
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Mapping requirements to a product architecture supported by a PLM system

Bruun, Hans Peter Lomholt; Hauksdóttir, Dagný; Harlou, Ulf; Mortensen, Niels Henrik

Published in:
13th International Design Conference - Design 2014

Publication date:
2014

Link back to DTU Orbit

Citation (APA):
Bruun, H. P. L., Hauksdóttir, D., Harlou, U., & Mortensen, N. H. (2014). Mapping requirements to a product
architecture supported by a PLM system. In 13th International Design Conference - Design 2014 Design
Society.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Online Research Database In Technology

https://core.ac.uk/display/43246541?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/mapping-requirements-to-a-product-architecture-supported-by-a-plm-system(4c2f7959-3560-42fd-9a66-c91d51844bbe).html


 1 

INTERNATIONAL DESIGN CONFERENCE - DESIGN 2014 

Dubrovnik - Croatia, May 19 - 22, 2014. 

 

MAPPING REQUIREMENTS TO A PRODUCT 

ARCHITECTURE SUPPORTED BY A PLM SYSTEM 

H.P.L. Bruun, D. Hauksdóttir, U. Harlou, N.H. Mortensen 

Keywords: Requirements, Product architecture, PLM system support 

1. Introduction 

Engineering design in the modern global and competitive business environment is under ever 

increasing pressure to perform better in terms of productivity, quality and high value output 

customised for specific market segments. One approach to improve engineering design performance is 

through reusing previous knowledge. If a product domain is mature it is likely that a new product will 

have considerable overlap with previous product variants. This creates the opportunity to harvest 

benefits from creating a high-quality reusable knowledge that can be used between development 

projects. The practice of exploiting commonality to take advantage of economies of scale and scope, 

while targeting a variety of market applications, is generally referred to as Product Families 

Engineering (PFE) or Product Line Engineering (PLE). A product family is a group of related products 

that are derived from a common set of design elements to satisfy a variety of market applications 

where the common elements constitute the product platform [Meyer and Lehnerd 1997]. There are 

many advantages to PFE most of which stem from increased commonality among the set of products. 

All work elements used in the product development are possible elements for reuse. It can be assumed 

that reusing knowledge at previous development process steps will subsequently lead to reuse in the 

following process steps. Therefore ideally, identifying and reusing front-end knowledge such as 

market information and customer needs should be the optimal origin of information reuse. .  

Requirements management (RM) emphasises on capturing what the product should do without 

describing how it should do it. This emphasis on the product domain improves understanding a 

planned product and encourages the discovery of the true stakeholder needs, therefore preventing 

premature solution selection. One of the main goals of RM is to ensure good understanding between 

the development organization and stakeholders. Inadequate RM is generally considered one of the 

major causes for product failures in product development project [Goldin et al. 2010; Jones 1995; 

McConnell 1996]. One of the main reasons for companies facing a challenge in managing 

requirements is that requirements are defined in the beginning of a development project when 

desirable properties are abstract. When the product system is synthesised, requirements often have to 

be detailed and modified in order to reflect the solution domain. This interplay between problem and 

solution domains is at the heart of any engineering design activity [Chen et al. 2013]. Successful 

development of a platform and deployment of a product family requires a successful transformation of 

information between the disciplines.  

The purpose of this paper is to support the interplay between the problem (requirement) domain and 

the solution (architecture) domain of a product family. An approach for mapping requirements to 

architectural views of a product family is presented. In the approach 5 views are suggested, 2 

requirement model views, a customer view and a functional view, and 3 views describing the product 

architecture; functional system, physical module and interface view. The customer requirements are 

mapped to the product architecture on a conceptual level. Based on the architecture design further 

requirements are identified. The architectural models therefore contain design information as well as 



2 

requirements, enabling the designers to specify requirements originating from architectural decisions 

simultaneously as those decisions are taken and continue to work with and elaborate on requirements 

thought the design process. The paper furthermore describes how the suggested approach can be 

accomplished by using a Product Lifecycle Management (PLM) tool.  

2. Why is it beneficial to map requirements to the product architecture? 

An early understanding of requirements and choice of architecture is key to managing product 

development for complex systems and projects. Typically the effectiveness of a solution is determined 

with respect to a defined problem, however, the nature of the problem and its scope could depend on 

what solutions already exists or what solutions are plausible and cost-effective [Chen et al. 2013]. In 

reality, the architecture can constrain designers from meeting particular requirements, and the choice 

of requirements can influence the architecture that designers select or develop. Recent models suggest 

that instead of doing requirements only at the early phases, requirements definition and design are 

interactive activities, handled simultaneously though the development life-cycle [Nuseibeh 2001]. The 

key objectives for mapping requirements to elements of the product architecture are:  
 

 To realise how the architecture constrains and enables requirements. 

