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Abstract A homogeneous interior-point algorithm for solving nonsymmetric convex
conic optimization problems is presented. Starting each iteration from the vicinity of
the central path, the method steps in the approximate tangent direction and then applies
a correction phase to locate the next well-centered primal–dual point. Features of the
algorithm include that it makes use only of the primal barrier function, that it is able to
detect infeasibilities in the problem and that no phase-I method is needed. We prove
convergence to ε-accuracy in O(√ν log (1/ε)) iterations. To improve performance, the
algorithm employs a new Runge–Kutta type second order search direction suitable for
the general nonsymmetric conic problem. Moreover, quasi-Newton updating is used
to reduce the number of factorizations needed, implemented so that data sparsity can
still be exploited. Extensive and promising computational results are presented for
the p-cone problem, the facility location problem, entropy maximization problems
and geometric programs; all formulated as nonsymmetric convex conic optimization
problems.
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1 Introduction

This paper is concerned with conic optimization problem pairs of the form

Primal

⎧
⎨

⎩

minx cT x
s.t. Ax = b

x ∈ K
Dual

⎧
⎨

⎩

maxy,s bT y
s.t. AT y + s = c

s ∈ K∗, y ∈ R
m

(pd)

where x, c ∈ R
n, A ∈ R

m×n, b ∈ R
m,K ⊂ R

n is a proper cone (i.e. it is convex,
pointed, closed and has non-empty interior) and K∗ = {s ∈ R

n : sT x ≥ 0, ∀x ∈ K}
is its dual cone, which is also proper. We are further assuming that m ≤ n and that
rank(A) = m.

If K is the positive orthant R
n+, then (pd) is a linear programming (lp) problem

in standard form and its dual. Solution methods for lp have been studied for long in
different settings and until the emergence of interior-point methods (ipms), the most
prominent method was the simplex method, developed by Dantzig in the 1940s. The
introduction of ipms is usually ascribed to Karmarkar [10] in 1984 and since then,
research in the area has been extensive.

In [16], it was studied how to extend the ideas of ipms to the nonlinear case. If
K admits a self-scaled barrier function F : K◦ 
→ R, problems of the type (pd) are
efficiently solvable using long-step symmetric primal–dual ipms [17,18]. The practical
efficiency of these algorithms has been widely verified, see e.g. [1,2,23].

In [9], Güler demonstrated that self-scaled cones are identical to those that are
symmetric; a class that comprises just five cones of which only two are interesting for
optimization. These cones are the Lorentz cone (leading to quadratic cone program-
ming which generalizes quadratic programming and second order cone programming)
and the positive semidefinite cone (leading to semidefinite programming). Notice that
linear programming is a subset of semidefinite programming.

Although these two self-scaled cones allow for modelling of a great variety of
constraints [4], many important types of constraints do not fall in this class. Examples
include entropy type constraints: x log x ≤ t , p-cone constraints: ‖x‖p ≤ t , and
constraints arising in geometric programming [5]. Some of these constraints can be
modelled using self-scaled cones, but this usually requires the introduction of many
extra variables and constraints [4].

Theoretically, one can solve problems involving any convex constraint using a
purely primal short-step barrier method and still obtain an algorithm with the best-
known worst-case computational complexity. Such an algorithm is known to be prac-
tically inefficient compared to a long-step primal–dual ipm. Other approaches are
also possible and special algorithms for certain sub-classes of problems exist [25,27].
Another approach known to be effective for general convex problems is to solve the
monotone complementarity problem, see for example [3].
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A homogeneous nonsymmetric IPM

It may be beneficial to model nonsymmetric constraints more directly using non-
self-scaled cones (nonsymmetric cones) such as the power cone or the exponential
cone. This approach was employed by Nesterov in [15]. He proposed a method that
mimics the ideas of a long-step primal–dual ipm for symmetric cones by splitting each
iteration into two phases. First, a pure primal correction phase is used to find a primal
central point x and a scaling point w. These points are used to compute a feasible
dual point s such that an exact scaling relation is satisfied: s = ∇2 F(w)x . Second,
a truly symmetric primal–dual step in the approximate tangent direction is taken (a
prediction step). This algorithm, however, assumes the existence of a strictly feasible
primal–dual point and requires a strictly feasible initial primal point to start.

If knowledge of both the primal and the dual barrier function, their gradients
and Hessians is assumed, truly primal–dual symmetric search directions can be con-
structed. This approach was used in [19] to solve a homogeneous model of the general
convex conic problem (pd). This leads to a method with some desirable properties but
at the same time it has two crucial disadvantages: Firstly, the linear systems that must
be solved in each iteration are twice the size compared to algorithms for self-scaled
cones therefore increasing total computation time by a factor of 23 = 8 for problems
of equal dimension. Secondly, it can be difficult or impossible to find an expression
for the dual barrier and its derivatives. The so-called doubly non-negative cone1 is an
example of the latter situation. A simple barrier for the primal cone is known, but no
explicit barrier function for the dual cone is known.

Building on the algorithms of [15] and [19], we present in this paper a primal–dual
interior-point algorithm for a homogeneous model of (pd). This approach has proven
successful for self-scaled cones [2,22,26] because it implies several desirable proper-
ties, among which are the ability to detect infeasibility in the problem pair and the ease
of finding a suitable starting point, eliminating the need for a phase-I method. Unlike
the algorithm in [19], our algorithm uses only the primal barrier function and therefore
our linear systems are no larger than those appearing in ipms for self-scaled cones.

In addition to the advantages induced by using a homogeneous model, we suggest
the following improvements to reduce computational load. The Mehotra second order
correction [12] is known to significantly improve practical performance of ipms for
linear and quadratic conic problems [2,12,23]. With the same goal in mind, we suggest
a new way to compute a search direction containing second order information for the
general (possibly non-self-scaled) conic problem. This search direction is inspired by
Runge–Kutta methods for ordinary differential equations. Further, we employ bfgs-
updating of the Hessian of the barrier function to reduce the number of full matrix
factorizations needed. It is shown how this can be done in a way retaining the possibility
to exploit sparsity in A.

We will assume that K is a proper cone and that a logarithmically homogeneous
self-concordant barrier function F for K, its gradient ∇F and its Hessian ∇2 F are
available and can be efficiently computed for all x in the interior of K. The definition
of the barrier parameter ν of F and many of the useful properties of these functions
are listed in Appendix 1.

1 A positive semidefinite matrix with all non-negative entries is called doubly non-negative.
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This paper is organized in two main parts. In the first, which consists of Sects. 2
through 4, we discuss theoretical issues, present our algorithm and prove that the
method converges in O(√ν log (1/ε)) iterations. We state all theoretical results in the
main text, emphasizing asymptotic complexity behavior, but divert all proofs to the
appendix to keep the main text clean and free of technical details. Sections 5 and 6
make up the second part. Here, we present and discuss details related to the imple-
mentation of our algorithm. We introduce heuristic methods to increase convergence
speed and then present an extensive series of computational results substantiating the
effectiveness and practical applicability of our algorithm. We finally draw conclusions
in Sect. 7.

2 Homogeneous and self-dual model

If there exist x ∈ K◦ such that Ax = b and s ∈ (K∗)◦, y ∈ R
m such that AT y +s = c,

then strong duality holds for the primal–dual problem pair (pd). In this case, any primal
optimal x and dual optimal (y, s) must satisfy

Ax − b = 0
−AT y − s + c = 0

xT s = 0
x ∈ K, s ∈ K∗, y ∈ R

m .

(1)

We propose solving a homogeneous model of problems (pd). We therefore introduce
two extra non-negative scalar variables τ and κ and seek to find x, τ, y, s, κ that solve
the following problem:

minimize 0
subject to Ax −bτ = 0

−AT y +cτ −s = 0
bT y −cT x −κ = 0

(x, τ ) ∈ K × R+, (s, κ) ∈ K∗ × R+, y ∈ R
m .

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(hsd)

The motivation for doing so is summarized in the following.

Lemma 1 Assume (x, τ, y, s, κ) solves (hsd). Then

1. (x, τ, y, s, κ) is complementary. That is: xT s + τκ = 0.
2. If τ > 0 then (x, y, s)/τ is optimal for (pd).
3. If κ > 0 then one or both of bT y > 0 and cT x < 0 hold. If the first holds, then

(pd) is primal-infeasible. If the second holds, then (pd) is dual-infeasible.

Proof See section “Optimality and infeasibility certificate” of Appendix 2.

Lemma 1 shows that any solution to (hsd) with τ + κ > 0 provides either an
optimal solution to our original problems (pd) or a certificate of infeasibility of (one
of) the original problems.

Any useful algorithm aimed at solving (hsd) must therefore at least have the fol-
lowing two properties: If (pd) is both primal and dual feasible and has zero duality
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gap, the algorithm must produce a solution (or approximate solution) to (hsd) with
τ > 0. Conversely, if (pd) is either primal or dual infeasible, the algorithm must pro-
duce a solution (or approximate solution) to (hsd) with κ > 0. In [11], it is thoroughly
demonstrated which properties are sufficient for an algorithm to meet these goals.
The algorithm that we later present in Sect. 4 indeed has these properties. However,
since this paper concentrates on algorithmic aspects we omit the details regarding the
various primal and dual infeasibility cases and what they mean for the homogeneous
model and algorithm. Instead, we refer the reader to [19] and particularly [11] for a
much more detailed discussion in this direction.

