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Abstract.  

We demonstrate a concept for visible laser sources based on sum-frequency generation of beam combined 

tapered diode lasers. In this specific case, a 1.7 W sum-frequency generated green laser at 509 nm is 

obtained, by frequency adding of 6.17 W from a 978 nm tapered diode laser with 8.06 W from a 1063 nm 

tapered diode laser, inside a periodically poled MgO doped lithium niobate crystal. This corresponds to an 

optical to optical conversion efficiency of 12.1 %. As an example of potential applications, the generated 

nearly diffraction-limited green light is used for pumping a Ti:sapphire laser, thus demonstrating good 

beam quality and power stability. The maximum output powers achieved when pumping the Ti:sapphire 

laser are 226 mW (CW) and 185 mW (mode-locked) at 1.7 W green pump power. The optical spectrum 

emitted by the mode-locked Ti:sapphire laser shows a spectral width of about 54 nm (FWHM), indicating 

less than 20 fs pulse width.  
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1. Introduction 

Many applications within the field of biomedicine, material processing or display technology require 

compact, effective and robust laser light sources in the visible region. Diode lasers have the advantages of 

being very versatile in wavelength and capable of high power operation as well as being highly compact 

and having high wall-plug efficiency [1].  

The generation of light in the red spectral region is covered by direct emission from diode lasers, and the 

blue region is usually covered by nitride-based diode lasers. At higher power levels the green spectral 

region however, is not easily accessible by direct diode lasers, but several other methods exist for 

generation of green light. Perhaps the most well-known process is second harmonic generation (SHG) 

where the infrared emission from diode-pumped solid state-, fiber lasers, or diode lasers is converted into 

green light by the non-linear process. By this method, many watts of green light may be generated and 

with very good spectral and spatial quality [2,3]. 

One important application using green lasers is pumping of Ti:sapphire lasers, which emits in a large 

spectral region covering the spectral range from 600 nm to 1100 nm [4]. This wide emission band enables 

the generation of very short pulses and Ti:sapphire lasers are therefore preferred for biophotonics imaging 

[5], spectroscopy [6] or materials processing [7]. Ti:sapphire has its absorption peak located around 490 

nm. Most commercial Ti:sapphire lasers are pumped by green lasers emitting at 532 nm and the 

absorption in Ti:sapphire is thus not optimum. A laser source closer to the absorption peak could 

potentially optimize the efficiency of Ti:sapphire lasers. 

An efficient method to generate high power visible light is SHG of high power tapered diode lasers. 

These lasers have very good properties for non-linear frequency conversion i.e. high power, good beam 

quality and narrow spectral linewidth [8–11]. Frequency doubling of such lasers has been demonstrated at 

different wavelength regions [12–15]. Recently, single-pass SHG of tapered diode lasers with an 

embedded distributed Bragg reflector (DBR) has resulted in more than 1.5 W of visible light at 488 nm 

and 532 nm and in a cascade of two nonlinear crystals as much as 3.5 W was demonstrated [16].  
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Sum frequency generation (SFG) is an alternative, yet efficient, way to generate light by mixing the 

output from two laser sources. SFG between two similar DBR tapered diode lasers was recently 

demonstrated to generate up to 3.9 W of nearly diffraction limited light at 531 nm [17]. In that work a 

volume Bragg grating was used to combine the light from the two spectrally closely spaced lasers. 

In this work, we demonstrate the concept of combining two tapered diode lasers at much larger 

wavelength separation (978 nm and 1063 nm), and thereby generate up to 1.7 W of 509 nm green light by 

SFG, closer to the absorption peak of Ti:sapphire. This is done using a periodically poled MgO doped 

lithium niobate (PPMgLN) crystal. The 509 nm light is nearly diffraction limited with narrow spectral 

linewidth. We used this laser to pump a Ti:sapphire laser and generated up to 226 mW in CW operation 

and 185 mW in mode-locked operation with 54 nm spectral width corresponding to less than 20 fs pulse 

duration. This versatile concept can be expanded to cover almost any wavelength of interest by a different 

choice of diode laser wavelengths.  

 

2. The experimental setup 

The scheme of the experimental setup for sum frequency generation between two DBR tapered lasers is 

shown in Fig. 1. For the generation of light close to the absorption peak of Ti:sapphire, we chose to 

combine two DBR-tapered diode lasers, emitting at 978 nm and 1063 nm, respectively. The emission 

wavelength of both lasers can be shifted by adjusting the current in the taper section or by adjusting the 

laser temperature. A detailed description of similar diode structures and layout can be found in[10,11]. 

Each of the 6 mm long tapered diode lasers was mounted p-side up on a CuW heat spreader, which itself 

was mounted on a 25 × 25 mm
2
 conduction cooled package mount allowing efficient cooling. Both lasers 

consists of an unpumped 1 mm long 6
th
 order surface grating followed by a 1 mm ridge waveguide and a 

4 mm long tapered section. The current to the ridge waveguide and the tapered section were controlled 

individually. 
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Fig. 1. Setup for spectral beam combining of DBR-tapered diode lasers with subsequent sum-frequency 

generation. 