 To better evaluate the cost of implementing new requirements. 

 To identify and rationalise reuse of components for a new product variant. 

 To enable modular design:  

o By enabling an optimisation of modularity in the product architecture in regards to 

requirements.  

o By enabling an implementation of new or changed requirements by only redesigning the 

affected systems/modules.  

 To enable tests of modules and functional systems and therefore, identifying incompliances 

earlier. 

 To identify constraints that the architecture and selected solutions compose on the design.  

 To support focus on requirements compliance during design, by enabling designers to have a 

overview of the requirement affecting the module they work on. 

 Better traceability for how customer requirements are realised in design leading to a better 

understanding of how customer value is established. 
 

Requirements are information intense. For complex systems the requirement specification can contain 

hundreds of requirements and be presented in documents of considerable length. It can therefore be 

difficult to get a sufficient overview. It is important to consider the receiver and user of the 

requirement specification. If it is not possible to provide a view of the requirement relevant for a 

specific part of the system, it will be difficult to sort out and identify the relevant information. This 

decreases the value of the requirement specification and threatens product quality. A method for 

systematically addressing the right requirements during design is needed.  

In a modern engineering environment, both requirements and architecture are important aspects of 

modelling the system, and architecture becomes a critical aspect of describing the problem. 

Architecture serves two roles; it defines and it constrains [McGovern et al. 2004]. It defines the system 

components, their interfaces and interactions. Existing systems, infrastructure and capabilities provide 

a rich base from which to create new capabilities but also introduce a set of complex constraints. As 

systems become more technically complex, the architecture will have a more dominant role in 

defining the problem. Architecture is no longer solely a downstream development activity; it is also an 

upfront activity, a key consideration in defining the problem [Cole 2006]. While specifying a solution, 

designers are also constraining, and therefore imposing additional requirements. Architecture at one 

level must support requirements at that level, but since generates constraint to the solution space, it 

drives requirements at lower levels [Cole 2006]. Researchers and practitioners are struggling to 

develop methods that allow rapid development in a competitive market, combined with the improved 

analysis and planning that is necessary to produce high-quality systems within tight time and budget 



 3 

constraints. A more robust and realistic development process allows both requirements engineers and 

system architects to work concurrently and iteratively to describe the intended system [Nuseibeh 

2001].  

3. State of the art 

This section briefly reports significant contributions in the research areas of representing product 

architectures, requirements management and the transformation between the two.  

3.1. Representation of products architectures 

Product architecture is the scheme by which the functions of the product is mapped towards the 

physical parts, thus defining the product architecture as the arrangement of functional elements, the 

mapping from functional elements to physical parts and the specification of interfaces among these 

[Ulrich 95]. The conceptualisation of a product system expressed in a product architecture model 

assists the understanding of the product system’s essence and key properties pertaining to its 

behaviour, composition and evolution [IEEE 2011]. Architecture descriptions are used by the 

members that create, utilise and manage product systems to improve communication and co-operation; 

enabling them to work in an integrated, coherent fashion. The formulation of an architecture model 

involves considerations from several perspectives generating different views, e.g. formulated in the 

PFMP framework [Harlou 2006]. The customer view describes the quality properties that are valuable 

and meaningful to the customers. The technical or engineering view reveals how functionality is 

provided and what technology has been applied. The physical view describes how the product design 

is realised by the physical components. In addition, to enable access supply chain considerations, a 

supplementary representation of possible production layouts, a production view, is needed [Mortensen 

et al. 2008]. In order to incorporate the different views, generic modelling notations have to be applied 

that enable the representation of commonality, alternative variety, and ranges [Jiao and Tseng 2000; 

Harlou 2006]. 

3.2. Requirement management and product architecture 

A requirement specifies something that the product must do or a quality that the product must have 

[Robersson and Robertsson 2012]. Product quality is a degree of excellence regarding the ability of a 

system to provide a desired combination of quality characteristics [Niemelä and Immonen 2006]. Poor 

product definition can result in specification creep, time-to-market delays and insufficient product 

quality. RM proposes methods to cope with the requirements at the early phases of the development 

life-cycle and presents concepts of identifying, collecting and allocating “system functions, attributes, 

interfaces, and verification methods that a system must meet including customer, derived (internal), 

and specialty engineering needs” [Stevens and Martin 1995, p.11]. It can be said that in modern 

approaches RM issues are engineered, involving tools, modelling, database design, data handling etc. 

