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Distributed material density and anisotropy for
optimized eigenfrequency of 2D continua
Pauli Pedersen and Niels L. Pedersen

Abstract Key words Eigenfrequency sensitivity - optimal-
ity criterion - recursive optimization - free material - consti-
tutive components

A practical approach to optimize a continuum/structural eigen-
frequency is presented, including design of the distribution of
material anisotropy. This is often termed free material opti-
mization (FMO). An important aspect is the separation of the
overall material distribution from the local design of constitu-
tive matrices, i.e., the design of the local anisotropy.

For a finite element (FE) model the amount of element
material is determined by a traditional optimality criterion
(OC) approach. In this respect the major value of the present
formulation is the derivation of simple eigenfrequency gradi-
ents with respect to material density and from this values of
the element OC. Each factor of this expression has a physical
interpretation. Stated alternatively, the optimization problem
of material distribution is converted into a problem of deter-
mining a design of uniform OC values.

The constitutive matrices are described by non-dimensional
matrices with unity norms of trace and Frobenius, and thus
this part of the optimized design has no influence on the mass
distribution. Gradients of eigenfrequency with respect tothe
components of these non-dimensional constitutive matrices
are therefore simplified, and an additional optimization cri-
terion shows that the optimized redesign of anisotropy are de-
scribed directly by the element strains.

The fact that all components of an optimal constitutive
matrix are expressed by the components of a strain state, im-
ply a reduced number of independent components of an op-
timal constitutive matrix. For 3D problems from 21 to 6 pa-
rameters, for 2D from 6 to 3 parameters, and for axisymmetric
problems from 10 to 4 parameters.
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1
Introduction

Early optimal design of beams in order to maximize the first
eigenfrequency were based on differential equation approaches,
see Niordson (1965). Plates and other structural models then
followed, see review by Grandhi (1993). The finite element
(FE) approach of the present paper relates to a decided de-
sign domain, where the material densities of the elements are
the design variables, and in addition the element constitutive
components are subjected to design. This is termed free ma-
terial optimization (FMO), often applied to static problems.
In research related to semi-definite programming, eigenvalue
constraints are also included, see Stingl et al. (2009).

The formulation and the theoretical results are valid for
a large class of problems: 1D, 2D or 3D - numerical or ana-
lytical - continuum or structure. The limitations are set bya
model described by symmetric, positive definite matrices for
stiffness as well as for mass (for the system model including
the assumed boundary conditions).

The present structural optimization may be divided into
four steps, performed successively to obtain a redesign. First
step is analysis of a current design, which is obtained by the
standard procedure of subspace iteration. Second step is sen-
sitivity analysis to obtain gradients of the eigenfrequencies
with respect to element material density. A simple explicit
formula for this is derived and presented. This is found to be
important, due to its generality and presented by factors with
direct physical interpretation. The third step is a redesign of
material densities based on an optimality criterion, closely re-
lated to the gradients from sensitivity analysis. The numerical
approach for solution is heuristic, earlier applied with good
experience from other problem such as shape optimization for
eigenfrequency control, see Pedersen and Pedersen (2005).

The fourth step immediately seems complicated, i.e., how
to redesign each element constitutive matrix advantageously?
A new optimality criterion for this step allows to redesign di-
rectly from the strain field corresponding to the current eigen-
mode. This is performed, automatically satisfying normal-
ized, non-dimensional constitutive matrices with unit norms
of trace and Frobenius. Mathematical proof of this is included.
The fact that three strain components in 2D (6 in 3D) describe
the anisotropy, means that not any constitutive matrix (6 com-
ponents in 2D, 21 in 3D) can satisfy the optimality criterion,
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exemplified by that only zero Poisson’s ratio for isotropy is
possible.

The layout of the paper is as follows. Analysis and sen-
sitivity analysis are described in Section 2. In Section 3 the
problem of material distribution to maximize the first eigen-
frequency is stated with non-dimensional design parameters
ρe for the elements, size constraints0 < ρmin < ρe < ρmax ≤
1 and a constraint on the amount of materialV =

∑
e ρeVe,

whereVe is the volume of elemente. In Section 4 the prob-
lem of design of constitutive matrices is presented in detail,
i.e., the determination of the local anisotropy. Constraints that
ensure symmetric, positive definite matrices are stated and
furthermore these matrices are all normalized to unit norm
of trace as well as of Frobenius norm. From a derived opti-
mality criterion it is proved that these constraints are always
satisfied. The case of semi-positive is numerically accounted
for by always keeping a small amount of isotropy, just like
material density should never vanish, say byρe ≥ 0.01.