 

The output from each laser was collimated in the fast axis using an aspherical lens with a focal length of 

3.1 mm and a numerical aperture of 0.68. Due to astigmatism of tapered diode lasers, two cylindrical 

lenses each with a focal length of 15 mm were used to collimate the beams in the slow axis, and generate 

an approximately circular beam. Then, each beam passed through a half-wave plate and an optical isolator 

in order to avoid feedback to the lasers. By turning the half-wave plate in front of the optical isolator, the 

power level could be adjusted without changing the laser current, which will change the astigmatism and 

wavelength of the laser, thus reducing the SFG efficiency. A half-wave plate was used after each isolator 

to correct the polarization of each beam to align to the optimum polarization state for SFG. The two 

beams were then spatially combined by using two mirrors, both highly reflective at 1063 nm, while the 

second mirror also allow transmission for the 978 nm beam. A focusing lens with a focal length of 60 mm 

proved to be optimum for the SFG process, and was used to generate a beam waist in the non-linear 

crystal with a radius of approximately 35 µm. The crystal was a PPMgLN (Covesion) containing 5 poling 

channels with different poling periods ranging from 5.927 – 6.061 µm. Each poling channel was 500 µm 

wide. We used a poling period of 6.03 µm in the experiments. Its dimensions were 20 × 10 × 0.5 mm
3
 

(L × W × H), and both facets were AR-coated at 509 nm, 978 nm and 1063 nm. The crystal was 

temperature stabilized using an oven in order to achieve phase matching at the laser wavelengths. Behind 
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the nonlinear crystal an optical filter was used to separate the sum frequency generated beam from the 

two fundamental beams. 

The 1063 nm diode laser was operated at 25.72
o
C, injection current to the ridge waveguide section was 

set to 330 mA and the tapered section was operated at 15 A, resulting in a maximum available infrared 

power of 8.06 W.  

The 978 nm diode laser was operated at 20
o
C, the injection current to the ridge waveguide was set to 

413 mA and the tapered section was operated at 12 A, resulting in a maximum available infrared power of 

6.17 W. The PPMgLN crystal generated a maximum conversion when operated at 62.95
o
C, when pumped 

with the maximum combined power of the two tapered diode lasers. 

 

3. Experimental results and discussion 

The achieved green laser output power with respect to the combined pump power is shown in Fig. 2(a). 

At the described settings, a maximum green power of 1.73 W was achieved. This corresponds to an 

optical to optical conversion efficiency of η = 12.1 % from infrared to green light. The conversion 

efficiency for SFG with pump depletion is obtained using the relation [17] 

2
tanh

2

21221 PPPP
P SFGSFG


   

where P1 and P2 are the individual pump laser powers, P
SFG is the power of the sum frequency 

generation and η
SFG  is the nonlinear conversion efficiency. From the numerical fitting of our results in 

Fig 2(A), we obtain a nonlinear conversion efficiency of η
SFG = 4.3%/W, comparable to previously 

obtained values [17,18]. The lower generated power compared to [17] can partly be explained by 

lower total input power, a shorter nonlinear crystal and possibly a worse overlap of the two 

fundamental beams due to the difference in optical properties of the two lasers. The output power 

was stable to within +/-1% limited by the open setup and no degradation was observed for any 

components during the experiments. 
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Fig. 2. (a) SFG output power vs. combined input power using a 60 mm focusing lens. The red curve is 

a numerical fit of the non-linear process, resulting in a nonlinear conversion efficiency of 4.3 %/W. (b) 

Optical spectra of the SFG beam and the two individual beams.  

 

Fig. 2(b) shows the emission spectrum of the SFG beam, which shows a center wavelength of 

509.64 nm. The spectral width of the 509 nm light was below 2 pm limited by the resolution of the optical 

spectrum analyzer (Advantest Q8347). The side mode suppression was larger than 15 dB limited by the 

dynamic range of the optical spectrum analyzer. The emission spectra of the two tapered diode pump 

lasers are also shown, where a side mode suppression of >15 dB is seen. 

The beam propagation parameters of the SFG are calculated by measuring the beam profiles along the 

beam waist of the focused beam with a beam scanner (Photon, Inc) and fitting the measured 1/e
2
 beam 

widths, see Fig. 3(a). At 1.7 W green light, the achieved M
2
 values shows that the green laser light was 

nearly diffraction-limited, with M
2

509nm = 1.1 in the fast and in the slow axis, respectively. These M
2
509nm 

values were also measured at different SFG output powers (1 W and 50 mW) and proved to be very 

similar. The beam profiles at focus for the two axes are shown in Fig. 3(b). 
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Fig. 3. (a) M2 measurements (1/e2) of the SFG beam. The squares show measurements of the slow 

axis, the circles show the fast axis and the red curves represent the numerical fittings of the beam 

profiles. (b) Beam profiles of the slow- and the fast axis for the SFG laser beam. 