There is another desirable feature of the homogeneous model (hsd):

Lemma 2 The optimization problem (hsd) is self-dual.

Proof See section “Self-duality” of Appendix 2.

Lemma 2 implies that we can apply a primal–dual interior-point algorithm to the
problem (hsd) without doubling the dimension of the problem. Specifically, there is
no need to handle and store variables from the dual of (hsd) since they are identical
to those of the primal.

Given the two lemmas above and the comments following Lemma 1, we can state
the following desirable consequences of solving the homogeneous model (hsd) with
our algorithm to be presented later:

– If the original problem (pd) is primal and dual feasible and has zero duality gap, an
optimal primal–dual solution is found and a certificate of optimality is produced.

– If the original primal–dual pair (pd) is primal or dual infeasible, a certificate of this
infeasibility is produced.

– The dimension of the problem is not essentially larger than that of the original
primal–dual pair (pd) and does not require more computational effort to solve.

– The algorithm can be initialized in a point not necessarily feasible w.r.t. the linear
constraints of (hsd).

When K is not equal to R
+
n , it is possible that the pair (pd) is primal and dual

feasible but has strictly positive duality gap. In this situation, a tiny perturbation to the
problem data exists such that the perturbed problem has a solution with τ + κ > 0.
Thus, the problem is ill-posed. See [4] for further discussion and examples of this
exceptional case.

3 Nonsymmetric path following

Path following methods are usually motivated by considering a family of barrier prob-
lems parametrized by μ > 0:

min
x

cT x + μF(x), s.t. Ax = b, x ∈ K◦ (2)

where F again is a logarithmically homogeneous self-concordant barrier function2

(lhscb) with barrier parameter ν. The Karush–Kuhn–Tucker (KKT) conditions of

2 See Appendix 1 for a list of properties of this class of functions.
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problem (2) are: If x ∈ K◦ is optimal for (2), then there exist s ∈ (K∗)◦ and y ∈ R
m

so that

Ax − b = 0
−AT y − s + c = 0

s + μ∇F(x) = 0
x ∈ K, s ∈ K∗, y ∈ R

m

(3)

The points that satisfy (3) are known as the primal–dual central path. Let us denote
a point in this set by u(μ) = (x(μ), y(μ), s(μ)). Using relation (20) from Appendix
1, it is easy to see that central path points satisfy cT x(μ)− bT y(μ) = x(μ)T s(μ) =
νμ. The idea of a path-following method is to loosely track u(μ) towards u(0),
thus obtaining a point eventually being approximately optimal for (pd), compare
(3) to (1).

Experience shows that it is most efficient to take steps that are combinations of two
directions: 1. The direction approximately tangent to the central path (the predictor
direction), that is, the direction u′(μ) and 2. the direction pointing towards the central
path as the current iterate may not be exactly on the central path. This correction
direction is the Newton step for the system (3), we will denote it p(μ).

If the iterate is not exactly on the central path, the search direction u′(μ) can still be
computed so that it is symmetric. Here symmetric refers to the search direction (and
thus the iterates) being the same regardless of whether the roles of the primal and dual
problems in (pd) are interchanged [24]. Thus no particular emphasis is put on either
the primal or the dual problem, which is a desirable feature of an algorithm. If K is
self-scaled, a symmetric u′(μ) can be computed using a scaling point [17,18]. If the
cone is not self-scaled (nonsymmetric), a symmetric u′(μ) can be computed by using
both the Hessian of the primal and the dual barrier. As discussed in the introduction,
this, however, leads to an algorithm that must solve linear systems double the size of
those occurring in a symmetric ipm. A further disadvantage is that one must be able
to compute both the primal and the dual barriers, their gradients and Hessians, which
may prove difficult.

Nesterov showed in [15] that a scaling point determined during an iterative centering
(correction) procedure can be used to compute a symmetric search direction u′(μ).
Let us briefly describe the concept underlying the algorithm from [15]. The following
proximity measure is needed:

�(x, y, s) = F(x)+ F∗(s)+ ν ln
xT s

ν
+ ν

which is ≥ 0 and = 0 only if (x, y, s) is on the central path. Here, F∗ denotes the dual
barrier of F , see Appendix 1 for properties of these two functions.

The general algorithm can then be outlined as below. Assume we start with an initial
point (x, y, s) ∈ K × R

m × K∗ with �(x, y, s) < η. Then
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Repeat

1. (x, y, s) := (x, y, s)+ αu′(μ)
μ = xT s/μ.

2. while �(x, y, s) > η

(x, y, s) := (x, y, s)+ α̂ p(μ)
end while

where α in step 1 is chosen so that �(x, y, s) < β after step 1 and α̂ is chosen to be
λ/(1+λ), where λ is the Newton decrement. In [15], it is proved that with appropriate
choices of η, β and α, the above algorithm converges in O(√ν log (1/ε)) iterations.
This method uses only the Hessian ∇2 F(·) of the primal barrier but still the value
of the dual barrier F∗(·). Two serious practical drawbacks of the method are that it
assumes that the original problems are strictly feasible and that it requires a strictly
feasible initial primal point to start therefore needing a phase-I method.

The approach of [19] is instead to compute a symmetric u′(μ) by using both the
Hessian of the primal and the dual barriers. Again, the iteration complexity result
O(√ν log (1/ε)) is obtained and the two practical drawbacks of [15] are alleviated
by the use of a homogeneous model. Two major disadvantages of the method of [19]
are that one must know (or be able to compute) Hessians of both barriers and that the
linear systems that must be solved are double in size.

Our goal in this paper is to construct an efficient algorithm utilizing the main ideas
of [15] and [19], but adapted to be efficient for the homogeneous model (hsd) without
using the Hessians of the primal and the dual barrier. In fact, our method does not make
any use of the dual barrier — not even the function value. Unlike [15] and [19], our
prediction direction u′(μ) will not be exactly symmetric unless the iterate is exactly
on the central path, which is rarely the case. However, it turns out to be sufficient
that we ensure that the iterate is “close to” the central path. This will guarantee a
high enough quality of the prediction direction. In exchange for dropping the “exact
symmetric” tangent direction we obtain a method that does not suffer from any of
the above mentioned drawbacks of the methods in either of [15] and [19] while still
maintaining the O(√ν log (1/ε)) iteration complexity result.

Thus, compared to [19], this work represents the following improvements:

1. We need only to know the primal barrier function, its gradient and Hessian (no
need for the dual barrier and its derivatives).

2. The linear systems that need to be solved in each iteration are half the dimension
(i.e. a factor 8 faster in terms of computation time).

Likewise, in relation to [15], this work represent the following improvements:

1. We need only to know the primal barrier function, its gradient and Hessian (no
need for the dual barrier function value).

2. We do not require a feasible starting point (no phase-I method needed).
3. Our method detects infeasibilities in the problem.

We are also aware of the apparent gap between ipm complexity theory and state-of-
the-art implementations, see e.g. the introduction of [15] for a discussion about this
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issue in the case of convex conic programming. In the realm of interior-point algo-
rithms, it is often the case in practice that methods with inferior complexity estimates
convincingly outperform algorithms with best-known complexity estimates. See e.g.
[1,23] for implementations of such fast algorithms for the case of self-scaled cones.
Furthermore, in industry-standard software, heuristic techniques to speed up conver-
gence rates are often employed, although they invalidate the proofs of convergence in
the purely theoretical sense. A standard example of such a practice is pdipms for linear
programming in which it is common to use different primal and dual step lengths.
Since a similar discrepancy between theory and practice might be present for the case
of a nonsymmetric cone, we expect to be able to improve the performance of our algo-
rithm by employing techniques similar to those used to accelerate the fastest pdipms
for self-scaled problems.

4 Homogeneous algorithm

4.1 Notation

To simplify notation, we will make use of the following notation. For the concatenation
of two vectors v and w, we will sometimes use the Matlab-inspired notation (v;w)
and otherwise the usual

(
v

w

)

. We will further simplify notation by writing

x̄ =
(

x
τ

)

= (x; τ), s̄ =
(

s
κ

)

= (s; κ)
F̄(x̄) = F(x)− log τ, F̄∗(s̄) = F∗(s)− log κ

and

K̄ = K × R+, K̄∗ = K∗ × R+, ν̄ = ν + 1

This notation is consistent with that of [19]. Notice that F̄ and F̄∗ are logarithmically
homogeneous self-concordant barrier functions for the cones K̄ and K̄∗ respectively.

