e1 goes from
B to A and e2 from A to B. So again, we can in GA realize two of the three
possible orientations of E.)

This implies that the two orientations can be combined to give an orien-
tation of G. By deleting one of b1, b2 in GB, we conclude that, for each head
h in B of an edge in E and for each tail t in B of an edge in E, G(B) has
a directed path from h to t. A similar statement holds for G(A). Using this
observation, it follows that G satisfies the conclusion of the theorem.

This contradiction proves (4).

(5): If E is a 5-edge-cut containing a double edge joining two vertices x, y
of degree 4, then one of the two sides of the cut E consists of y0 and one of
x, y. Moreover, y0 has degree 3 and is incident with precisely two edges of E.
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Proof of (5): As x, y are in distinct sides of E, each side has at least two
vertices. If one of x, y, say x, is incident with three edges of E, then the
remaining two edges of E together with the fourth edge incident with x form
a 3-edge-cut, and that 3-edge-cut must consist of the edges incident with y0.
In that case one of the two sides of E consists of x, y0.

Suppose now (reductio ad absurdum) that each of x, y is incident with
only two edges in E. Let V (G) = A ∪ B such that E consists of the edges
between A and B. Then |A| ≥ 3, |B| ≥ 3 because G is 3-connected. We now
repeat the proof of (4). When we form GA, then the two edges joining x, y
will be incident with a1. A third edge of E will also be incident with a1. The
last two edges will be incident with a2. When we apply induction, these two
edges will have opposite direction. As GA can be constructed in three ways,
we can realize two of the three possible orientations of the three edges in E
not incident with x, y. As the same is possible for GB, the two orientations
can be combined to give an orientation of G. That orientation satisfies the
conclusion of the theorem. To see this we delete one of a1, a2 to conclude
that, for each head h in A of an edge in E and for each tail t in A of an edge
in E, G(A) has a directed path from h to t. A similar statement holds for
G(B).

This contradiction proves (5).

(6): If v is a vertex of G, and E is a 2-edge-cut of G− v, then one of the
sides has precisely one vertex, and that vertex has degree 3 or 4 in G.

Proof of (6): Assume that V (G) \ {v} = A ∪ B such that E consists of
the edges between A and B. Assume (reductio ad absurdum) that |A| ≥
2, |B| ≥ 2. As G− v has at most one bridge, it follows that G(A) and G(B)
are connected. As G has at most one 3-edge-cut, namely the edges incident
with y0, it follows that G has at least two edges between v and A and at
least two edges between v and B.

Now we contract B into a single vertex b and call the resulting graph Gb.
We claim that Gb satisfies the assumption of the theorem. To verify this, we
only need to prove that Gb − b = G − V (B) has at most one bridge e, and
(if this bridge e exists) Gb − b− e has a component consisting of y0 only. So
assume that e is a bridge in Gb − b = G − V (B) and that the two sides of
the bridge are A′, B′ where A′ contains v. Since G is 3-edge-connected, both
edges of E join B with B′. Then E ∪ {e} is a 3-edge-cut in G and hence
B′ = {y0}.
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Now we apply induction to Gb. Then the edges in E get opposite direction
because the orientation of Gb−v is strong. Then we contract A into a vertex
a and use induction.

By combining the two orientations, we obtain an orientation of G. The
orientations between v and A are those in Gb. (The orientations between v
and A in Ga are not important.)

We claim that this orientation satisfies the conclusion of the theorem,
and obtain thereby a contradiction which proves (6). To prove this claim
we first observe that Ga − a and Gb − b are strong. We next observe that
Ga − v has a directed cycle containing a, and Gb − v has a directed cycle
containing b because none of a, b is y0. Using these observations it is now easy
to verify that the orientation of G satisfies the conclusion of the theorem, a
contradiction.

(7): Let x, y be two vertices of degree 4 joined by a double edge, and let
G′ denote the graph obtained from G minus this double edge by suppressing
the two vertices x, y of degree 2. If y0 has degree 3 we assume that y0, y are
neighbors. Then, for each vertex v in G′, G′ − v has at most one bridge e.
If e exists, then G′ − v− e has only two components, one of which is y0. (In
this case y0 has only two neighbors in G′ and one of these is v.)