 

These beam propagation parameters originate from two different tapered diode lasers each with 

different beam propagation parameters. The 978 nm diode laser had the values M
2
978nm = 1.29 in the slow 

axis and M
2

978nm = 1.38 in the fast axis, respectively, measured at the 1/e
2
 level. For the 1063 nm laser, 

M
2

1063nm = 2.46 in the slow axis and M
2
1063nm = 1.29 in the fast axis was measured. The large improvement 

in beam propagation parameter for the generated beam at 509 nm is due to nonlinear beam clean-up [19]. 

To demonstrate the high quality of the 509 nm light source, the 509 nm beam was used to pump a 

Ti:sapphire laser (Femtosource Scientific, Femtolasers Productions GmbH). The total length of the cavity 

was about 1.75 m resulting in a repetition rate of approximately 80 MHz. An output coupler with 95% 

reflectivity is used. Similar compact and low-cost oscillators are described in [20–22] showing high 

potential for e.g. clinical applications while offering user friendliness, high stability and reproducibility. 

The Ti:sapphire laser was pumped with the 509 nm SFG diode laser, which resulted in a maximum output 

power of 226 mW (CW) and 185 mW (mode-locked) with 1.7 W pump power, see Fig. 4. We observed a 

threshold value around 0.4 W (CW) and 0.7 W (mode-locked). This compares favorably with values 

obtained in [21] and indicates that 509 nm is better suited for pumping of Ti:sapphire lasers. A direct 

comparison is, however, difficult as the beam properties of the two pump sources were slightly different 
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and the Ti:sapphire oscillators were not identical. Furthermore, we measured the absorption coefficient in 

the Ti:sapphire crystal at 509 nm and 532 nm and found it to be 15% higher at 509 nm in good agreement 

with [4]. From [4] we estimate the absorption coefficient at 509 nm to be 94% of the maximum value at 

490 nm, while at 532 nm the absorption coefficient is estimated to be 80% of the maximum value. 

Fig. 5 shows the emission spectrum of the mode-locked Ti:sapphire laser, pumped by the 509 nm laser 

beam. We observed a broad spectral width FWHM = 54 nm, indicating a pulse width below 20 fs. 

 

Fig. 4. Ti:sapphire characteristics of CW emission (squares) and mode-locked emission (dots), pumped 

by the 509 nm SFG laser. 

 

Fig. 5. Optical spectrum of the mode-locked Ti:sapphire laser, directly pumped by the 509 nm SFG laser. 

 

4. Conclusion 
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In this study, we demonstrated a versatile 1.7 W, narrow linewidth green 509 nm light source based on 

sum frequency generation between two DBR tapered diode lasers with different wavelengths. This light 

source was nearly diffraction limited with beam propagation parameters of 2

/1 2e
M  = 1.1 in both the fast 

and the slow axis.  

As an example of potential applications, the generated green light was used to pump a Ti:sapphire 

oscillator, which resulted in in a maximum output power of 226 mW (CW) and 185 mW (mode-locked), 

thus demonstrating the good beam quality of the pump source. The optical spectrum emitted by the mode-

locked Ti:sapphire laser showed a spectral width of about 54 nm (FWHM), corresponding to less than 20 

fs pulse width. The absorption coefficient of Ti:sapphire is larger at 509 nm than at 532 nm resulting in 

higher efficiency when using the 509 nm pump source. 

Our study shows a concept for generation of laser light based on sum frequency generation between 

tapered diode lasers with different wavelengths. The advantage of this concept is the capability of 

efficiently producing diffraction limited light at a desired wavelength and with relatively high emission 

power. Such light sources could advantageously be introduced in different optical systems where either 

high power at a specific wavelength is needed or in systems where the reduction of cost and footprint 

would be advantageous. 
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Figure captions 

 

Fig. 1. Setup for spectral beam combining of DBR-tapered diode lasers with subsequent sum-frequency 

generation. 

 

Fig. 2. (a) SFG output power vs. combined input power using a 60 mm focusing lens. The red curve is 

a numerical fit of the non-linear process, resulting in a nonlinear conversion efficiency of 4.3 %/W. (b) 

Optical spectra of the SFG beam and the two individual beams.  

 

Fig. 3. (a) M2 measurements (1/e2) of the SFG beam. The squares show measurements of the slow 

axis, the circles show the fast axis and the red curves represent the numerical fittings of the beam 

profiles. (b) Beam profiles of the slow- and the fast axis for the SFG laser beam. 

 

Fig. 4. Ti:sapphire characteristics of CW emission (squares) and mode-locked emission (dots), pumped 

by the 509 nm SFG laser. 

 

Fig. 5. Optical spectrum of the mode-locked Ti:sapphire laser, directly pumped by the 509 nm SFG laser. 

 

 