We will also use a higher level of aggregation: z = (x̄; y; s̄) = (x; τ ; y; s; κ) ∈
F := K̄ × R

m × K̄∗ and define the complementarity gap of z by μ(z) := (x̄ T s̄)/ν̄.
We will write gx̄ = ∇ F̄(x̄) and Hx̄ = ∇2 F̄(x̄) and make use of the following local
norms:

‖u‖x̄ = ‖H1/2
x̄ u‖, ‖v‖∗̄

x = ‖H−1/2
x̄ v‖, for u ∈ K̄ and v ∈ K̄∗,

where ‖ · ‖ denotes the standard Euclidean norm. See also Appendix 1 for more
properties of these local norms. In our new notation, we can write the homogeneous
model simply as

G

(
y
x̄

)

−
(

0
s̄

)

=
(

0
0

)

, z =
⎛

⎝
x̄
y
s̄

⎞

⎠ ∈ F (4)
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where G is the skew-symmetric matrix

G :=
⎛

⎝
0 A −b

−AT 0 c
bT −cT 0

⎞

⎠ . (5)

Equations such as (4) will usually be written as G(y; x̄) − (0; s̄) = (0; 0) to save
vertical space. Notice that the expression G(y; x̄) involves a multiplication between
G and (y; x̄) and the parenthesis thus do not denote arguments to a function. This
latter situation will be clear from the context.

4.2 The central path in the homogeneous model

For x̄ ∈ K̄, s̄ ∈ K̄∗ and a scalar t , let us define the function

ψ(x̄, s̄, t) := s̄ + tgx̄ . (6)

We initialize our algorithm in z0 ∈ F . Denote μ0 = μ(z0). Parametrized by
γ ∈ [0, 1], we define the central path of the homogenized problem (4) by the points
zγ that satisfy

G(yγ ; x̄γ )− (0, s̄γ ) = γ
(

G(y0; x̄0)− (0; s̄0)
)

(7)

ψ(x̄γ , s̄γ , γμ
0) = 0 (8)

In the homogeneous model, the central path connects the point z0 (at γ = 1) with a
solution of the problem (4) as γ → 0. Therefore, the main idea of the algorithm, as
in other path-following algorithms, is to approximately track the central path towards
a solution.

For a fixed parameter η ∈ [0, 1], we define the set

N (η) = {z = (x̄; y; s̄) ∈ F : ‖ψ(x̄, s̄, μ(z))‖∗̄
x ≤ ημ(z)

}
(9)

which, in view of (8), can be considered a neighborhood of the feasible central path—
that is, the path that would arise from using z0 in (7)–(8) such that G(y0; x̄0)−(0; s̄0)

=0.
In the case of lp with the usual barrier F(x) = −∑ j log x j , we remark that

equation (8) is the same as the familiar X̄ s̄ = γμ0e where X̄ = diag(x̄) and e =
(1, . . . , 1). Similarly, the inequality in (9) reduces to ‖X̄ s̄ − μe‖ ≤ ημ(z).

4.3 Prediction

The direction dz tangent to the central path (also called the predictor direction) is
determined by differentiating (7)–(8) with respect to γ . For equation (8), this yields

ds̄γ = −μ0gx̄γ − γμ0 Hx̄γ dx̄γ
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where dx̄γ denotes x̄γ differentiated w.r.t. γ and similarly for other variables. By (8),
we have γ−1s̄γ = −μ0gx̄γ , which we insert and get

ds̄γ + γμ0 Hx̄γ dx̄γ = γ−1s̄γ .

The same operation on (7) gives the equations defining the direction dz :

G(dy; dx̄ )− (0; ds̄) = − (G(y; x̄)− (0; s̄)) (10)

ds̄ + μ(z)Hx̄ dx̄ = −s̄ (11)

where we have dropped the argument γ for readability and put μ(z)/μ0 = γ . Notice
also that we have rescaled the equations by −γ to make the notation consistent with
the general ipm literature. Determining the direction dz thus amounts to solving the
system of linear equations (10)–(11).

In the rest of this section, we will use the notation

z+ = (x̄+, y+, s̄+) = (x̄ + αdx̄ , y + αdy, s̄ + αds̄) = z + αdz

ψ = ψ(x̄, s̄, μ(z))
ψ+ = ψ(x̄+, s̄+, μ(z+))

dz = solution of (10)−(11).

The next lemma explains how the linear residuals and the complementarity gap are
reduced along the predictor direction.

Lemma 3 The direction dz satisfies

G(y+; x̄+)− (0; s̄+) = (1 − α) (G(y; x̄)− (0; s̄))

μ(z+) = (1 − α)μ(z)+ (1 − α)αν−1ψT dx̄ .

Proof See section “Reduction of residuals” of Appendix 3.

The first relation shows that the linear residuals are reduced by the factor 1 − α

along the direction dz . The complementarity gap μ is reduced in a slightly more
complicated way depending on the vector ψ . If z is precisely on the central path,
ψ = 0, so μ(z+) = (1 − α)μ(z) and also the complementarity gap is reduced by
the factor 1 − α. As we shall see, we can, similarly to other interior-point algorithms,
choose α = 
(1/

√
ν̄) so that μ(z+) ≤ (1 −
(1/

√
ν̄))μ(z). Here, we use the “big-


”-notation meaning thatα is asymptotically bounded below by 1/
√
ν̄ times a positive

(possibly small) constant as ν → ∞.

Lemma 4 Assume z ∈ N (η). Then we can choose α = 
(1/
√
ν) so that x̄+ ∈ K̄

and s̄+ ∈ K̄∗.

Proof See section “Feasibility of z+” of Appendix 3.

Lemma 5 Assume z ∈ N (η). If η ≤ 1/6, then we can choose α = 
(1/
√
ν) so that

z+ ∈ N (2η).

Proof See section “Bound on ψ+” of Appendix 3.
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4.4 Correction phase

Given some point z+ = (x̄+, y+, s̄+) ∈ N (2η), the goal of the correction phase is to
find a new point z = (x̄, y, s̄) which is close to the central path and satisfy the same
linear constraints as z+. That is, we want to find z so that ‖ψ(x̄, s̄, μ(z))‖∗̄

x ≤ ημ(z)
and G(y; x̄)− (0; s̄) = G(y+; x̄+)− (0; s̄+). We therefore apply Newton’s method
to the equations

G(y; x̄)− (0; s̄) = G(y+; x̄+)− (0; s̄+)
ψ(x̄, s̄, μ(z)) = 0 (12)

The Newton step for these of equations is the solution δz := (δx̄ , δy, δs̄) to the following
linear system of equations: s

G(δy; δx̄ )− (0; δs̄) = 0 (13)

δs̄ + μ(z)Hx̄δx̄ = −ψ(x̄, s̄, μ(z)) (14)

We then solve (13)–(14) and starting from z = z+, we apply

z := z + α̂δz (15)

repeatedly until ‖ψ(x̄, s̄, μ(z))‖ ≤ ημ(z).
The following Lemma shows that this process terminates quickly.

Lemma 6 If η ≤ 1/6, then the correction process (15) terminates in at most two
steps.

Proof See Appendix 4.

4.5 Convergence and complexity of algorithm

It is evident that our algorithm is a nonsymmetric conic generalization of the simplified
lp homogeneous and self-dual model [26]. Similarly to [26], let us write θk+1 =
(1 − αk)θk and θ0 = 1, where αk is the step length taken in the prediction step in
the k’th iteration. From (13), we see that the linear residuals do not change during the
correction phase. Thus, a useful result from [26] applies also to our algorithm:

Lemma 7 Algorithm 1 generates iterates zk = (xk, τ k, yk, sk, κk), k = 0, 1, . . . that
satisfy

ν̄
(
μk/θk + θkμ0

)
= (sk)T x0 + (xk)T s0 + κkτ 0 + τ kκ0 (16)

Proof See Lemma 4, page 57 in [26].

This lemma implies that if μk and θk decrease at the same rate, then (16) functions
as a normalizing constraint—i.e. all the iterates remain bounded. This is readily seen:
The left-hand side of (16) remains bounded and since each term on the right-hand
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Algorithm 1 Nonsymmetric Predictor–Corrector Algorithm
Require: Barrier function F , η ≤ 1/6, and initial point z ∈ F ∩ N (η).
α̂ := 1/84
Repeat

Set μ := μ(z)
Stopping

If stopping criteria satisfied: terminate.
Prediction

Solve (10)–(11) for dz
Choose largest α so that z + αdz ∈ F ∩ N (2η)
Set z := z + αdz and μ = μ(z).

Correction
Solve (13)–(14) for δz
Set z := z + α̂δz
Solve (13)–(14) for δz
Set z := z + α̂δz

End

side is non-negative, each term must remain individually bounded. In particular as μk

decreases to zero, at least one of τ k and κk will go to zero while the other will remain
non-negative and bounded above.

The following theorem will now finish our analysis.

Theorem 1 Algorithm 1 terminates with a point z = (x̄, y, s̄) that satisfies

μ(z) ≤ εμ(z0) and ‖G(y; x̄)− (0; s̄)‖ ≤ ε‖G(y0; x̄0)− (0; s̄0)‖

in no more than O (√ν log (1/ε)
)

iterations.

Proof See Appendix 5.

It is important to note that this theorem alone does not guarantee that we have
recovered a sufficiently accurate solution (or infeasibility certificate) to the original
problem (pd), only to (hsd). From the proofs of Theorem 1 and Lemma 3 it follows,
however, thatμk and θk decrease at the same rate. Therefore, Lemma 3 guarantees that
τ k and κk both remain bounded and if the final point z has one of τ or κ large enough a
sufficiently accurate solution or infeasibility certificate for (pd) has been determined.
For further details regarding the exact accuracy obtained and an explanation of all
different types of feasibility cases, the reader is again referred to [11,19]. For us,
importance is placed on the ability to practically distinguish these cases and what we
mean by “sufficiently close” is precisely stated in Sect. 5.4.