[Alexander and Beus-Dukic 2009]. The twin peaks model, see Figure 1, present an emphasis on the 

equal status of requirements and architecture.  

 
Figure 1: Twin peak model. 

The two are intertwined, and it is important to understand how the architecture constrains and enables 

requirements. At the same time a separation of the problem specification structure and solution 

specification structure is necessary [Nuseibeh 2001]. Although the twin peaks provides a conceptual 



4 

differences and relationship between requirements and design, the process of moving between the 

problem and the solution domain is not as well recognised [Goedicke et al. 1996]. Matrix-based 

modelling techniques help to classify the relationship between different design elements and therefore 

support the process of moving from the problem to the solution domain. Through Quality Function 

Deployment (QFD) and Axiomatic Design (AD) method designers can use a series of inter-domain 

matrixes [Malmquist 2002] to transfer customer requirements into specific product attributes, 

engineering characteristics, possible design solutions and manufacturing activities [Akao 1990; Suh 

2001]. Both methods provide guidelines to systematically make design decisions and reuse design 

elements based on customer requirements with the objective to design customer satisfaction and 

quality assurance [Jin and Lu 1998].   

4. Requirements management and product data management tool support 

To implement any kind of a systematic approach to requirements reuse having an appropriate tool 

support to provide the necessary mechanisms is required [Toval et al. 2008]. RM tools are either 

specifically intended for managing requirements only, or to support the entire systems engineering 

process. Analysis of some of the most popular current RM tools has revealed a lack of automated 

support for some necessary reuse features e.g. for sufficiently managing variability [Toval et al. 2008].  

Product Data Management (PDM) is the use of software or other tools to track and control data related 

to a product domain. PDM technology is intensively used in industry and today its application is 

mainly focused on particular product lifecycle phases, e.g., development, prototyping or production 

[Abramovici 2007; Stark 2011; Sääksvuori & Immonen 2008]. The functionalities of enterprise PDM 

tools have evolved in the last decades and today PDM is in many cases seen as a subset of modern 

PLM system tools [Sääksvuori & Immonen 2008]. PLM is the extension of PDM towards a 

comprehensive approach for product-related information and its management within an enterprise. 

PDM/PLM system tools also holds functionalities for requirement management, but have a broader 

scope that include data vaults that control access to files, and there are formal, workflow-supported, 

processes for executing engineering changes. It is, however, well known that one of the most severe 

limitations of current PDM/PLM systems towards realising such visions is the lack of dedicated 

functionality for RM [Sääksvuori & Immonen 2008]. PDM/PLM systems handle requirements in 

documents, which again require additional work when creating a requirement structure of objects 

[Malmquist 2001]. 

5. Concept for mapping requirements to architectural views of a product family  

The suggested approach for mapping requirements to architectural views of a product family is 

presented in this section. In the approach 5 structural views are suggested, 2 requirement model views, 

a customer view and a functional view, and 3 views (encompassed in 1 visual model) describing the 

product architecture; system, module and interface view. The approach includes using a standard PLM 

system for operational mapping between requirements and the architectural views of a product system 

and enabling continues detailing of requirements and product architecture during development. The 

approach has been developed and tested in a research study. A mobile power loader (Bobcat) is used 

to illustrate and to exemplify. The steps in the approach for mapping requirements to architectural 

views of a product family can be seen in figure 2. 
 

1. Create customer  
and  functional  

requirement 
models 

2. Define product 
architecture using 

the Interface 
Diagram.

3. Generate 
structureal views 

using PLM support.

4. Link 
requirements to 

architecture.

5. Refine, detail and 
add requirements to 

architecture 
elements.

Interative steps

 
Figure 2 Steps in the approach 

The approach suggests two visual models which are utilised for capturing and defining requirements to 

a product system. The first is the Customer view [Harlou 2006] describing the requirements coming 



 5 

from the customer domain. The second is a Function view, e.g. [Pahl et al. 1996], analysing and 

detailing functional requirements. The reason for having two models for handling requirements is to 

take into account the different characteristics of static and functional qualities. The customer view 

presents characteristics and performance levels, and how they differentiate between the product 

variants while the functional view is meant to analyse and detail the expected actions of the product. 