In Section 5 two examples are chosen to verify the pre-
sented theory and applied procedure. With the actual design
domains and boundary conditions, these examples may be
seen as 2D versions of beam like models. The cantilever model
illustrate how a fixed design domain at the free tip, force a
more meaningful solution. In general robust convergence is
found. The second example of a beam-bridge model is de-
signed as a full model. This example illustrate mode switch-
ing between symmetric and antisymmetric modes. Even if
only the first eigenfrequency is of interest, the subspace it-
eration is set to determine several eigenmodes, to get infor-
mation on the frequency spectrum closest to given shift value
(here zero).

2
Analysis and sensitivity analysis

For a given continuum/structure, analysis by subspace iter-
ation, gives a series of eigenmodes, described individually
by an eigenvector{D}, orthogonal to the other determined
eigenvectors and normalized so that the specific kinetic en-
ergy T = 1. With this normalization of the eigenvector, the
specific elastic energyU is numerically equal to the eigen-
value ω2, i.e., for the numerical valuesU = ω2 = ω2T ,
whereT andU are the time independent amplitudes.

Let us assume an eigenvalue problem described by the
symmetric positive definite stiffness matrix[S] and the sym-
metric positive definite mass matrix[M ]. An assumed sim-
ple (non-multiple) eigenvector is{D} from which the system
specific elastic energy (twice the strain energy) isU and this
energy may be accumulated from element energiesUe. Anal-
ogously the system specific kinetic energyT may be accumu-
lated from element specific kinetic energiesTe.

In the sensitivity analysis we use the following results
from subspace analysis

ω2, Ue, Te with {D} normalized such that

U =
∑

Ue = ω2, T =
∑

Te = 1, ω2 = U/T (1)

whereU/T is the Rayleigh quotient. Further we define el-
ement Rayleigh quotientsUe/Te, that in a somewhat loose
notation are termed element squared frequencies

ω2

e =
Ue

Te

=
{De}T[Se]{De}
{De}T[Me]{De}

(2)

As proved below in Section 2.1 the sensitivity of squared
eigenfrequencyω2 with respect to relative material density
0 < ρe ≤ 1 in elemente is

∂ω2

∂ρe

=
Te

Tρe

(
ω2

e − ω2
)

(3)

This simple result with direct physical interpretation of each
factor is valid for a general model described by positive def-
inite, symmetric stiffness and mass matrices at the system
level, for continuum as well as structure, analytical described
as well numerical discretized. The gradient result (3) is for
stiffness and mass linear depending onρe as proved in Sec-
tion 2.1.

The element specific elastic energyUe, in linear displace-
ments elementse follows directly from a displacement mode
that give a constant elastic energy densityue and thus

Ue = ueρeVe (4)

whereVe is the geometric reference volume of the elemente.
Alternative evaluation ofUe must be derived as the nominator
in (2) for elements without constant energy density. The ele-
ment specific kinetic energyTe in elemente need to be deter-
mined from the element displacement mode{De} and a con-
sistent mass matrix with no coupling betweenx−, y−directions.
The specific kinetic energy can then be divided into two terms,
that exemplified for thex−direction is

(Te)x =
me

12
{De}T

x




2 1 1
1 2 1
1 1 2


 {De}x with me = ρMρeVe

(5)

whereme is the mass of elemente. The mass density with
physical dimension kg/m3 is termedρM to distinguish from
the non-dimensional material volume densities, that tradition-
ally has the notationρe. From (5) a rather simple analytical
expression follows. In general for a linear displacement FE
model, the numerical calculations may be based on explicit
formulas without numerical integration.