In this section, we have emphasized only the asymptotic behavior of our algorithm.
In several places, it may be possible to improve the constants in the leading terms but
as the above analysis serves only to demonstrate asymptotic worst-case behavior, this
is of minor importance.

5 Implementation

In order for an interior-point method to be practical and competitive, the implemen-
tation must deviate somewhat from the pure theoretical algorithm. In this section, we
describe how such an efficient algorithm can be implemented.
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Algorithm 2 Aggressive step implementation
Require: Barrier function F , 0 < η ≤ β < 1, and initial point z ∈ F ∩ N (η).

Repeat
Set μ := μ(z)
Stopping

If stopping criteria satisfied: terminate.
Prediction

Solve (10)–(11) for dz
Choose largest α so that z + αdz ∈ F ∩ N (β)

Set z := z + αdz and μ = μ(z).
Correction

Repeat
Solve (13)–(14) for δz
Choose α̂ to approximately minimize ‖ψ‖∗̄

x along δz
Set z := z + α̂δz

Until z ∈ F ∩ N (η).
End

Our implementation is outlined in Algorithm 2. As is common practice in imple-
mentations of interior-point methods, we allow for a much longer prediction step, for
example β ≥ 0.80. This leads to faster convergence once we get close to the opti-
mal point. Indeed we do observe what appears to be super-linear convergence in this
region.

It should be noted, however, that we can no longer be certain that two correction
steps will be enough to reach a sufficiently centered point. Therefore, we continue
taking correction steps until the centrality condition ‖ψ‖∗̄

x ≤ ημ is satisfied. As the
computational experiments later show, for the problems we have solved, rarely more
than one or two correction steps are needed. We can further reduce the cost of the
correction phase by using quasi-Newton updating as we explain in the next section.

5.1 Quasi-Newton updating in the correction phase

Solving either for a prediction or a correction step requires the factorization of the
sparse n × n matrix Hx̄ and of the possibly sparse m × m matrix Q = AH−1

x̄ AT . To
reduce the total number of factorizations needed in the correction phase, we suggest
taking J quasi-Newton steps for each normal correction step.

Let us show how this can be done computationally efficient without destroying
sparsity in the KKT-system, which is an essential requirement in practical applications.

Let B and M denote the current quasi-Newton approximation of the inverses of H
and Q respectively. Conceptually, we update B to B+ using bfgs updating (see e.g.
[20]), a rank-2 updating scheme: B+ = B + k(v)vvT + k(w)wwT . In order to keep
the ability to exploit sparsity of A and Q, we do not actually store B or M but simply
the Cholesky factors of the most recent H and Q and the sequence of bfgs update
vectors. More specifically, for q ≤ J , let B(q) be the q’th update of H−1, i.e.

B(q) = C−1C−T +���T
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where �=[v(1), . . . , v(q), w(1), . . . , w(q)],�= diag(k(v)1 , . . . , k(v)q , k(w)1 , . . . , k(w)q ).
Then we compute products such as B(q)r by means of

B(q)r = C−1(C−T r)+�
(
�(�T r)

)
.

For M , the situation is similar:

M (q) =
(

AB(q)AT
)−1

=
(

A(H−1 +���T )AT
)−1

=
(

Q +���T
)−1

where � = A�. By the Sherman–Morrison–Woodbury formula, we get

M (q) = Q−1 − Q−1�
(
�−1 +�T Q−1�

)−1
�T Q−1.

We can thus compute products like M (q)r by

M (q)r = Q−1
(

I −�
(
�−1 +�T Q−1�

)−1
�T Q−1

)

r

= D−1 D−T
(

r −�
(
�−1 +�T D−1 D−T�

)−1
�T D−1 D−T r

)

where we remark that (1) only two columns are added to � in each iteration so that
only two new back-substitutions in the operation D−T� are needed, (2)� is diagonal
and thus cheap to invert and (3) the matrix

(
�−1 +�T D−1 D−T�

)
is only of size

2q × 2q and is therefore also cheap to invert.
We then alternate between taking J bfgs steps and one full Newton correction step,

starting with bfgs steps and terminate when ‖ψ‖∗̄
x ≤ ημ. The resulting bfgs search

direction is a descent direction for the function ‖ψ‖∗̄
x , so by using a backtracking line

search along these directions, we can not make the objective worse by proceeding in
this way. On the other hand, we have no theoretical guarantee that bfgs steps improve
the objective value. However, as the computational experiments will demonstrate, it
is often the case that enough centrality can be achieved after just a few bfgs steps.

The norm ‖v‖∗̄
x is computed as (vT H−1

x̄ v)1/2. Computing this number requires the
evaluation and factorization of Hx̄ . But since Hx̄ is block-diagonal, this operation is
cheap.

We finally remark that whether or not it is beneficial to take bfgs steps, and if it is,
how many should be taken, depends on the cost of building and Cholesky factorizing
AH−1

x̄ AT relative to the cost of subsequent back-substitutions, of which the needed
amount is increased if bfgs steps are used. This ratio depends on the dimension and
sparsity pattern of A—quantities about which we know nothing beforehand. However,
since the dimension and sparsity pattern of AH−1

x̄ AT do not vary with x̄ , it is possible
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to determine this ratio at initialization time. Thus we can determine an upper bound
on J before the main loop of the algorithm.

5.2 Higher order predictor direction

It is well known that the Mehrotra second order correction [12] term significantly
improves performance of interior-point methods for symmetric cones. This technique
is used in virtually all competitive industry standard interior-point implementations
solving self-scaled problems. Mehrotra’s second order correction generalizes nicely
to self-scaled conic problem by use of the Jordan product that can be defined on such
cones, see e.g. [2]. For non-symmetric cones, this generalization seems to no longer
be possible. Hoping to achieve a similar improvement in performance, we suggest
instead to compute a higher order prediction step as described in the following.

Let us denote the central path point with complementarity gap μ by z(μ), which
corresponds toμ = γμ0 in equations (7)–(8). By an appropriate definition of a matrix
K (z) and a vector u(z), dependent on the current iterate z = (x̄, y, s̄), it is clear that
the equations (10)–(11) defining dz can be written

K (z)dz(μ) = u(z) or dz(μ) = K (z)−1u(z) =: f (z).

The central path is thus the solution of the ordinary differential equation defined by
dz(μ) = f (z). A step in the predictor direction, i.e. the direction dz , is then the same
as taking one Euler step for this ode. We can obtain a direction that contains, for
example, second order information by computing a stage-2 Runge–Kutta direction d2,
remembering that each evaluation of f requires solving a system of the type K dz = u.
Such a direction is defined by

d2 = h

(

1 − 1

2θ

)

f (z)+ h
1

2θ
f (ζ )

ζ = (ζx̄ , ζy, ζs̄) = z(μ)+ θh f (z)

where h is the stepsize possible in the direction f (z) and θ ∈ (0, 1] is a parameter.
The choices θ = 1/2 and θ = 1 correspond to the classical midpoint and trapezoidal
rules respectively [6].

Our experience shows that this approach reduces the total number of iterations as
well as the number of factorizations needed to reach an optimal solution, even though
two factorizations are needed to compute d2.

We can, however, restrict ourselves to just one factorization by using in place of Hζx̄

the bfgs update of Hx̄ . In Sect. 5.1, we showed how to implement such a procedure
efficiently.

5.3 Initial point

The initial point z0 = (x̄0, y0, s̄0) is required to satisfy z0 ∈ F ∩ N (η). We there-
fore choose some x̄0 ∈ K̄◦ and set s̄0 = −gx̄0 . We then get ν̄μ(z0) = (x̄0)T s̄0 =
−(x̄0)T gx̄0

(20)= ν̄ and hence μ(z0) = 1. Therefore, this z0 is exactly on the central
path, i.e. z0 ∈ N (0) ⊂ N (η).
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5.4 Termination

A point (x̄, y, s̄) = (x, τ, y, s, κ) that satisfies the bounds in Theorem 1 solves to
ε-accuracy the homogeneous model (hsd). However, we are interested in either a
certificate of infeasibility or a solution of (pd). Therefore, we need to use stopping
criteria able to detect one of these two situations. Consider the following inequalities:

‖Ax − τb‖∞ ≤ ε · max {1, ‖[A, b]‖∞} (P)

‖AT y + s − cτ‖∞ ≤ ε · max
{

1,
∥
∥
∥

[
AT , I,−c

]∥
∥
∥∞

}
(D)

∣
∣
∣−cT x + bT y − κ

∣
∣
∣ ≤ ε · max

{
1, ‖

[
−cT , bT , 1

]
‖∞
}

(G)

∣
∣
∣cT x/τ − bT y/τ

∣
∣
∣ ≤ ε ·

(
1 +

∣
∣
∣bT y/τ

∣
∣
∣

)
(A)

τ ≤ ε · 10−2 · max {1, κ} (T)

τ ≤ ε · 10−2 · min {1, κ} (K)

μ ≤ ε · 10−2 · μ0 (M)

We then terminate and conclude as follows:

(opt) (p) ∧ (d) ∧ (a) ⇒ Feas. and approx. optimal solution found
(infeas) (p) ∧ (d) ∧ (g) ∧ t ⇒ Problem nearly primal or dual infeasible

(illp) (k) ∧ (m) ⇒ Problem deemed ill-posed

In case (opt), the approximately optimal solution (x, y, s)/τ is returned. If we find
(infeas), the problem is deemed dual infeasible if cT x < 0 and primal infeasible if
bT y > 0. The number ε > 0 is a user-specified tolerance.