The product system’s material entities are represented by a visual product architecture model, The 

Interface diagram [Bruun & Mortensen 2012b], supporting the mapping from functional to physical 

characteristics, decomposition of the product system into manageable design units, and the creation 

and management of interfaces and interactions between design units. The Interface diagram holds 

three architectural views on a product family, a functional structured system view, a physical 

encapsulated module view, and an interface view. When the visual models have been defined they are 

generated in structural models using PLM support. Links are then inserted to map the requirement 

elements to the product architecture. Finally, requirements and architecture are continuously detailed 

and refined in an interactive manner as the product family based design process proceeds.  

5.1. Creating customer and functional requirement models 

Before identifying any form two requirements models are established. A customer requirement model, 

presents specific quality attributes that the product must meet and the variability of the product family 

from the viewpoint of the customer. The functional requirements model describes the product’s ability 

to do something or be used for something, i.e. deliver an active effect. 

Creating the customer requirement model 

The PFMP customer view is a model used for specifying requirements to product families and ranges 

of products, highlighting the product differentiation from a customer point of view. The Customer 

view formalism has its origin from the object-oriented paradigm and system modelling, and was 

introduced at DTU 1999 [Mortensen 1999]. The formalism is constituted by two types of elements 

including requirement classes and additional attributes, and two types of structures denoted as part-of-

structure and kind-of-structure.  

 
Figure 3 Excerpt from Customer view example of a family of Bobcats  

Classes are groups of requirements that share a common denominator. The part-of-structure describes 

the hierarchical structure of the class of requirements. The kind-of-structure describes the associated 

variance of the part-of-structure and together this gives the total variants of requirements to the 

product system. The approach is performed for a family of products, i.e. a family of commercial 

product variants. The overview of the commercial variants is combined with the customer view. Here 

the mapping of features and options are done towards these variants. Figure 3 shows an excerpt of a 

visual overview of the customer view. Examples of requirements in PFMP customer view: 

 Expected life time (5 years, 10 years) => Product 1 and 3 = 5 years, Product 2 = 10 years 

 Move/Lift pallet application => Product 1 and 2, not product 3 
 

Creating a functional requirements model 

Functional requirements describe an action that the product shall do. To identify the required functions 

of a system a functional model providing a graphical representation of the transformation of energy, 



6 

material or information flow as they pass through the system, can be created.  The conceptual 

functional model should identify the basic individual functions required to accomplish the overall 

functionality of the product [Hutcheson et. al. 2007]. By analysing the relationships between the inputs 

and output of the functions, more concrete functional requirements can be identified. At this point we 

no longer have only a black box view of the product, but still no form specific solutions are included. 

IDEF0 is an example of a well-known formal functional modelling methodology [www.idef.com]. 

Causality between functions and means, capable of realising the functions, was first pointed out by 

Hubka [Hubka & Eder 1988]. In a functional view the functions and means constitute a hierarchy, 

because any function/means need helping functionalities. The Functions/Means-pattern may support 

the synthesis activity. Examples of functional requirements: 

 The machine shall vertically lift the material  

 The machine shall show signals about state vulnerable parts 

5.2. Defining the product architecture using the interface diagram 

The Interface Diagram is a visual design tool for decomposing a product system into functional sub-

systems, modules, components, and interfaces. The tool has been described in additional work by the 

authors [Bruun & Mortensen 2012a], and will not be described in detail here. Application of the tool 

for analysis and synthesis is a proposal for supporting the engineering process when developing 

complex product systems. One of the objectives for deploying the Interface diagram is that it should 

provide the designer with an aid to decompose, characterise, and compose product systems. Another 

equally important objective is to enable a computer-based tool to support this in interplay with the 

Interface diagram. The Interface diagram puts emphasis on managing technical interfaces between the 

modelled entities, hence the chosen name of the modelling tool. The tool puts emphasis on handling a 

product system seen from different viewpoints. The main viewpoint is a sub-systems perspective, i.e.  

a perspective that deals with the product’s main functions or one of its related lifecycles. The main 

sub-systems can be identified by recognizing groups of related functions in the functional model 

described in section 5.2. The second viewpoint is a modular viewpoint in which physically joined 

components are encapsulated into modules. Modules can consist of components belonging to different 

systems, i.e. developed by different engineering teams. It is therefore necessary to integrate system 

components into modules.  