2.1
Derivation of eigenfrequency gradients

For linear stiffness interpolation, the expression (3) is derived
in the following. For extension to non-linear interpolation func-
tions see Pedersen and Pedersen (2012). The design param-
etersρe are assumed to be local, positive non-dimensional
quantities in the interval0 < ρe ≤ 1. We here assume both
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the element stiffness matrix[Se] and the element mass matrix
[Me] to be proportional toρe, i.e.,

[Se] = ρe[Se], [Me] = ρe[Me] (6)

with both[Se] and[Me] independent of design.
The gradient∂ω2/∂ρe = ∂(U/T )/∂ρe is determined at

the element level. To avoid extended indexing a hat notation
is introduced by

∂̂()

∂ρe

=

(
∂()

∂ρe

)

fixed displacement

=

(
∂()

∂ρe

)

fixed strains

(7)

and with this short notation the gradient is determined, finally
at the element level

∂ω2

∂ρe

=
∂ω2

∂{D}
∂{D}
∂ρe

+
∂̂ω2

∂ρe

=
1

T 2

(
∂̂U

∂ρe

T − ∂̂T

∂ρe

U

)

=
1

T

(
∂̂Ue

∂ρe

− ω2
∂̂Te

∂ρe

)
(8)

because∂ω2/∂{D} = ∂(U/T )/∂{D} = {0}T. This result,
based on the assumption of symmetric matrices[S] and[M ],
is presented in Wittrick (1962) with further reference to Ja-
cobi (1846). Inserting the assumptions of linear dependency

̂∂Ue/∂ρe = Ue/ρe and ̂∂Te/∂ρe = Te/ρe gives the local result
where the gradient is expressed by local energies

∂ω2

∂ρe

=
1

Tρe

(
Ue − ω2Te

)
=

Te

Tρe

(
ω2

e − ω2
)

(9)

The gradient is proportional to the difference between the lo-
cal ratio of energies (local Rayleigh quotient or termed lo-
cal squared frequency)ω2

e and the system squared eigenfre-
quencyω2.

From expression (9) follows directly the sign of the gra-
dient as allTe, T, ρe are non-negative quantities

∂ω2

∂ρe

> 0 for ω2

e > ω2,
∂ω2

∂ρe

< 0 for ω2

e < ω2,

∂ω2

∂ρe

= 0 for ω2

e = ω2 (10)

To increase the frequency of the continuum/structure we in-
creaseρe for ω2

e > ω2 and decreaseρe for ω2

e < ω2. A de-
sign change may be limited by the active constraint for mate-
rial as stated in (11) and by the fact that sensitivity analysis
will change when changing the design. The solution to these
problems is obtained by the heuristic iterative optimization
procedure, shortly described in Section 3.

3
A density optimization problem and its optimality
criterion

We study the optimization problem to maximize an eigen-
value (assumed single and being the first one)ω2 for a given

amount of material, specified by the volumeV . We assume
this volume constraint to be active and state the problem with
non-dimensional densitiesρe as design variables

Maximize ω2 (objective)

for all densities0 < ρmin ≤ ρe ≤ ρmax ≤ 1 (size limits)

and g =
∑

ρeVe − V = 0 (active constraint) (11)

The optimality criterion for material distribution OCm with
only a single, active constraint is proportionality between the
gradients of the objective and the gradients of the constraint,
i.e.,

∂ω2

∂ρe

= λ
∂g

∂ρe

= λVe ⇒ λe =
1

Ve

∂ω2

∂ρe

= λ (12)

with the same valueλe = λ for all elements (sub-domains)
e having an active design parameterρe whereρmin < ρe <
ρmax. For a given design a number of different valuesλe re-
sult, and we want to change the design in order for these val-
ues to become more equal for the active design elements (re-
sulting in the unknown Lagrange multiplierλ). With linear
stiffness interpolation the gradient∂ω2/∂ρe is given in (9)
and the optimality criterion for distribution of material den-
sity OCm is

λe =
Te

T

1

ρeVe

(ω2

e − ω2) = λ (13)

3.1
Possible heuristic numerical procedure

The optimization problem (11) is by the OCm (12) converted
to a problem of finding a continuum of best possible unifor-
mity of the values of the local OCm (λe). Size limits and the
active material volume constraint in (11) normally do not al-
low for satisfying the OCm everywhere. Iteratively the active
size constraints are fulfilled.

