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Block copolymers (BCP) are highly promising self-assembling precursors for scalable nanolithography. Very reg-
ular BCP nanopatterns can be used as on-chip etchmasks. The first step in the processing of BCP thin films is usu-
ally the chemical modification of the substrate surface, typically by grafting of a brush layer that renders the
surface energy neutral relative to the constituent blocks.We provide here a first study on rapid, low temperature
self-assembly of PS-b-PDMS (polystyrene-block-polydimethylsiloxane) on silicon substrates without a brush
layer. We show that it forms line and antidot patterns after short solvo-thermal annealing. Unlike previous re-
ports on this system, low temperature and short annealing time provide self-assembly in homogeneous thin
films covering large substrate areas. This on-chip mask was then used for pattern transfer to the underlying sil-
icon substrate. SEM (scanning electron microscope) images reveal silicon nanowires relative to the PDMS pat-
terns of the BCP mask.

© 2014 Elsevier B.V. All rights reserved.

The modern semiconductor industry continues the goals of ever
smaller nanoscopic devices at increasing densities [1–4]. Conventional
UV-lithography is significantly challenged to reach the targeted feature
size of device components [5–7] and these top-downmethodologies are
facing critical issues such as cost, time consumption and resist material
usage [8]. Alternatively the bottom-up approach based on block copoly-
mer (BCP) self-assembly might lead to the manufacture of similar
device dimensions with high precision and nanostructure aspect ratio
[9]. Microphase separated BCP thin films in the form of well-arranged,
positionally defined nanopatterns can act as scalable nanolithographic
masks [10,11]. For diblock copolymer thin films of hexagonal
morphology, the minority block cylinders can orientate either perpen-
dicular or parallel to the substrate plane depending on conditions [12,
13]. Some of the diblock copolymers most commonly reported are
polystyrene with polyethylene oxide, polymethylmethacrylate and
polydimethylsiloxane (PS-b-PEO, PS-b-PMMA and PS-b-PDMS) with
PS as majority block for asymmetric copolymers. Of these, PS-b-PDMS
is of particular interest due to its relatively large Flory–Huggins interac-
tion parameter (χ∼ 0.26),which allows for sub-10nm feature size [10].

Another attractive property of the PDMS block is that it transforms into
a hard mask during oxygen plasma treatment [14]. However, PS-b-
PDMS films can be difficult to form and usually require the pre-
application of a polymer brush to avoid preferential interaction of one
block with the substrate [15].

In order to gain acceptance in manufacturing, BCP lithography must
conform to strict pre-requisites beyond feature size and defectivity is-
sues. Importantly, large area coverage, pattern orientation control and
short total processing time are key parameters for industrial use. Here
we report the preparation of large area nanopatterns from PS-b-PDMS
(30 k–11 k) that fulfils many of these requirements; facile method
with no need for a brush layer, short film processing times (b60 s)
and a low process temperatures (b60 °C). We also show that the films
can be used to producewell-defined silicon features using conventional
etch procedures and so demonstrate that the methodology affords a
number of clear advantages over accepted techniques.

Scheme 1 describes the overall process for forming pattern trans-
ferred silicon features from the microphase separated BCP. Briefly,
solvo-thermal annealing is used to generate well-defined PS-b-PDMS
arrangements. This film is then etched to remove exposed PS and oxi-
dize the PDMS to a silica-like pattern. This is then used as a ‘hard
mask’ to allow etching of silicon and produce silicon topography at
the substrate.
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1. Deposition of Diblock Copolymer and Thin Film Fabrication

Silicon substrates as received within clean room environment and
with noprior surface treatment or cleaningwere cut into 2.0 cm2 pieces.
Water contact angle measurements on untreated substrates and on
control substrates cleaned by sonication in acetone yielded indistin-
guishable results, as shown in the supplementary Fig. S1. The PS-b-
PDMS (30 K–11 K) block copolymer was synthesized following already
reported procedure [16,17]. Thin films were prepared by spin casting
from a 1 wt.% toluene solution at various spin speeds and spin times
as discussed below. The BCP filmswere initially solvo-thermal annealed
at 21 °C (room temperature), 35 °C, 45 °C and 55 °C for 5 to 20 min
under toluene vapours in a covered steel chamber mounted on a hot
plate to control temperature via a thermocouple in the solvent reser-
voir. In a separate series of experiments we also tried solvo-thermal an-
nealing at 35 °C at very short times, 10–50 s. After annealing at a given
time all the samples were immediately removed from the chamber and
left to cool and dry at ambient conditions.

2. BCP Template and Si Nanopattern Fabrication

The solvo-thermal annealed PS-b-PDMS films were subjected to se-
lective PS etch using O2 plasma for 15 s with 2000 W power in ICP and
400 W power in RIE at 2.0 Pa pressure. SF6 and CF4 plasma at 70 sccm
and 35 sccm flow rate with ICP (Inductively coupled plasma) and RIE
(Reactive ion etching) powers of 1200 W and 200 W at 1.9 Pa pressure
was used to etch silicon. The final PDMS removal was done by just CF4
plasma with 15 sccm for 10 s with ICP and RIE powers of 1200 W and
30W at 1.6 Pa pressure.