Proof of (7): Suppose (reductio ad absurdum) that G′ has a vertex v such
that G′ − v has a bridge which does not satisfy the conclusion of (7).

Let G1, G2, . . . , Gk be the connected components of G′ − v minus its
bridges. As G−v has no bridge (because y0 has at least three neighbors) the
notation can be chosen such that G′ − v has a bridge ei joining Gi and Gi+1

for i = 1, 2, . . . , k−1. We may also assume that the edge of G′ corresponding
to x is either in G1 or joins v to G1, and the edge of G′ corresponding to y
is either in Gk or joins v to Gk. By (6), each of G2, G3, . . . , Gk−1 is a single
vertex of degree 4 joined to v by a double edge. By (4), G′ has at least two
edges joining v to G1 and at least two edges joining v to Gk. (For, if G′ has
only one edge e0 from v to G1, then the edges e0, e1 together with the two
edges joining x, y, form a 4-edge-cut in G. As G is 3-connected, each of x, y
has at least three neighbors, and hence the sides of the 4-edge-cut have a
least three vertices each, a contradiction to (4).)

We contract (in G) V (G2)∪V (G3)∪ . . .∪V (Gk)∪{y} into a single vertex
y′. We call the resulting graph G′1. We also contract V (G1) ∪ V (G2) ∪ . . . ∪
V (Gk−1) ∪ {x} into a single vertex x′. We call the resulting graph G′k. We
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apply induction to each of G′1, G
′
k. This is possible because each of G′1, G

′
k is a

contraction of G. In one of the graphs we may reverse e1 or ek−1. Therefore we
may assume that e1 is directed away from G1 and that ek−1 is directed towards
Gk. We orient the other bridges of G′−v from Gi to Gi+1, and we let the two
edges between v and Gi have opposite directions, for i = 2, 3, . . . , k−1. (Note
that none of G2, G3, . . . , Gk−1 is y0 because then G−v would not satisfy (a4)
.) We claim that the resulting orientation of G satisfies the conclusions of
the theorem, and we obtain thereby a contradiction.

To prove this claim, we first note that we may assume that none of
v, x, y, x′, y′ is y0 because y0 has degree 3 or can otherwise be chosen at
random. Let us denote the head of ek−1 by y′′. If y0 has degree 3, then it
belongs to G′k because y0 is a neighbor of y. This implies that G′1 − v and
G′1 − y′ are strong. If also G′k − v and G′k − x′ are strong, then it is easy to
see that the orientation of G satisfies the conclusions of the theorem. In fact
it is sufficient that v, y, y′′ are in the same strong component of G′k − x′ and
that x′, y, y′′ are in the same strong component of G′k − v. This holds unless
y′′ = y0 and hence, y0 has precisely three neighbors. So, let us assume that
y′′ = y0 and y0 has precisely three neighbors in G. Assume also that either
G′k−x′ or G′k−v has a strong component consisting of y0 only. In the former
case y0 = y′′ has outdegree 2, and hence G′k − x′ has a directed path from
y0 to either of v, y which is sufficient to prove that G satisfies the conclusion
of Theorem 1. So assume that G′k − v has a strong component consisting of
y0 only. Consider first the subcase where y is on an edge in G′k. Then there
is a directed edge from y0 to v, and the edges ek−1, yy0 are directed towards
y0. But then G′k − v has a strong component which consists of y, x′ only, a
contradiction. So we are left with the subcase where G′k has an edge y0v,
and y is inserted on that edge when we put y back. If Gk has more than one
vertex, then Gk has precisely one edge e′ incident with y0. That edge e′ is a
bridge in G − v, and G − v − e′ has a component containing both of y0, y,
a contradiction. So, the only problem that remains in order to prove (7) is
that Gk consists of y0 only, G has an edge y0v and also a path y0yv. Now we
choose the orientation of G′k such that y0yvy0 is a directed cycle. Then each
vertex-deleted subgraph of G is strong, except G− y.