A heuristic recursive procedure for optimization based on
(13) is separated according to the sign of the gradients (sign
of (ω2

e − ω2)). The redesign of theρe follows

For positive gradients(ω2

e − ω2 > 0)

(ρe)new = (ρe)current(1 + 4.0λe/λmax)
qη

For negative gradients(ω2

e − ω2 < 0)

(ρe)new = (ρe)current(1 − 0.8λe/λmin)
qη (14)

where the values ofλmin < 0, λmax > 0 are determined dur-
ing the evaluation of the gradients. The specific values for
control parameters in (14),4.0, 0.8, q = 0.8, are chosen from
experience, acting as a kind of move-limits and influence the
number of recursive redesigns (number of eigenvalue analy-
sis). The iteratively (without FE analysis) determined volume
correction factorη relate to the fact that the densities at the
limits ρmin or ρmax are not known in advance. Factorη strictly
keep the specified volume by inner iteration where theρe at
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the size limits are localized. This is described in detail inPed-
ersen and Pedersen (2012). The valueq = 0.8 of the power
also limits the change ofρe in one redesign, and such a power
(also with a lower value) is often applied for similar recursive
procedures. The procedure is applied in the following exam-
ples, and have earlier been applied with success to different
other problems.

4
Redesign of components for
normalized constitutive matrices

The separation of the local constitutive matrix[Le] is

[Le] = ρeE0[L̃e]

= ρeE0




(L̃1111)e (L̃1122)e

√
2(L̃1112)e

(L̃1122)e (L̃2222)e

√
2(L̃2212)e√

2(L̃1112)e

√
2(L̃2212)e 2(L̃1212)e


 (15)

where[L̃e] is a non-dimensional matrix of unit norm, i.e., a
non-dimensional description of the material anisotropy. The
discussion of this matrix is here of primary interest as the op-
timal determination ofρe is described in Section 3. The di-
mensional modulusE0 is a fixed constant.The problem of op-
timizing the first eigenfrequency by redesign of the anisotropy
of elemente is stated

Maximize ω2 (objective)

by redesign of non-dimensional constitutive components

L̃ijkl (design parameters subject to unity Frobenius norm)

h = (Frobenius([L̃])2 − 1 = 0 (active constraints) (16)

The optimality criterion corresponding to this problem is
termed OCa. With only a single, active constraint the criterion
is again proportionality between the gradients of the objective
and the gradients of the constraint, i.e.,

∂ω2

∂(L̃ijkl)e

= Λ
∂h

∂(L̃ijkl)e

(17)

for which the involved gradients are then derived.

4.1
Gradients and resulting optimality criterion

The local gradient of the Rayleigh quotient with respect to
the components of the local constitutive matrix is more sim-
ple than (9), because the mass distribution is unchanged (T
anTe unchanged), here with hat notation as an alternative to

extended index

∂ω2

∂(L̃ijkl)e

=
∂(U/T )

∂(L̃ijkl)e

=
̂∂(U/T )

∂(L̃ijkl)e

=
̂∂(Ue/Te)

∂(L̃ijkl)e

=
1

Te

∂̂Ue

∂(L̃ijkl)e

=
ρeVe

Te

∂̂ue

∂(L̃ijkl)e

with fixed strains inue = {ǫ}T
e [L̃]e{ǫ}e (18)

From the final relation in (18) then follows

∂ω2

∂(L̃1111)e

=
ρeVe

Te

(ǫ11ǫ11)e,
∂ω2

∂(L̃2222)e

=
ρeVe

Te

(ǫ22ǫ22)e,

∂ω2

∂(L̃1212)e

= 4
ρeVe

Te

(ǫ12ǫ12)e,
∂ω2

∂(L̃1122)e

= 2
ρeVe

Te

ǫ11ǫ22)e,

∂ω2

∂(L̃1112)e

= 4
ρeVe

Te

(ǫ11ǫ12)e,
∂ω2

∂(L̃2212)e

= 4
ρeVe

Te

(ǫ22ǫ12)e

(19)

The gradients of the constrainth = F 2 − 1 = 0 are di-
rectly

∂h

∂(L̃1111)e

= 2(L̃1111)e,
∂h

∂(L̃2222)e

= 2(L̃2222)e,

∂h

∂(L̃1212)e

= 8(L̃1212)e,
∂h

∂(L̃1122)e

= 4(L̃1122)e,

∂h

∂(L̃1112)e

= 8(L̃1112)e,
∂h

∂(L̃2212)e

= 8(L̃2212)e (20)

Comparing (19) and (20) it is seen that the optimality criterion
OCa for 2D plane problems is satisfied for

(L̃ijkl)e =
(
ǫijǫkl/(ǫ2

11
+ ǫ2

22
+ 2ǫ2

12
)
)
e

(21)

4.2
Proof of unit norms

As seen from (21)[L̃e] = {α}{α}T is described by such a
dyadic product. Then by definitions of trace and Frobenius
norms follows, that the values of trace and Frobenius norms
are always equal and[L̃e] is semi-positive definite.