 

 
Figure 4 Excerpt from an Interface diagram of a Bobcat by the use of the Interface diagram formalism. 

The Interface diagram is modelled by means of blocks and lines in the software program Microsoft 

Visio. The Interface diagram is printed on large blue prints in order to get the overview of the product 

system and to allow for stakeholders to write and draw directly on the modelled structures during 

meetings. Figure 4 illustrates an excerpt of an interface diagram. The main elements of the diagram 

formalism are objects denoted Key-components. The purpose of the Key-components is to decompose 

the product system into smaller building blocks. Modules are modelled by arranging Key-components 



 7 

inside boxes with a thick black boundary and rounded corners. The relations between Key-components 

are drawn with lines which represent an interface or an interaction. Interfaces and interactions are 

linkages shared among components, modules, and sub-systems. Interfaces between two Key-

components represent physical relations, e.g. constituting physical connections. Interactions between 

two Key-components represent the transfer of material, energy (forces, movement), and information. 

The interaction may be transferred via an interface, but can also be indirect.  

5.3. Generating structural views using PLM support 

The visual, analytical models are next transformed into structural views, where the relationships 

between the architecture elements will be established. In collaboration with the software vendor 

(PTC
®
) a method for loading the objects from the Interface diagram (Key components and their 

system, module and interface relationships) to the utilised PLM system (Windchill PDMLink 10.2). 

The process of getting all the information from the Customer view, Function view, and Interface 

diagram and into the PLM system is basically divided into two steps: exporting from the models and 

importing into PLM. An interchange format based on XML was defined to contain all information 

from the Interface diagram and the Customer view and was used to contain the data between export 

and import. The function view model was created in an Unified Modelling Language (UML) system 

environment, Enterprise Architect 10, and could be exported directly to the PLM system.     
 

 
Figure 5 Loading requirements and architectural views into PLM 

With both requirements structures and the architecture definition defined in the PLM system, it was 

possible to start establishing linkages between objects.  

5.4. Link requirements to architecture elements 

Requirements are mapped to the product architecture on a conceptual level. Relations are established 

with a standard functionality in the PLM system called MPSE (Manufacturing Product Structure 

Explorer), which works by simple drag and drop operations for creating relations. Examples of 

requirement mapped to the architectural views, and characteristics of the views, are described in the 

following sub-sections.  
 

Mapping customer requirements to functional requirements 

Although the customer performance requirements and the functional requirements are analysed and 

presented in different models, it is important to consider and understand that there is a tight coupling 

between the two. For functionality to provide the expected effects in a sufficient manner it often must 

meet dependent performance attributes. The performance requirements were therefore mapped to the 

functional requirements.  

 Operating weight (2610 lbs.) > mapped to > the machine shall lift a load of material 

 Travel speed (3,5 mph) > mapped to > The machine shall be able to move forward  



8 

The first example illustrates that the machine is required to provide the functionality of lifting a load 

of material, but the function does not meet its quality target unless the lifting functionality can manage 

lifting a weight sufficient for the intended operation.  
 

Mapping requirements to sub-systems 

The purpose of sub-systems is to support the development of functionality in components that are 

spread across multiple modules. Systems are often characterised by one or more of the following: 

Deliver important functionality, e.g. steering, braking, loading etc.; is a complex or new technology, 

e.g. hydraulics, cooling etc.; alignment with organisational structure; requires the involvement of 

many different technical disciplines. The requirements identified in the functional model are mapped 

to the corresponding sub-system. Examples of requirements mapped to sub-systems: 

 Hydraulic pressure (30bar) > mapped to > the machine shall provide hydraulic pressure > 

mapped to > Hydraulic system and Power System 

 The machine shall be able to respond to signals from sensors > mapped to > Control and 

conditioning system  
 

Mapping requirements to modules 

Modules organise and group product components in the best physical arrangement that will optimally 

support the product lifecycle; some examples can be manufacturability, encapsulation of complexity, 

upgradability either for current program or aftermarket needs and serviceability. Examples on 

requirements mapped to modules: 