6 Computational experiments

In this section we present results from running our algorithm, which we will denote
by npc, on different test problems. We first introduce the nonsymmetric cones needed
for our test problems and then present the test problems. Finally, we include tables
with numerical results and discussion.

For all test problems that we consider, K will have the form K = K1 × · · · × KK

where each K j is either a three-dimensional proper cone or R+. This limitation to
cones of such low dimension implies simple expressions for the barrier function and
its gradient and Hessian. As we shall see, it does impose any restrictions on which
problems can be formulated. See also [15] for further discussion on this topic.

The notation used in this section is independent of previous sections.
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6.1 Two three-dimensional nonsymmetric cones

In the rest of this paper, we will be considering problems involving the following two
nonsymmetric convex cones, both three dimensional.

The three-dimensional exponential cone is defined by

Kexp = closure {(x1; x2; x3) ∈ R × R+ × R++ : exp (x1/x3) ≤ x2/x3}

for which we are using the barrier function

Fexp(x) = − log (x3 log (x2/x3)− x1)− log x2 − log x3

with barrier parameter ν = 3.
The three-dimensional power cone is defined by

Kα =
{
(x1; x2; x3) ∈ R × R

2+ : |x1| ≤ xα2 x1−α
3

}

where α ∈ [0, 1] is a parameter. Notice that K1/2 is the standard rotated quadratic
cone. For all other α ∈ (0, 1),Kα is not symmetric. In [7], it was proved that the
function

Fα(x) = − log (x2α
2 x2−2α

3 − x2
1 )− (1 − α) log x2 − α log x3

is a logarithmically homogeneous self-concordant barrier with parameter ν = 3 for
Kα . It is this barrier function we are using in our experiments. Nesterov proposed in
[15] a barrier function for the three-dimensional power cone with parameter ν = 4. Our
computational experience shows that Fα is better in practice which is in accordance
with theory.

6.2 Test problems

In this section, e will denote the vector of all ones. The dimension of e will be clear
from the context.

6.2.1 p-cone problem

Given A ∈ R
M×N and b ∈ R

M , the p-cone problem is the problem

min
x

‖x‖p, s.t. Ax = b.

In [14], it is shown that this is equivalent to

min
x,y,t

t, s.t. Ax = b, eT y = t

(x j ; y j ; t) ∈ K(1/p), j = 1, . . . ,M.
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6.2.2 Facility location problem

Given M points (locations) in R
N : C ( j), j = 1, . . . ,M , we want to find the point

z with the minimal sum of weighted distances to the locations C ( j) measured in
p j -norms, p j ≥ 1. That is

min
z

M∑

j=1

a j‖z − C ( j)‖p j (17)

where a j ≥ 0 are the weights. We can then formulate (17) in conic form:

min
z+,z−,v,w,u

M∑

j=1

a j u
( j)
1

s.t. v( j)= z+−z−−C ( j) j =1, . . . ,M

eTw( j)=u( j)
1 , u( j)

1 =u( j)
2 =· · ·=u( j)

N j =1, . . . ,M

(v
( j)
i ;w( j)

i ; u( j)
i ) ∈ K1/p j j =1, . . . ,M, i =1, . . . , N

z+ ≥0, z− ≥0

6.2.3 Geometric programming

This is a problem of the type

min
x

f (0)(x)

s.t. g( j)(x) = 1, j = 1, . . . ,M

f ( j)(x) ≤ 1, j = 1, . . . , P

where g( j) are monomials and f ( j) are posynomials. Using the notation xv :=∏n
i=1 xvi

i where each xi > 0, they can be writting

g(x) = k j xb( j)
, f ( j)(x) =

N j∑

i=1

di xa( j)
i .

With the j’th posynomial f ( j), we then associate

– the matrix A( j) :=
(

a( j)
1 , a( j)

2 , . . . , a( j)
N j

)T ∈ R
N j ×N ,

– the vector d( j) = (d( j)
1 , . . . , d( j)

N j
)T ∈ R

N j ×1 and

– the vector c( j) = log (d( j)) = (log (d1), . . . , log (dN j ))
T ∈ R

N j ×1

Similarly, we associate with the j’th monomial g( j)

– the vector b( j), the scalar k( j), the scalar h( j) = log (k( j)).
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Using the change of variables ui = log (xi ) ⇔ xi = exp(ui ) for all i , we can write
the problem in conic form:

min
u+,u−,w,v, y,t (0)

t (0)

s.t.: B(u+ − u−)+ h = 0

w( j) = A( j)(u+ − u−)+ c( j) j = 0, . . . , P

eT v( j) = t ( j), y( j) = e j = 0, . . . , P

u+, u−, t (0) ≥ 0
(
w
( j)
i ; v( j)

i ; y( j)
i

)
∈ Kexp j = 0, . . . , P, i = 1, . . . , N j

where h = (h(1), . . . , h(M))T ∈ R
M×1 and B =

(
b(1), . . . , b(M)

)T ∈ R
M×N .

6.2.4 Entropy maximization

Given A ∈ R
M×N , b ∈ R

M and d ∈ R
N+ , the entropy maximization problem is

min
x

N∑

j=1

d j x j log x j

s.t. Ax = b

x j ≥ 0, j = 1, . . . , N

which can be formulated as

min
x,u

−dT u, s.t. Ax = b, v = e

(u j ; v j ; x j ) ∈ Kexp, j = 1, . . . , N .

6.3 Computational results

The remaining tables in this section show the number of iterations (it), the total number
of factorizations made (ch), the average number of full correction steps per iteration
(ce) and the termination status (st). opt means that an optimal solution was found
and ipr/idu means a primal/dual infeasibility certificate was found. For all com-
putational experiments, we used the parameters displayed in Table 1.

For entropy maximization problems and geometric programs, we compare our algo-
rithm to the purpose-built solvers in Mosek [13]. For p-cone problems, we compare

Table 1 Parameters used in
computational experiments

Parameter J θ η β ε

Value 3 0.70 0.50 0.80 10−6
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our algorithm to SeDuMi (see [22]) when called through CVX (see [8]). We intention-
ally compare only the number of Cholesky factorizations performed by each algorithm.
This is to eliminate from the comparisons the CPU-time consumed by software over-
head. Therefore, it is reasonable to measure only the dominating operations, i.e. the
Cholesky factorizations.

6.3.1 p-cone problems

Table 2 shows results from solving a series of p-cone problems. The data A and b are
from the netlib collection of linear programs. We see that npc performs very well
compared to SeDuMi. CVX solves the problem by approximating the original p-cone
problem by an approximately equivalent self-scaled problem. The resulting self-scaled
problem is then solved usingSeDuMi. As discussed in the introduction, this modelling
of a nonsymmetric problem by symmetric cones requires the introduction of extra
variables and constraints. The table shows for each of the two solution methods, the
number of rows m and columns n of the final linear constraint matrix (corresponding to
A in (pd)). These results clearly demonstrate the advantage of modelling this inherently
nonsymmetric problem (the p-norm is not a self-dual norm when p �= 2) directly by
using a nonsymmetric cone. As seen from the table, the size of the problem built
by CVX is much greater, in some instances by as much as 17 times, than the size of

Table 2 Computational results for p-cone problems

Problem npc CVX/SeDuMi

Name and size p m n it ch ce st m n ch st

bandm 1.13 777 1,416 9 19 1.1 opt 6,913 1,4632 21 opt

M = 305 1.57 777 1,416 11 23 1.1 opt 8,801 18,408 26 opt

N = 472 2.09 777 1,416 14 29 1.1 opt 9,745 20,296 27 opt

sp(A) = 1.73 % 4.71 777 1,416 23 37 0.6 opt 10,689 22,184 26 opt

7.39 777 1,416 24 43 0.8 opt 11,633 24,072 26 opt

blend 1.13 188 342 9 19 1.1 opt 1,670 3,534 21 opt

M = 74 1.57 188 342 9 20 1.2 opt 2,126 4,446 22 opt

N = 114 2.09 188 342 9 16 0.8 opt 2,354 4,902 20 opt

sp(A) = 6.19 % 4.71 188 342 11 19 0.7 opt 2,582 5,358 20 opt

7.39 188 342 13 21 0.6 opt 2,810 5,814 21 opt

.

.