Trace[L̃e] = Frobenius[L̃e] = {α}T{α}
where {α}T{α} > 0 for {α} 6= {0} (22)

Omitting the indexe for element, point or domain we pro-
ceed the discussion of the obtained constitutive matrix as de-
scribed directly by the corresponding strain state. Although
a constitutive matrix is not necessary obtainable as a dyadic
product, this will be the case for the optimal constitutive ma-
trix, where the important result in 2D plane problems with
normalization to unit norms is

[L̃] = {α}{α}T with

{α}T = {ǫ11 ǫ22
√

2ǫ12}/
√

ǫ2
11

+ ǫ2
22

+ 2ǫ2
12

(23)
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That the optimal constitutive matrix of unit norms in 2D
is described by only three parameters (the strain components)
limits the possibilities for a matrix with normally up to 6 in-
dependent parameters. An example is that an isotropic[L̃]
is only possible with zero Poisson’s ratio and for this case
{α}T = {1 1 1}/

√
3.

Numerically the rate of change of the constitutive matri-
ces are in each redesign limited by a non-dimensional step pa-
rameter0 ≤ β ≤ 1 similar to the design approach for strength
optimization in Pedersen and Pedersen (2013) whereβ = 0.5
andβ = 0.1 were used, i.e.,

[L̃]new = β[L̃]from (23) + (1 − β)[L̃]old (24)

The design approach is initiated with[L̃]0 = [I]/3, i.e., zero
Poisson’s ratio isotropic material, non-dimensional and nor-
malized. It is concluded that for a given strain state the opti-
mized non-dimensional constitutive constitutive matrix is known
with unit trace and Frobenius norm. Note, that with initial
positive definite[L̃] it will for β < 1 stay positive definite
through the redesign iterations. For the present eigenfrequency
problems, the numerical valueβ = 0.2 is applied, and even
with this rather low value fast convergence is obtained.

5
Two design examples

Two examples, each with four different amounts of material,
are presented. First a cantilever problem where a fixed design
domain is included so that a degenerated optimized design is
avoided. The influence of the amount of material is illustrated
and the redesign history is shown with and without redesign
of anisotropy. The increase in the value of the first eigenfre-
quency with a factor up to 2.2 by only redesign of material
distribution, while with including optimized constitutive ma-
trices then with a factor up to 3.5.

The second example is a a simply supported beam-bridge
with no fixed design domain. To some extent modeling with
assumed symmetric eigenmode is possible for half the model,
but the possibility of mode switching from symmetric mode
to antisymmetric mode for extended redesign is illustrate.Fig-
ures show the history of resulting eigenfrequencies for four
different problems with amount of material set to 20%, 40%,
60% and 80% of full amount of material, all with uniform
initial designs and this means that the four initial problems
have identical eigenfrequencies (in the figures normalizedto
unity).

5.1
Cantilever with fixed tip design

Figure 1 shows the dimensions and data applied for this ex-
ample, and the 0.4m close to the tip is fixed to the initial value
of the density. The mass and stiffness for this domain is thus
different for the treated cases of 20%, 40%, 60% and 80%
material, but without influence on the response of the initial

uniform designs. The specific FE model has 16384 elements
(128 × 32 × 4) and 16706 dof.

12.8 m

5
m

3
m

0.4 muniform thickness of 0.01 m

reference modulusE0 = 0.7 · 10
11 Pa

reference mass densityρM = 2700kg/m3

Fig. 1 Data for the cantilever problem with fixed design near the
free tip (0.4m).