This contradiction proves (7).

(8): y0 has degree at least 4.

Proof of (8): Suppose (reductio ad absurdum) that y0 has degree less
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than 4. By (2), y0 has at least three neighbors. So, y0 has precisely three
neighbors, and each of these is joined to y0 by a single edge. Let e = y0y be
an edge incident with y0. If possible, we choose y to have degree at least 5.
If all neighbors of y0 have degree 4, then we let y be a neighbor of smallest
degree in the graph induced by the three neighbors of y. There are at most
two edges in the neighborhood of y0 since otherwise there would be a 3-edge-
cut distinct from the edge set incident with y0. Hence either y has degree 0
in the neighborhood or else it has degree 1 in the neighborhood and the two
other neighbors are joined by an edge.

We now delete the edge e, and we suppress the vertex y0 in G − e, that
is, we replace the two remaining edges incident with y0 by a single edge. The
resulting graph is called G′. If G′ satisfies the conditions of the theorem with
y playing the role of y0, then we apply induction to G′. We orient e such
that y has indegree at least 2 and outdegree at least 2. We claim that the
resulting orientation of G can be chosen such that it satisfies the conclusion
of Theorem 1. This will be a contradiction which implies that G′ does not
satisfy all assumptions of Theorem 1. To prove the claim, we first observe
that G is strong. Now let z be any vertex of G. If z = y, then G − z is
strong because G′− z is strong. If z is distinct from y0 and distinct from the
neighbors of y0, then G′−z is strong or has precisely two strong components,
one of which is y. Say y has outdegree 0 and indegree 2 in G′ − z. But in
G − z we can walk (along a directed edge) from y to y0 and then (along a
directed path) to an in-neighbor of y showing that G− z is strong. Assume
next that z is a neighbor of y0 distinct from y. We may also assume that z
is a neighbor of y since otherwise G′− z and hence also G− z (or G− z− y0)
are strong. By the particular choice of y, there is an edge between z and the
third neighbor w of y0 (and no edge between y and w). This means that in
G′ there is a double edge between z and w. We may assume that these two
edges have distinct orientations in G′. Suppose now that y has outdegree 0 in
G′ − z. Then in G the edges yz, yy0 are the outgoing edges from x. Now we
chose the orientation in G such that zy0wz is a directed triangle which shows
that G−z is strong. Now it is easy to see that G−w has precisely two strong
components one of which is y0, and from this it also follows that G − y0 is
strong. This contradiction shows that G′ does not satisfy all assumptions of
Theorem 1.

By (3), G′ is 2-connected. Since G satisfies (a3), G
′ is 3-edge-connected.

By (6), G′ satisfies (a4). So we may assume that G′ does not satisfy (a3).
Then (4) implies that y has degree 4 and is joined to a vertex x of degree 4
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by a double edge. Each of the other two neighbors of y0 has degree 4 in G,
and, if those two neighbors are not joined by an edge, then each of them is
joined to another vertex of degree 4 by a double edge.

Let G′′ denote the graph obtained from G minus this double edge by
suppressing the two vertices x, y of degree 2

By (5) and (7), G′′ satisfies the conditions of the theorem. We apply the
induction hypothesis to G′′. We give the two edges between x, y opposite
directions. We may assume that the resulting orientation of G does not
satisfy the conclusion of Theorem 1. The only two possible ways in which
this can happen are:

(i): x, y have a common out-neighbor (or common in-neighbor) z, in which
case x, y are the vertices of a strong component of G′ − z, or

(ii) G′ has a vertex z distinct from y0 such that y0 is a strong component
of G′− z, and x is on an edge in G′ incident with z such that, again, x, y are
the vertices of a strong component of G′ − z.