. More results online

stocfor1 1.13 282 495 9 16 0.8 opt 2,427 5,115 19 opt

M = 117 1.57 282 495 8 17 1.1 opt 3,087 6,435 20 opt

N = 165 2.09 282 495 9 19 1.1 opt 3,417 7,095 22 opt

sp(A) = 2.60 % 4.71 282 495 18 30 0.7 opt 3,747 7,755 25 opt

7.39 282 495 22 29 0.3 opt 4,077 8,415 26 opt

Data A ∈ R
M×N and b from netlib. sp(A) denotes the sparsity of A. This table contains only a part of

the instances tested. Full results can be found in the electronic supplements
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the problem solved by npc. Notice also that the latter problem, unlike the first, is
independent of p.

In terms of iterations, npc uses about 40 % less than SeDuMi. The total number
of factorizations for the two methods is about the same. However, as described above,
SeDuMi factorizes much larger matrices. Therefore we may conclude for these prob-
lems, that the direct modelling method coupled with a nonsymmetric solver like npc
is clearly superior to CVX/SeDuMi.

6.3.2 Facility location problems

Table 3 shows the performances of our algorithm when run on random instances of
the facility location problem. For each pair (N ,M), we generated 10 instances each
with C ( j) chosen at random from the standard normal distribution. For each instance,
M different p j were chosen as the maximum of 1.0 and a sample from a normal
distribution with mean 2.0 and variance 0.25. The a j were chosen randomly from a
uniform distribution on [0, 1]. The column labelled p̄ shows the number M−1∑M

j=1 p j

averaged over the 10 instances. This number should be close to 2.0.
We see that our algorithm uses in the region 10–20 iterations and the number of

Cholesky factorizations never exceeds 32. On average slightly more than 0.50 full
centering steps are needed in each iteration. These results can be loosely compared
with the computational results in [7, Table 4.1, page 142]. There, a dual variant of the
algorithm of [15] is used to solve the same kind of problem. Overall, our algorithm
performs better, both in terms of iterations and factorizations.

6.3.3 Geometric programs

Table 4 shows results from applying our algorithms to a set of geometric programs
supplied to us by Mosek. The column labelled dod denotes the degree of difficulty
of the problem [5]. For a particular problem instance j , let I A

j and CA
j be the number

Table 3 Results for facility
location problems

The algorithm always
terminated after reaching
optimality as all problem
instances were feasible by
construction. This table contains
only a part of the instances
tested. Full results can be found
in the electronic supplements

Problem npc

N M ν p̄ it ch ce

3 4 44 2.03 11.1 18.2 0.65

10 4 128 2.07 13.2 20.1 0.54

3 20 220 2.09 17.1 27.5 0.64

19 4 236 2.00 13.8 21.0 0.54

.

.

. More results online

10 12 384 2.06 16.0 25.1 0.58

32 4 392 2.03 13.4 20.9 0.56

10 20 640 1.99 18.7 30.5 0.66

19 20 1,180 2.01 19.7 30.5 0.60

32 20 1,960 1.98 17.7 31.5 0.79
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Table 4 Results for geometric programs

Problem npc mskgpopt

Name n dod it ch ce st ch st

beck751 7 10 16 30 0.9 opt 18 opt

beck753 7 10 13 27 1.1 opt 10 opt

car 37 104 15 28 0.9 opt 46 opt

demb761 11 19 12 22 0.8 ipr 10 opt

.

.

. More results online

demb781 2 1 7 10 0.4 opt 7 opt

fang88 11 16 9 18 1.0 opt 11 opt

jha88 30 274 17 34 1.0 opt 13 opt

mra01 61 844 16 30 0.9 opt 58 opt

mra02 126 3,494 30 57 0.9 opt 53 opt

rijc786 8 3 9 16 0.8 opt 6 opt

rijc787 7 40 12 23 0.9 opt 36 opt

This table contains only a part of the instances tested. Full results can be found in the electronic supplements

of iterations and Cholesky factorization respectively used by algorithm A to solve
instance j and let us define the ratio of sums S = (

∑
j Cnpc

j )/(
∑

j Cnpc
j ). Further let

Rit
j = I npc

j /I Mosek
j and Rch

j = Cnpc
j /CMosek

j . If we let an overbar denote arithmetic
mean and a tilde denote geometric mean over all j , we then find

(S, Rit, Rch, R̃it, R̃ch) = (1.3, 1.1, 1.9, 0.94, 1.7).

For these problems we therefore conclude that our algorithm performs somewhat
inferiorly to Mosek, using less iterations but cumulatively 30 % more Cholesky fac-
torization than Mosek.

6.3.4 Entropy problems

Table 5 shows results from solving a set of real-world entropy problems supplied to
us by Mosek. Generally the problems have many variables compared to the number
of constraints resulting in a very “fat” constraint matrix A. For these problems we
compare our algorithms to the commercial solver from Mosek, which solves the
monotone complementarity problem [3] corresponding to the entropy problem.

We see that, except for a few of the problems, our algorithm compares somewhat
unfavourable to Mosek. With the notation defined in Sect. 6.3.3, we find

(S, Rit, Rch, R̃it, R̃ch) = (1.6, 1.2, 2.8, 0.93, 2.1).

That is, although npc uses fewer iterations, it uses cumulatively about 60 % more
Cholesky factorizations to solve the entire set of problems when compared to Mosek.
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Table 5 Computational results for entropy problems

Problem npc mskenopt

Name N M it ch ce st ch st

prob 17 15 9 15 0.7 opt 8 opt

prob2 18 14 9 18 1.0 opt 8 opt

ento46 130 21 25 50 1.0 opt 42 opt

ento22 794 28 28 60 1.1 ipr 14 ipr

ento21 931 28 55 112 1.0 ipr 18 ipr

a_tb 1,127 25 38 87 1.3 opt 97 opt

ento23 1,563 28 34 73 1.1 ipr 14 ipr

.

.

. More results online

a_35 4,333 37 43 90 1.1 ipr 18 ipr

a_24 5,162 37 36 90 1.5 ipr 23 ipr

ento3 5,172 28 49 126 1.6 opt 146 opt

ento50 5,172 28 49 126 1.6 opt 146 opt

a_46 9,455 37 40 102 1.6 ipr 20 ipr

a_56 9,702 37 65 158 1.4 opt 123 opt

ento25 10,142 28 116 250 1.2 opt 149 opt

entodif 12,691 40 50 130 1.6 opt 155 opt

ento48 15,364 31 16 52 2.2 opt 47 opt

This table contains only a part of the instances tested. Full results can be found in the electronic supplements

We remark that the solvers from Mosek for entropy problems and geometric pro-
grams are two different solvers, each purpose-built to solve those particular problems
and not modelled as conic optimization problems. Our algorithm, on the other hand,
uses a purely conic formulation and thus is a much more general purpose algorithm.
We use no particular tuning of parameters to particular problems. From simple exper-
iments we know that tuning the parameters η and β for each type of problem, we
could improve the computational performance of our algorithm. However, since we
believe in the importance of practical applicability across various problem types, we
choose to fix the parameters and instead let our algorithm enjoy a very high degree
of versatility. In that light, and considering the fact that Mosek is an industry-grade
implementation, we believe our algorithm compares very well.

7 Conclusions

In this paper, we have presented a homogeneous primal–dual interior-point algo-
rithm for nonsymmetric convex conic optimization. Unlike previous work solving the
homogenized convex conic problem, our algorithm makes use only of the primal barrier
function thus making the algorithm widely applicable. We have proven the standard
O(√ν log (1/ε)) worst-case complexity result. Inspired by techniques known to sig-
nificantly improve efficiency of algorithms for self-scaled cones, we have developed
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techniques similar in purpose but for the non-symmetric case. These include quasi-
Newton updating to reduce computational load and a Runge–Kutta type second order
search direction, which is new in this context. We demonstrated how to efficiently
implement these techniques without loosing the ability to exploit sparsity in the data
matrix A. Finally we have presented extensive computational results that indicate the
algorithm works well in practice.

By inspecting the tables in Sect. 6.3, we see that

– The performance of the algorithm depends a lot on the type of problem.
– For the p-cone problems, our algorithm superior in performance to SeDuMi called

via CVX. These experiments clearly show the potential advantage of directly mod-
elling nonsymmetric problems by using nonsymmetric cones.

– For the facility location problems, our algorithm compares favorably to an algorithm
[7], which is a dual variant of the one presented in [15].

– For geometric programs, our algorithm compares somewhat unfavourable to
Mosek.

– For entropy maximization problems, our algorithm again compares somewhat
unfavourable to Mosek.

The computational results comparing our algorithm to Mosek should, however, be
seen in the light of the comments in Sect. 6.3.4 on page 23.

Comparing the kind of algorithm we have presented with a primal–dual ipm for
self-scaled cones, we see that the major difference is the need for a separate correction
phase. Nesterov remarks in [15] that this process can be seen as the process of finding
a scaling point, i.e. a point w such that x = ∇2 F(w)s. It seems reasonable that this
is a more complex problem when the cone is not symmetric. We can not compute it
analytically, so we need an iterative procedure.

This difference is interesting theoretically as well as practically. For the problems we
have considered, the centering problem certainly is a relatively easy problem compared
to the full problem, in the sense that we do not need a very accurately centered point.
We have seen in the experiments with our algorithm that rarely more a couple of
correction steps are needed, some or all of which may be comparably inexpensive
quasi-Newton steps.