3. Characterisation of Materials

Film thickness. PS-b-PDMS film thickness was determined by
ellipsometery (VASE system). Average values at three locations on the
substrate are reported as film thickness in Table S1. Film thickness de-
creases at increased spin speed and spin time and the difference is
about ~5 nm from initial to final spin parameters.

4. Scanning Electron Microscopy

Top-down and tilted SEM images of BCP, oxidised PDMS and silicon
nanofeatures were obtained by using a Field Emission Zeiss Ultra Plus
scanning electronmicroscopewith a Gemini columnoperating at an ac-
celerating voltage of 3 kV. Unless otherwise stated, all SEMS shown are
following PS removal by O2 plasma and consequential oxidation of
PDMS.

The block copolymer thin films of PS-b-PDMS (30 k–11 k) spin-
coated at a spin speed of 3200 rpm for 30 s, annealed at various temper-
atures and times, are described in Fig. 1 (following removal of the PS/
PDMS oxidation). The images of samples annealed at 35 °C or higher
are consistent with a predominantly horizontal orientation of the
PDMS cylindrical domains, observed as white lines in the images. An-
nealing at 21 °C (room temperature) resulted into poorly defined
patterns for all the four annealing times. These observations can be
understood as due to a combination of two effects: (1) PDMS has a
much lower surface tension (γC = 24 mN m−1) than PS (γC =
32.8 mN m−1) [18] that would lead to preferential PDMS surface
segregation; (2) this may be compensated by the fact that the
annealing solvent is toluene (δHildebrand ≡ δH = 18.2 (MPa)1/2),
which is a preferential solvent for PS (δH = 18.7 (MPa)1/2) over
PDMS (δH = 14.9 (MPa)1/2) [18]. At room temperature the low tolu-
ene vapour pressure is insufficient to fully compensate for the PDMS
surface segregation, while the compensation is realized at the higher
temperatures. It is clearly observed that annealing at 35 °C for 10min
provided the greatest selectivity to line patterns compared to the
other process conditions described in Fig. 1. At higher temperatures
and times the lines become less continuous and the persistence
length diminishes. However the trend is not very pronounced; for
example the images at 20 min annealing are very similar for both
35 °C and 45 °C.

Curiously, ring-like patterns, or antidots are also seen in most
of the conditions; in some cases these form local antidot meshes,
like the image at 20 min, 35 °C (see also Figs. 3 and S2). We specu-
late that the antidots are formed by a combination of a PS wetting
layer at the polymer-substrate interface superimposed by a perfo-
rated PDMS lamella structure formed during annealing. Similar
structures were also observed in the case of brushless lamellar PS-
b-PEO thin films [19]. The possibility to control antidot pattern for-
mation through understanding of the responsible mechanism
would open up for an exciting fabrication route of antidot lattice
masks.

Fig. 2 shows tilted SEM images of the samples depicted in Fig. 1
excluding the samples annealed at room temperature with no clearly
arranged nanopatterns. The cross-sections are consistent with uni-
form block copolymer film thickness as will also be shown later on
in Fig. 4. The periodicity of the line patterns is optimal following an-
nealing at 35 °C for 10 min, as confirmed by fast Fourier transform
(FFT) analysis of the images in Fig. 1. At these same annealing condi-
tions the average line segment length between two defects is largest
and exceeds 600 nm.

Figs. 1 and 2 show that the oxidised PDMS lines formed by plasma
treatment have feature sizes of 12–15 nm. The SEM images suggest a
single layer of cylinders was present since the height is uniform and

Scheme 1. Process of PS-b-PDMS block copolymer self-assembly under solvo-thermal annealing and its use as on-chip mask for silicon nanofabrication.
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consistentwith the domain spacing noted above. It should be noted that
in the present solvo-thermal annealing no dewetting or island forma-
tion could be observed in contrast with previous studies [10]. The ab-
sence of dewetting and island formation could be due to the shorter

anneal times used compared to lengthy solvent or thermal annealing
processes applied in earlier studies [4,10].

A slight increase in oxidised PDMS feature size with anneal tem-
perature can be seen and the width of oxidised PDMS lines is 2–

Fig. 1. Top-down SEM images of PS-b-PDMS (30 k–11 k) spin coated on silicon substrate at 3200 rpm for 30 s and annealed, after PS removal. Left to right: annealed from 5min to 20min.
Top to bottom: annealed at 21 °C to 55 °C. The insets at the bottom-left corner of each image show fast Fourier transforms (FFT) of the respective images. The three harmonicsmost neatly
visible for the FFT of image at 35 ºC, 10min confirm the optimumannealing conditions. At the other extreme the FFT-s relative to samples annealed at 21 ºC do not show any characteristic
structural periodicity, with the possible exception of the sample annealed for 20 min.