With focus on the case of 20% material Figure 2 shows
the history of results for two different redesign iterations. The
dotted curve corresponds to redesigns of both density and
anisotropy already from the first redesign, and convergencein
10 redesigns is observed. The full curve also give information
about the result after 10 iterations where anisotropy in notop-
timized, and thus corresponds to a more traditional optimiza-
tion. In this manner the essential importance of anisotropyis
shown.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  5  10  15  20

Redesign

Relative first eigenfrequency

Anisotropy redesign from start

Anisotropy redesign from 10

Fig. 2 Iteration histories for the cantilever problem with 20% ma-
terial. Full line: only anisotropy redesign from redesign number 10.
Broken line: anisotropy redesign from redesign number 0.

The initial design, illustrated in Figure 3a is uniform mate-
rial density (hereρe all equal to 0.2). At the tip domain this is
not changed. Figure 3b shows the distribution of values of op-
timality criterion for material distribution OCm for the initial
design in 3a. The positive as well as negative values illustrate
that a better material distribution can be obtained by redesign.

After 10 redesigns of only material density, the first eigen-
frequency is increased with a factor close to 2.2, and Figure
3c shows the optimized material distribution, when isotropy
is kept. Figure 3d shows the distribution of OCm values for
the optimized design in 3c. Note, that these OCm values are
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a) Initial uniform density, displaced design b) OCm values for design A

c) Optimized isotropy density, displaced design d) OCm values for design C

e) Optimized anisotropy, displaced density design f) OCm values for design E

g) Value of largest stiffness h) Direction of largest stiffness

Fig. 3 Designs and responses for the cantilever problem with 20% of full material a) Initial uniform isotropic design with b) corresponding
distribution of OCm values — c) redesign after 10 isotropic density redesign with d) corresponding distribution of OCm values — e) redesign
after further 10 density redesign including anisotropy redesign with f) corresponding distribution of OCm values — g) level of anisotropy
resulting with h) showing directions of maximum stiffness.

almost constant in domains corresponding to active design pa-
rametersρmin < ρe < ρmax. The white domains correspond to
ρe = ρmin = 0.01, to be interpreted as holes.

After 10 more redesigns where the normalized constitu-
tive matrices are also redesigned according to the simple for-
mula (23) with modification (24) and the first eigenfrequency
is increased further, now with a factor of 3.5. Figure 3e shows
the optimized material distribution, being rather close tothe
distribution in 3c, meaning that the local constitutive redesign
has only little influence on the optimized material distribution
for this problem. Figure 3f shows the distribution of OCm val-

ues for the optimized design in 3e. Also these OCm values are
almost constant in domains corresponding to active design pa-
rametersρmin < ρe < ρmax and the white domains correspond
to ρe = ρmin = 0.01.

To illustrate the obtained anisotropy (in reality 6 compo-
nents locally) Figure 3g shows a value for the level of anisotropy,
being a number between 1/3 for isotropy and 1 for single di-
rectional ”fiber”, as explained in the appendix. The largest
normalized stiffness is used to illustrate the level of anisotropy.
Figure 3h shows lines of direction for the use of this largest
normalized stiffness. Although not complete it is found that
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the combination of Figures 3e, -g and -h give a rather good
illustration of the final optimized design.

The shown histories in Figure 4 gives an impression of
stable convergence for the chosen numerical procedure (14),
with the same numerical control parameters4.0, 0.8, q = 0.8
in (14) andβ = 0.2 in (24) for all cases. For the 80% prob-
lem, the lower curve in Figure 4 for the third redesign is de-
creasing, meaning that the design changes has been too large.
With the kept numerical control parameters it illustrates that
the procedure (14)-(24) is able to repair a too large design
change. Note, that the fixed tip amount of material is depend-
ing upon the total amount of material. The initial uniform de-
signs imply the equal eigenfrequencies for all four cases.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  5  10  15  20

Redesign

First eigenfrequencies, normalized by initial value

20 % material
40 % material
60 % material
80 % material

Fig. 4 Iteration histories for the cantilever problem with 20%, 40%,
60% and 80% material.

5.2
Beam-bridge with mode switching

Figure 5 shows the dimensions and data applied for this ex-
ample. The mass and stiffness for this domain is thus differ-
ent for the treated cases of 20%, 40%, 60% and 80% of full
material, but without influence on the response of the initial
uniform designs. The specific FE model has 28416 elements
(222 × 32 × 4) and 16706 dof.