Acknowledgments The authors thank Erling D. Andersen and Joachim Dahl of Mosek ApS for lots of
insights and for supplying us with test problems for the geometric programs and the entropy problems. The
authors also thank the reviewers for many helpful comments.

Appendix 1: Properties of the barrier function

Here we list some properties of logarithmically homogeneous self-concordant barriers
(lhscb) that we use in this paper. Many more properties and proofs can be found in
[17,18].

Let K◦ denote the interior of K. We assume that F : K◦ 
→ R is a lhscb for K
with barrier parameter ν. This means that for all x ∈ K◦ and t > 0,

F(t x) = F(x)− ν log t.
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It follows that the conjugate of F , denoted F∗ and defined for s ∈ (K∗)◦ by

F∗(s) = sup
x∈K

{−sT x − F(x)}

is a lhscb for the dual cone K∗. Similarly to the notation used in [17,18], we write
the local Hessian norms on K and K∗ as:

‖g‖x = ‖H1/2
x g‖, for x ∈ K◦

‖h‖∗
s = ‖(H∗

s )
1/2g‖, for s ∈ (K∗)◦

‖h‖∗
x = ‖H−1/2

x h‖, for x ∈ (K)◦,

where H∗
s = ∇2 F∗(s). Notice the different definitions of ‖ · ‖∗

y depending on whether
y is in K or K∗. Using this convention and that −gx ∈ (K∗)◦ and H∗−gx

= H−1
x , we

see that

‖s‖∗−gx
= ‖(H∗−gx

)−1/2s‖ = ‖H1/2
x s‖ = ‖s‖∗

x . (18)

For x ∈ K◦, F satisfies

Hx x = −gx (19)

xT gx = −ν (20)

‖x‖2
x = ν. (21)

The Dikin ellipsoids are feasible [4]. That is:

x ∈ K◦ ⇒ W (x) = {u, ‖u − x‖x ≤ 1} ⊆ K (22)

s ∈ (K∗)◦ ⇒ W ∗(s) = {h, ‖h − s‖∗
s ≤ 1} ⊆ K ∗. (23)

Appendix 2: The homogeneous and self-dual model

Optimality and infeasibility certificate

Let G be defined by (5) and notice that G is skew-symmetric: G = −GT .

1. Observe that we can write (hsd) as G(y; x; τ)T − (0; s; κ)T = 0. Pre-multiplying
this equation by (y; x; τ)T gives xT s + τκ = 0.

2. τ > 0 implies κ = 0 and hence bT (y/τ)− cT (x/τ) = 0 and therefore xT s = 0.
Dividing the two first linear feasibility equations of (hsd) by τ , we obtain the
linear feasibility equations of (1). Thus (x, y, s)/τ is optimal for (pd).

3. If κ > 0 then τ = 0 so Ax = 0 and AT y + s = 0. Further cT x − bT y = −κ < 0
so not both cT x and −bT y can be non-negative. Assume −bT x < 0. If (pd) is
primal-feasible then there exists x̄ ∈ K such that Ax̄ = b. But then 0 > −bT y =
−x̄ T AT y = x̄ T s ≥ 0, a contradiction. We can argue similarly if cT x < 0,

and this completes the proof of Lemma 1.
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Self-duality

The dual of (hsd) problem is

max
ŷ1,ŷ1,ŷ1,ŷ1,ŷ1,ŷ1,ŝ

0

s.t.

⎛

⎜
⎜
⎝

AT 0 −c
0 cT −bT

0 −I 0
−1 0 0

⎞

⎟
⎟
⎠

⎛

⎝
ŷ1
ŷ2
ŷ3

⎞

⎠+

⎛

⎜
⎜
⎝

ŝ1
ŝ2
ŝ3
ŝ4

⎞

⎟
⎟
⎠ = 0 (24)

− Aŷ2 + bŷ3 = 0 (25)

ŝ ∈ (K × R+ × K∗ × R+)∗, ŷ free. (26)

After a few eliminations, we see that (24)–(26) are equivalent to

Aŝ3 −bŝ4 = 0
−AT ŷ1 +cŝ4 −ŝ1 = 0

bT ŷ1 −cT ŝ3 −ŝ2 = 0
(27)

(ŝ3, ŝ4) ∈ K × R+, (ŝ1, ŝ2) ∈ K∗ × R+, ŷ1 ∈ R
m .

Through the following identification of variables

ŝ1 ∼ s, ŝ2 ∼ κ, ŝ3 ∼ x, ŝ4 ∼ τ, ŷ1 ∼ y,

it is clear that the constraints (27) are equivalent to those of the problem (hsd). Since
the objective function in both problems is constant zero, the two problems are identical
and this proves Lemma 2.

Appendix 3: Prediction

The direction dz is defined by

G(dy; dx̄ )− (0; ds̄) = − (G(y; x̄)− (0; s̄)) (28)

ds̄ + μHx̄ dx̄ = −s̄ (29)

Reduction of residuals

We first show:

1. s̄T dx̄ + x̄ T ds̄ + x̄ T s̄ = ψ(z)T dx̄ (30)

2. (x̄ + dx̄ )
T (s̄ + ds̄) = 0 (31)

3. dT
x̄ ds̄ = −ψ(z)T dx̄ . (32)
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1. We get s̄T dx̄ + x̄ T ds̄ + x̄ T s̄
(29)= s̄T dx̄ + x̄ T (−s̄ − μHx̄ dx̄ ) + x̄ T s̄, which, after

reduction, gives dT
x̄ (s̄ − μHx̄ x̄) = ψ(z)T dx̄ .

2. Equation (28) is equivalent to G(y +dy; x̄ +dx̄ )−(0; s̄ +ds̄) = 0. Pre-multiplying
this equation by (y + dy, x̄ + dx̄ ) gives (31).

3. Follows from expanding (31) and using (30).

Now the lemma follows readily: We simply note that the first equation follows directly
from elementary linear algebra. To show the second:

ν̄μ(z+) = (x̄ + αdx̄ )
T (s̄ + αds̄)

= x̄ T s̄ + α(s̄T dx̄ + x̄ T ds̄)+ α2dT
x̄ ds̄

(30)−(32)= x̄ T s̄ + α(−x̄ T s̄ + ψ(z)T dx̄ )+ α2(−ψ(z)T dx̄ )

= (1 − α)x̄ T s̄ + α(1 − α)ψ(z)T dx̄

which after division by ν̄ proves Lemma 3.

Bounds on s̄, ds̄ and dx̄

Assume ‖ψ‖∗̄
x ≤ ημ. By definition, ψ = s̄ − μHx̄ x̄ , which after left-multiplication

by H−1/2
x̄ , taking norms and squaring both sides gives

(‖s̄‖∗̄
x )

2 = (‖ψ‖∗̄
x )

2 + μ2‖x̄‖2
x̄ + 2μx̄ Tψ

= (‖ψ‖∗̄
x )

2 + 2 + μ2ν̄ ≤ μ2(ν̄ + η2)

‖s̄‖∗̄
x ≤ μ

√

η2 + ν̄ (33)

where we used (21) and x̄ Tψ = 0.
This bound allows us to obtain bounds on dx̄ and ds̄ : Left-multiplying (29) by

H−1/2
x̄ , taking norms and squaring both sides gives

(‖ds̄‖∗̄
x )

2 + μ2‖dx̄‖2
x̄ = (‖s̄‖∗̄

x )
2 − 2μdT

x̄ ds̄
(32)= (‖s̄‖∗̄

x )
2 + 2μdT

x̄ ψ

≤ (‖s̄‖∗̄
x )

2 + 2μ‖dx̄‖x̄‖ψ‖∗̄
x

by the Cauchy–Schwarz inequality. Therefore: μ2‖dx̄‖2
x̄ ≤ (‖s̄‖∗̄

x )
2 +2μ‖dx̄‖x̄‖ψ‖∗̄

x .
Now subtracting 2μ‖dx̄‖x̄‖ψ‖∗̄

x and adding (‖ψ‖∗̄
x )

2 to both sides, we get

(
μ‖dx̄‖x̄ − ‖ψ‖∗̄

x

)2 ≤ (‖s̄‖∗̄
x )

2 + (‖ψ‖∗̄
x )

2
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or

‖dx̄‖x̄ ≤ μ−1
(

‖ψ‖∗̄
x +

√

(‖s̄‖∗̄
x )

2 + (‖ψ‖∗̄
x )

2

)

≤ μ−1(ημ+
√

μ2(η2 + ν̄)+ η2μ2) = η +
√

η2 + ν̄ =: kx̄ . (34)

For ds̄ , we similarly have

(‖ds̄‖∗̄
x )

2 ≤ (‖s̄‖∗̄
x )

2 + 2μ‖dx̄‖x̄‖ds̄‖∗̄
x

(‖ds̄‖∗̄
x − μ‖dx̄‖x̄ )

2 ≤ (‖s̄‖∗̄
x )

2 + μ2‖dx̄‖2
x̄

‖ds̄‖∗̄
x ≤ kx̄μ+

√

μ2(η2 + ν̄)+ k2
x̄μ

2 = ks̄μ (35)

where ks̄ := kx̄ +
√

(η2 + ν̄)+ k2
x̄ .