Fig. 2. Tilted SEM images of PS-b-PDMS (30 k–11 k) after PS removal. Spin coated on silicon substrate at 3200 rpm for 30 s. Left to right: annealed from 5 min to 20 min. Top to bottom:
annealed at 35 °C to 55 °C.
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3 nm larger at 45 °C and 55 °C than at 35 °C. This might suggest that
higher temperature annealing results in inclusion of free volume,
which would increase the period length-scale. Optimum annealing
conditions at 35 °C for 10 min have been used for the experiments
described in Figs. S1 and 3.

Fig. S2 shows top-down SEM images of PS-b-PDMS films (after the
usual plasma etch) spin-coated at various spin speeds and times, and
annealed at the optimum time and temperature defined above. The
film thicknesses of the as-cast films were determined by ellipsometery
and the data compiled in Table S1. The total variation infilm thickness is
around 5.3 nm but this largely did not seem to have a significant contri-
bution to the quality of the pattern, suggesting this thickness is close to
optimum. The pattern formed at spin speed 4500 rpm and time 60 s
does seem noticeablyworse than others with pronounced line disconti-
nuity and short persistence length, suggesting that the film thickness is
less than the optimum for a single layer of cylinders. Note also the
presence of antidot patterns in these images, especially well-
developed at 4000 rpm and 60 s. The quality of the patterns obtained
at optimum annealing conditions was assessed relative to the

concentration of three types of defects, dots, antidots and dead ends,
as shown in Figs. S2 and S3.

The resultant oxidised PDMS cylinders were used as an effective
mask to transfer the BCP pattern to the substrate as shown in Fig. 3. A
statistical defect analysis for the fabricated silicon nanostructures at
optimised condition is shown in supplementary Fig. S4. The final silicon
nanostructures show average depth of 19 nm and width of 12 nm in all
structures, as illustrated in the graphical abstract. Both the line and
antidot arrangements observed in the top-down images are transferred
to the substrate in a similar way, which is compatible with a homoge-
neous monolayer BCP film covering the surface.

A PS wetting layer at the polymer-substrate interface mentioned in
the discussion of Fig. 1 is compatible with the PDMS nanopattern trans-
fer to the substrate. It should be noted that the optimum pattern trans-
ferred film is formed following spin-coating at 4000 rpm for 45 s. The
data confirm again that the film formed at 4500 rpm and 60 s is below
optimum thickness with clearly seen film discontinuities and ‘holes’.

Since it was clearly shown in Fig. 1 that well-arranged PDMS lines
were formed at anneal times as low as 5 min, we investigated self-

Fig. 3. Tilted SEM images of silicon nanowires fabricated from PS-b-PDMS (30 k–11 k). Left to right: Spin coated on silicon substrate at 30 s to 60 s. Top to bottom: Spin coated on silicon
substrate from 3000 rpm to 4500 rpm.

Fig. 4. Top-down and tilted SEM images of PS-b-PDMS after 10–50 s annealing times. a and e: low and highmagnification of cross-sectional SEM image annealed for 10 s prior to O2 plasma
etching (inset shows PDMS lines after PS etching). b–d: PDMS structures annealed for 10 s, 30 s and 50 s after PS removal. f–h: Corresponding silicon nanostructures fabricated.
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assembly at 35 °C and sub-60 s anneal time. Fig. 4 shows the top-down
SEM images of the plasma treated BCP thin films after 10–50 s anneal
times. The images clearly prove that even at such short annealing
times line nanopatterns are formed (b–d). In all cases, the films are co-
herent and of uniform thickness. These can also be used for pattern
transfer to the substrate (f–h). The silicon features formed from these
short anneal patterns have feature sizes of 12 nm.

In conclusion, we have demonstrated for the first time that very
short time and low temperature solvo-thermal annealing are effective
in producing line patterns from PS-b-PDMS films on untreated silicon
substrates. The self-assembly is extremely rapid with well-arranged
patterns formed in time periods as low as 10 s. No surface function-
alization (e.g. using a brush or other methods) is required to see high
substrate coverage and highly uniform film thickness across the sub-
strate, which is a significant process simplification relative to accepted
procedures. A distinct advantage over systems using PDMS brushes is
that these can complicate the pattern transfer process through forma-
tion of thick silica like passive layers. One of the reasons that brushes
may not be needed is that the agglomeration of polymer into 3D island
structures (a mass transport limited process) cannot occur quickly
enough in these short anneal periods. It is also worth noting that the di-
ameter of the PDMS cylinders and corresponding lines are strongly re-
lated to anneal time with the shorter times and lower temperatures
resulting in smaller features. We postulate that this might be due to
free-volume inclusion at the PS domains and at the PS-PDMS interface
formed during solvent annealing and drying. As the solvent swells, the
degree of swelling increaseswith time and temperature.When the sam-
ples are removed, the solvent quickly evaporates (since the films are
thin), effectively freezing the PS and interface arrangement and
resulting in free-volume inclusion which increases the domain volume.
The data also suggest microphase separation is rapid, which is consis-
tent with the high Flory–Huggins parameter.

After thisfirst demonstration of swift brushless silicon nanopatterning
by PS-b-PDMS masks there is a clear need for further work to assess the
applicability of the method to other block copolymers.
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