Consider first (i). Then z has degree at least 5 in G because of (4). In
particular, z is not a neighbor of y0. We let H denote the graph obtained from
G−y by suppressing the two vertices of degree 2 (namely y0, x). If H satisfies
the conditions of the theorem, then we apply induction to H. We then direct
the deleted edges such that yzxy becomes a directed 3-cycle, and the resulting
orientation of G satisfies the conclusions of the theorem, a contradiction.
We may therefore assume that H does not satisfy the assumptions of the
theorem. Hence H contains a vertex v such that H − v has a bridge. So,
we can divide V (G) \ {v, y} into disjoint sets A,B such that G has precisely
one edge between A and B. Then y has two edges going to A and two edges
going to B because of (6). We may assume that x is in A and that y0, z are
in B and that the edge between A,B is xz. Then the fourth edge incident
with x is a bridge in G− v, a contradiction.

Consider finally (ii). Since y0 is a strong component of G′ − z, it follows
that z is a neighbor of y0. In particular, z has degree 4 in G. If z has smallest
degree in the graph induced by the three neighbors of y0, then z is joined to
a vertex of degree 4 by a double edge, and then the edges leaving the vertex
set consisting of x, y, y0, z form a 5-edge-cut contradicting (5). So z cannot
replace y in the argument above. Since y is chosen to be a vertex of smallest
degree in the graph induced by the three neighbors of y0 (and that graph has
at most two edges), it follows that z is also joined to the third neighbor y′ of
y0.

Now we delete the edge zy0, suppress y0 and call the resulting graph
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G′′′. We apply induction to G′′′ with z playing the role of y0. When we
put the edge zy0 back we orient it so that z gets indegree and outdegree 2.
Then G satisfies the conclusion of Theorem 1, a contradiction. (The only
problem that might occur is that G′′′− y′ has two strong components, one of
which is z such that z has only one outneighbor, namely y0, and y0 has no
outneighbor in G− y′. But this cannot happen because otherwise y, x would
be the vertices of a strong component in G′′′ − y′.)

This completes the proof of (8).

(9): Each vertex in G has degree precisely 4.

Proof of (9): Suppose reductio ad absurdum that a vertex z has degree
at least 5. As y0 has degree at least 4 we can let any vertex play the role of
y0. In particular, we may assume that z = y0. Now we repeat the argument
in the proof of (8) except that we do not suppress y0 when we delete the edge
e = y0y. (The present proof is easier as we need not select y such that it has
smallest degree in the graph induced by the neighbors of y0. Also, the case
(ii) in the proof of (8) cannot occur.) This proves (9).

Gerards [7] verified Frank’s conjecture in the special case of 4-regular,
4-edge-connected graphs. We may use that result to complete the proof of
Theorem 1. However, we wish to keep the proof self-contained.

(10): G has a vertex which is not incident with a double edge.

Proof of (10): If each vertex of G is incident with a double edge, then
the double edges form a perfect matching. Now we orient the edges of G
such that each double edge is a directed cycle and such that each vertex has
indegree and outdegree 2. Then G is strong, and so is every vertex-deleted
subgraph. This contradiction proves (10).

Let z be any vertex of G not incident with a double edge. Then we
perform a lifting at z, that is, we delete z and add two edges between its
neighbors such that the resulting graph G′ is 4-edge-connected. This is pos-
sible by a lifting result of Lovász [9], which was generalized by Mader’s lifting
theorem [10]. However, as G is eulerian and z has degree 4, it is an easy exer-
cise to prove that, if one of the three possible liftings at z creates a 2-edge-cut,
then the other two liftings each results in a 4-edge-connected graph, see e.e.
the proof of Theorem 2 in [16]. Since G′ is 2-connected and 4-regular, every
graph of the form G′ − v is 2-edge-connected. So we can apply induction to
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G′. The resulting orientation of G′ can be modified to an orientation of G
satisfying the conclusions of the theorem, unless G− z has a directed edge-
cut. As every edge-cut in G′ is balanced, the directed edge-cut in G− z has
precisely two edges. Hence V (G − z) is the union of two disjoint sets A,B
such that G has precisely two edges between A,B. Adding z to either A or
B results in two 4-edge-cuts. As G has no double edges, this contradicts (4).
So G− z is strongly connected.

This contradiction finally proves the theorem.
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