Feasibility of z+

Define α1 := k−1
x̄ = 
(1/

√
ν̄). Then for any α ≤ α1, we have

‖x̄ − (x̄ + αdx̄ )‖x̄ = α‖dx̄‖x̄
(34)≤ αkx̄ ≤ 1

and so from (22), we conclude x̄ + αdx̄ = x̄+ ∈ K̄.
Now, define α2 := (1 − η)k−1

s̄ = 
(1/
√
ν̄). Then for α ≤ α2, we have

μ−1‖s̄+ + μgx̄‖∗−gx̄
= μ−1‖s̄ + αds̄ + μgx̄‖∗−gx̄

= μ−1‖ψ + αds̄‖∗−gx̄

(18)≤ μ−1‖ψ‖∗̄
x + μ−1α‖ds̄‖∗̄

x

(35)≤ η + αks̄ ≤ 1.

Since −gx̄ ∈ K̄∗, we have by (23) thatμ−1s̄+ ∈ K̄∗ and therefore s̄+ ∈ K̄∗. Therefore,
Lemma 4 holds with α = min{α1, α2} = 
(1/

√
ν̄) = 
(1/

√
ν).

Bound on ψ+

First recall the definition (6): ψ(x̄, s̄, t) = s̄ + tgx̄ . Now consider for a fixed v0 the
function

�t (x̄) = x̄ T v0 + t F (x̄)

which is self-concordant with respect to x̄ . Define its Newton step by nt (x̄) :=
−∇2�t (x̄)−1∇�t (x̄). Define also q = ‖nt2(x̄)‖x̄ . From the general theory of self-
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concordant functions, the following inequality holds. If q ≤ 1, then

‖nt2(x̄2)‖x̄2 ≤
(

q

1 − q

)2

. (36)

For a proof of this relation, see e.g. Theorem 2.2.4 in [21]. With v0 = s̄+, t2 = μ+
and x̄2 = x̄+, the inequality (36) is

‖ψ+‖∗
x̄+ ≤ μ+

(
q

1 − q

)2

. (37)

where μ+q = ‖H−1
x̄ (s̄+ + μ+gx̄ )‖x̄ = ‖s̄+ + μ+gx̄‖∗̄

x . From Lemma 3 and (34):

|μ− μ+| = | − αμ+ α(1 − α)ν̄−1ψT dx̄ |
≤ μα

(
1 + (1 − α)ηkx̄ ν̄

−1
)
. (38)

By the assumption ‖ψ‖∗̄
x ≤ ημ combined with (34), we have ψT dx̄ ≥ −ηkx̄μ.

Therefore

μ+ = (1 − α)μ+ α(1 − α)ν̄−1ψT dx̄

≥ μ(1 − α)(1 − αηkx̄ ν̄
−1)

μ/μ+ ≤ (1 − α)−1(1 − αηkx̄ ν̄
−1)−1 (39)

Let us now obtain a bound on q.

μ+q = ‖s̄+ + μ+gx̄‖∗̄
x = ‖ψ − (μ− μ+)gx̄ + αds̄‖∗̄

x (40)

≤ ‖ψ‖∗̄
x + |μ− μ+|‖gx̄‖∗̄

x + α‖ds̄‖∗̄
x

≤ ημ+ μα
(

1 + (1 − α)ηkx̄ ν̄
−1
)√

ν̄ + αks̄μ

≤ μ
(
η + αks̄ + α(1 + (1 − α)ν̄−1ηkx̄ )

√
ν̄
)

q ≤ (μ/μ+)(η + α(
√
ν̄ + ks̄ + ηkx̄ ))

≤ (1 − α)−1(1 − αηkx̄ ν̄
−1)−1(η + α(

√
ν̄ + ks̄ + ηkx̄ ))

where we used (35), (38), (39) and the assumption ‖ψ‖∗̄
x ≤ ημ. Now the reader can

verify that for η ≤ 1/6 and ν̄ ≥ 2, we have the implication

α ≤ α3 := 1

11
√
ν̄

= 
(1/
√
ν̄) ⇒ q2/(1 − q)2 ≤ 2η ≤ 1/3 (41)

which also implies q < 1. Now by (37), we see that (41) implies ‖ψ+‖∗
x̄+ ≤ 2ημ+

and hence z+ ∈ N (2η) which finishes the proof of Lemma 5.
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Appendix 4: Correction phase

Assume ‖ψ(x̄, s̄, μ)‖∗̄
x ≤ βμ where μ := μ(z) with z = (x̄, y, s̄). The equations

defining the correction step (δx̄ , δy, δs̄) are

G(δy; δx̄ )− (0; δs̄) = 0 (42)

δs̄ + μHx̄δx̄ = −ψ(x̄, s̄, μ) (43)

and the next point is then (x̄+, y+, s̄+) := (x̄, y, s̄)+ α̂(δx̄ , δy, δs̄). Left-multiplying
(42) by (δy, δx̄ )

T , we get δT
x̄ δs̄ = 0. From (43), we then have

(‖δs̄‖∗̄
x )

2, μ2‖δx̄‖2
x̄ ≤ (‖δs̄‖∗̄

x )
2 + μ2‖δx̄‖2

x̄ = (‖ψ(x̄, s̄, μ)‖∗̄
x )

2 ≤ β2μ2

and therefore

‖δx̄‖x̄ ≤ β, ‖δs̄‖∗̄
x ≤ βμ. (44)

From (43), we also have

‖ψ(x̄, s̄, μ)+ α̂δs̄‖∗̄
x = ‖(1 − α̂)ψ(x̄, s̄, μ)+ α̂μHx̄δx̄‖∗̄

x

≤ (1 − α̂)‖ψ(x̄, s̄, μ)‖∗̄
x + α̂μ‖δx̄‖x̄

≤ (1 − α̂)βμ+ α̂μβ = βμ (45)

Where we used (44). Now define q = (μ+)−1‖s̄+ + μ+gx̄‖∗̄
x . Then estimating simi-

larly to (40), we get

μ+q ≤ ‖ψ(x̄, s̄, μ)+ (μ+ − μ)gx̄ + α̂δs̄‖∗̄
x

≤ βμ(1 + α̂(βν̄−1/2 + 1))

and similarly to the computation in (39), we therefore find

μ/μ+ ≤ (1 − α̂ν̄−1β2)−1

so that altogether

q ≤ β(1 − α̂ν̄−1β2)−1(1 + α̂(βν̄−1/2 + 1)). (46)

Now we can apply the theorem (36) with v0 = s̄+, t = μ and x̄2 = x̄+:

‖ψ(x̄+, s̄+, μ+)‖∗
x̄+ ≤ μ+

(
q

1 − q

)2

(47)

The reader can verify that for α̂ ≤ 1/84, ν̄ ≥ 2, β ≤ 2η ≤ 1/3, the bound (46) implies
that when recursively using (47) twice, we obtain
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‖ψ(x̄+, s̄+, μ+)‖∗
x̄+ ≤ 1

2
β ≤ η

and therefore z+ ∈ N (η) which proves Lemma 6.

Appendix 5: Algorithm complexity

From Lemma 3, we have that the linear residuals G(y; x̄) − (0; s̄) are reduced by a
factor (1 − α) in each iteration. Since we can always take α = 
(1/

√
ν̄), we see that

G(y; x̄)− (0; s̄) decreases geometrically with a rate of (1−
(1/√ν̄))which implies
that

‖G(y; x̄)− (0; s̄)‖ ≤ ε‖G(y0; x̄0)− (0; s̄0)‖

in O(√ν̄ log (1/ε)) = O(√ν log (1/ε)) iterations.
To see that the same holds for μ(z), let us briefly use the following notation: z is

the starting point, z+ is the point after prediction and z( j) is the point after applying j
correction steps starting in z+. Then from Lemma 3 and (34), we have

μ(z+) ≤ (1 − α)μ(z)+ α(1 − α)ν̄−1μηkx̄

≤ μ(z)(1 − α)(1 + αηkx̄ ν̄
−1)

= μ(z)(1 −
(1/
√
ν̄)) (48)

Since δT
x̄ δs̄ = 0, we see from (43) that

(x̄+)T δs̄ = μ(z+)δT
x̄ gx̄+ = δT

x̄ ψ(x̄
+, s̄+, μ(z+))− δT

x̄ s̄+ (49)

Therefore

ν̄μ(z(1)) = (x̄+ + α̂δx̄ )
T (s̄+ + α̂δs̄)

(49)= (x̄+)T (s̄+)+ α̂δT
x̄ ψ(x̄

+, s̄+, μ(z+))
≤ ν̄μ(z+)+ α̂β2μ(z+)
= ν̄μ(z+)(1 + α̂β2ν̄−1)

and hence

μ(z(2)) ≤ μ(z+)(1 + α̂β2ν̄−1)2

(48)≤ μ(z)(1 −
(1/
√
ν̄))(1 + α̂β2ν̄−1)2

= μ(z)(1 −
(1/
√
ν̄))

which shows that also μ(z) is decreased geometrically with a rate of (1 −
(1/√ν̄)).
Thereforeμ(z) ≤ εμ(z0) in O(√ν̄ log (1/ε)) = O(√ν log (1/ε)) iterations, finishing
the proof of Theorem 1.
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