4.8 m

0.4 m

uniform thickness of 0.01 m
reference modulusE0 = 0.7 · 10

11 Pa
reference mass densityρM = 2700kg/m3

Fig. 5 Data for the beam-bridge problem with mode switching. Only
midpoint supported in beam length direction.

Figure 6 shows the history of not only the first eigen-
frequency but also the two closest eigenfrequencies obtained
by subspace iteration. Almost multiple solutions are obtained
and including mode switching. For the initial design the first

eigenmode is a bending mode as shown in Figure 7 which is
also the case after only material density optimized, for thefi-
nal optimized design the eigenmode is a longitudinal mode.
This mode switching is due to the constitutive anisotropy de-
sign.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  5  10  15  20

Redesign

Relative eigenfrequencies

First (fundamental) eigenfrequency

Second eigenfrequency

Third eigenfrequency

Fig. 6 Iteration histories for the beam-bridge problem with 20% ma-
terial. Only anisotropy redesign from redesign number 10.

Note to Figure 6: Close to redesign step 2 eigenmodes
2 and 3 switch, close to redesign step 15 eigenmodes 1 an
2 switch, close to redesign step 16 possible multiple eigen-
modes switch, and finally close to redesign step 20 eigen-
modes 1 and 2 switch. Although multiple eigenfrequencies
are involved a monotone increasing of the first eigenfrequency
is found by the OC procedures.

With focus on the case of 20% material Figure 7 is a pre-
sentation similar to Figure 3 for the cantilever problem. The
initial design, illustrated in Figure 7a is uniform material den-
sity (hereρe all equal to 0.2). Figure 7b shows the distribu-
tion of values of optimality criterion for material distribution
OCm for the initial design in 7a. The positive as well as nega-
tive values illustrate that a better material distributioncan be
obtained by redesign. After 10 redesigns of only material den-
sity, the first eigenfrequency is increased with a factor close
to 1.5, and Figure 7c shows the optimized material distribu-
tion, when isotropy is kept. Figure 7d shows the distribution
of OCm values for the optimized design in 7c. Note, that these
OCm values are almost constant in domains corresponding to
active design parametersρmin < ρe < ρmax. The white do-
mains correspond toρe = ρmin = 0.01, to be interpreted as
holes.

After 10 more redesigns where the normalized constitu-
tive matrices are also redesigned according to the simple for-
mula (23) with modification (24) the first eigenfrequency is
increased further, now with a factor of 2.4. Figure 7e shows
the optimized material distribution and is related to a longi-
tudinal eigenmode. Figure 7f shows the distribution of OCm

values for the optimized design in 7e. Also these OCm val-
ues are almost constant in domains corresponding to active
design parametersρmin < ρe < ρmax and the white domains
correspond toρe = ρmin = 0.01. To illustrate the obtained
anisotropy (in reality 6 components locally) Figure 7g shows
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a) Initial uniform density, displaced design
b) OCm values for design A

c) Optimized isotropy density, displaced design
d) OCm values for design C

e) Optimized anisotropy density, displaced design f) OCm values for design E

g) Value of largest stiffness h) Direction of largest stiffness

Fig. 7 Designs and responses for the cantilever problem with 20% of full material a) Initial uniform isotropic design with b) corresponding
distribution of OCm values — c) redesign after 10 isotropic density redesign with d) corresponding distribution of OCm values — e) redesign
after further 10 density redesign including anisotropy redesign with f) corresponding distribution of OCm values — g) level of anisotropy
resulting with h) showing directions of maximum stiffness.

values for the level of anisotropy, being a number between 1/3
for isotropy and 1 for single directional ”fiber”. As explained
in the appendix, the largest normalized stiffness is used to
illustrate the level of anisotropy. Figure 7h shows lines ofdi-
rection for the use of this largest normalized stiffness. Figures
7e, -g and -h give a rather good illustration of the final opti-
mized design.

The shown iteration histories in Figure 8 gives an impres-
sion of stable convergence for the chosen numerical proce-
dure (14), with the same numerical control parameters4.0, 0.8,
andq = 0.8 in (14) andβ = 0.2 in (24) for all cases. With no

fixed design domain, it may be concluded that not only rel-
ative but also the absolute largest eigenfrequency is obtained
for the smallest amount of material, not unexpected with the
larger design possibilities.