 Width of bucket (68in) > mapped to > Front equipment module  

 Seat type (Suspension seat) > mapped to > Cabin module 
 

Mapping requirements to interfaces 

In modularisation it is the interface that ensures decoupling, and thereby enables reuse, sharing, 

substitution and serviceability. The purpose of working with interfaces is to specify and design any 

logical or physical relationship required to integrate the boundaries between systems or between 

systems and their environment. In a module context, an interface is important from a physical 

assembly perspective. Examples of interface classes are: Mechanical, spatial, cooling air, cooling 

liquid, electrical measurement, electrical signal, electric grid etc. Examples of requirements mapped to 

interfaces: 

 Bolt flange ( 30 BCD, M12x1,5, (8.8)) > mapped to > Interface.Mechanical.245(Hydraulic 

shaft – hydraulic pump) 

 Flow ( 500 l/h) > mapped to > Interface.Hydraulic.456(Hydraulic pipe – Hydraulic manifold) 

5.5. Refine, detail and add requirements to architecture elements 

Based on the architecture design further requirements are identified. The elements in the architectural 

models therefore contain design information as well as requirements, enabling the designers to specify 

requirements originating from architectural decisions simultaneously as those decisions are taken. As 

form specific solutions that solve the desired functionality of the system are identified, more detailed, 

form-specific functional models can be created. These models further refine the functionality of the 

chosen solution, and should result in an identification of additional requirements and modification of 

existing requirements to reflect the new functionality and flows. The traceability between the models 

in the PLM system greatly supports this interactive system design work. When a requirement is 

associated to a Key component, all structures where the Key component coexists (system, module, 

and/or interface), can see it. Furthermore functionality for monitoring ‘where used’ can be utilised for 

seeing parent-relations for Key components and their requirements, as well as children-relations for 

systems and modules to requirements.  

Requirements are linked from the customer model to the architectural structure of systems and 

modules, as customer requirements affect how functional effects and structural characteristics are 

realised, see Figure 6. Requirements from the functional model are linked to the system view, as it is 

possible to identify relations to the already functional based system view. 



 9 

 
Figure 6 Mapping, detailing, and adding requirements during the development process  

In the early phases of NPD, no or few requirements are linked to the interface structure, as it 

determines as a result of the architecture realisation and composition. Additional requirements 

between the architectural views are established and can be bidirectional, i.e. point to design elements 

between two views. The most important relationships are captured in the beginning of a design 

project, but as the architecture is realised, also detailed relations are defined between the views. In the 

PLM system it is possible to view each model requirements coming from the other models, e.g. 

engineers are able to view customer requirements affecting the design of the architectural element they 

are working on. 

6. Conclusion 

This paper has presented an approach for mapping requirements to a product architecture for the 

application in product family development. The paper contributes to the process of moving from the 

problem domain to the solution domain and addresses the real life industrial challenge of 

simultaneously working on requirements and architectures. The requirement and architectural models 

used in the approach difference between quality properties and functional actions of the product family 

and take into account the special characteristics of functional elements. The method supports an initial 

definition of a limited set of solution neutral customer requirements as well as capturing design driven 

requirements. Customers can view requirements only relevant for their interest, while designers can 

view requirements affecting specific modules, sub-systems, components and interfaces. As the 

architecture is matured and detailed during development additional requirements to chosen solutions 

are identified and documented in the architectural models. Customer requirements can furthermore be 

re-evaluated and adjusted as understanding of architectural elements evolves. The result is an 

interactive approach to work on requirements and architectures. The traceability and continues 

evolvement of requirements is a crucial aspect of all product development projects. By using a PLM 

system for representing the product family defining architecture and for mapping requirements to 

systems, modules and interfaces, it is possible to trace requirements in a straight forward way. Using a 

PLM system in the approach provides a design team with full traceability from requirements to 

architecture elements and from architecture elements to requirements. The approach has been 

validated for functionality, but still remains to be tested in an industrial setting. This work is in 

progress in collaboration with the software vendor and a large manufacturing company developing 

products to the construction industry.   

7. References 

Abramovici, M., “Future trends in product lifecycle management (PLM)”. The future of product development, 

2007, pp. 665-674.  

Akao, Y., “Quality Function Deployment, QFD - Integrating Customer Requirements into Product Design”. 

Portland, Productivity Press, 1990. 



10 

Alexander, I., Beus-Dukic, L., “Discovering Requirements – How to Specify Products and Services”, John Wiley 

& Sons Ltd, Chichester, England, 2009. 

Bruun, H. P. L., & Mortensen, N. H., “Modelling and using product architectures in mechatronic product 

development”, Norddesign 2012, 2012a,  

Bruun, H. P. L., Mortensen, N.H., ”Visual product architecture modelling for structuring data in a PLM 

system”, Product Lifecycle Management 2012, 2012b.  