6
Conclusion

While many papers in the literature present eigenfrequency
optimized by material distribution, examples with eigenfre-
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40 % of full amount of material
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Fig. 8 Iteration histories for the beam-bridge problem with 20%,
40%, 60% and 80% of full material.

quency optimization by design of constitutive matrices does
not seem available in the literature. The combined problem
may be termed eigenfrequency optimization by free material
optimization (FMO). In the present paper the essential point
for a practical formulation is the separation of anisotropyde-
scription from the material distribution.

Local non-dimensional constitutive matrices are constrained
to have unit norm of trace and Frobenius. An optimality cri-
terion based on this constraint and stationary eigenfrequency
shows that the components of a constitutive matrix are ob-
tained directly from the strain state corresponding to the ac-
tual eigenmode. From this follows almost directly that the
trace norm is equal to the Frobenius norm, which then may
be scaled to unity. The amount of material is the material con-
straint for the combined optimization.

For the determination of material distribution among the
elements of the model, a rather simplified optimality criterion
is derived. Size constraints are satisfied iteratively withthe
amount of material completely satisfied in each iteration. The
heuristic procedure for this shows good stability and rapid
convergence. The explicit expression for the gradients of eigen-
frequency as a function of local material density may at first
seem complicated. They are shown to be extremely simple
and general, which is believed to be a further major result
in the present paper. Proportionality between element stiff-
ness and material density is assumed in the present deriva-
tion, but a non-linear interpolation function will only modify
the present results slightly, see Pedersen and Pedersen (2012).
The resulting simple formula is a product of terms with di-
rect physical interpretation. To clarify the derivation ofthis
formula, a notation for partial derivation in combination with
application of the chain rule is applied.

For the two examples with each four different amount
of material, rather monotone increasing of the first eigenfre-
quency by redesign is observed. This includes cases of mode
switching and multiple (close to multiple) eigenfrequencies.
For these cases alternative formulations, such as objective by
sum of eigenfrequencies, is not attempted. Simplicity is pre-
ferred, and the method of subspace for determination of sev-
eral eigenmodes with close or equal eigenfrequencies, is an

essential part for problem-free optimization, using the present
simple optimality criteria approach.
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A
Direction of largest longitudinal material stiffness

For illustration of the optimized designs the distributions of
material density has been shown. However, for anisotropic
material the anisotropy should also be illustrated, but without
going into detail of the six components̃L1111, L̃2222, L̃1212,
L̃1122, L̃1112, L̃2212 given in the global x, y coordinate sys-
tem. It is chosen to show a plot of the directions of largest
longitudinal material stiffness.

According to laminate theorỹL1111 as a function of rota-
tion, termedf(θ), is given by the six components in thex, y
coordinate system

f(θ) = (L̃1111 + L̃2222)/2 + L̃2 cos(2θ) − L̃3(1 − cos(4θ))

+ L̃62 sin(2θ) + L̃7 sin(4θ) (25)

where the practical parameters are defined by

L̃2 = (L̃1111 − L̃2222)/2

L̃3 = (L̃1111 + L̃2222 − 2(L̃1122 + 2L̃1212))/8

L̃6 = (L̃1112 + L̃2212)/2

L̃7 = (L̃1112 − L̃2212)/2 (26)
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For orthotropic materials̃L6 = L̃7 = 0 in specific directions,
but for the free material subjected to multiple load cases this
will not always be the case, so we need to analyze the more
complicated material. More extremum solutions forf(θ) ex-
ist in the actual interval of0 ≤ θ < π. To locate the maximum
of f(θ) it is therefore decided to evaluate (25) at a number of
θ values (here chosen with increments∆θ = π/1800). This
has been done for each elements.

A.1
Levels of anisotropy

Lines for direction of largest longitudinal material stiffness in
addition to the color scale for distribution of material density
give some physical information about the optimized material,
but not much about the level of local anisotropy. Improved
information is obtained by adding a color scale for the value
of the larger longitudinal stiffness, i.e., the maximum off(θ)
found in determining the directionsθ.

The values offmax has an upper bound of 1 and a lower
bound of 1/3. This follows from the trace being 1, and thus
having eigenvalues in this interval. This then also followsfor
the non-dimensional longitudinal stiffness. For higher values
of fmax a single fiber direction is approached and for lower
values offmax an isotropic material with zero Poisson’s ratio
material is approached.