Chen, L., Babar,M.A.,  Nuseibeh, B.,  “Characterizing Architecturally Significant Requirements”, IEEE 

Computer Society, 2013, pp.38-45.  

Cole, R., “The Changing Role of Requirements and Architecture in Systems Engineering”, Proceedings of the 

2006 IEEE/SMC International Conference on System of Systems Engineering Los Angeles, CA, USA, 2006. 

Goedicke, M., Nuseibeh, B. “The Process Road between Requirements and Design”, Integrated Design and 

Process Technology, 1, 1996, pp. 176-177. 

Goldin, L., Matalon-Beck, M., Lapid-Maoz, J., "Reuse of Requirements Reduces Time to Market", SwSTE2010: 

IEEE International Conference on Software Science, Technology, and Engineering , 2010 , pp 55-60.  

Harlou, U., "Developing Product Families Based on Architectures Contribution to a Theory of Product 

Families", Lyngby: Department of Mechanical Engineering, Technical University of Denmark, 2006.  

Hubka, V., Eder, W. E., "Theory of technical systems: a total concept theory for engineering design", Computer-

Aided Design,  22, 1988,  pp. 254.  

Hutcheson, R.S., McAdams, D.A., Stone, R.B. and Tumer, I.Y. “Function-Based Systems Engineering (FUSE)” 

International Conference on Engineering and Design, ICED’7, 28-29 August 2007, Paris France. 

IEEE. ISO/IEC 42010 Systems and software engineering — Architecture description, 2011. 

Jiao, J., & Tseng, M. M. (2000). Fundamentals of product family architecture. Integrated Manufacturing 

Systems, 11(7), 469-483. 

Jin, Y., Lu, S., "Toward a Better Understanding of Engineering Design Models", in Grabaowski,1998, pp. 73-90.  

Jones, C., "Patterns of Large Software Systems - Failure and Success", Computer, 28, 1995, pp. 86-87.  

Malmqvist, J., "Implementing requirements management: A task for specialized software tools or PDM 

systems?" Systems Engineering, 4, 2001, pp. 49-57.  

Malmqvist, J., "A Classification on Matrix based Methods for Product Modeling", Proceedings of DESIGN 

2002: Proceedings of the 7th international design conference, 2002, pp. 203-201.  

McConnell, S., Rapid development : taming wild software schedules, Microsoft Press Redmond, 1996.  

McGovern, J., et al., “A Practical Guide to Enterprise Architecture”, Prentice-Hall, 2004. 

Meyer, M.H., Lehnerd, A.P., “The power of product platforms: building value and cost leadership”, Free Press, 

New York, 1997. 

Mortensen, N. H., "Design Modelling in a Designer's Workbench Contribution to a Design Language", Kgs. 

Lyngby: Department of Control and Engineering Design, Technical University of Denmark, 1999. 

Niemelä, E., Immonen, A., “Capturing quality requirements of product family architecture”, Information and 

Software Technology, 49, 2006, pp. 1107–1120. 

Nuseibeh,B.,“Weaving Together Requirements and Architectures”, Software Management, 2001, pp.115-11. 

Pahl, G., Beitz, W., & Wallace, K. (1996). Engineering Design A Systematic Approach. London: Springer.  

Robersson, S., Robertsson, J., “Mastering the Requirements Process, 3rd edition”, pp. 9-10. Addison-Wesley, 

London, England, 2012.  

Sääksvuori, A.,  Immonen, A., "Product Lifecycle Management", Springer Verlag, 2008.  

Stark, J., " Product Lifecycle Management: 21st century paradigm for product realisation", Springer, 2011, pp. 

1-16.  

Stevens, R., and Martin, J. (1995) What is Requirements Management? Proceedings of the Fifth Annual 

International Symposium of the INCOSE, Volume 2, pp. 13-18. 

Suh, N.P., “Axiomatic design advances and applications”. New York, Oxford University Press, 2001. 

Toval, A., Moros, B.,  Nicolás, J., Lasheras, J., “Eight key issues for an effective reuse-based requirements 

process”, International Journal of Computer Systems Science & Engineering, 6, 2008, pp. 373-385. 

Ulrich, Karl. "The role of product architecture in the manufacturing firm." Research policy 24.3 (1995): 419-

440. 

Web: http://www.idef.com/idef0.htm 


