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Abstract – Most learning processes in neuronal networks happen on a much longer time scale
than that of the underlying neuronal dynamics. It is therefore useful to analyze slowly varying
macroscopic order parameters to explore a network’s learning ability. We study the synaptic
learning process giving rise to map formation in the laminar nucleus of the barn owl’s auditory
system. Using equation-free methods, we perform a bifurcation analysis of spatio-temporal struc-
ture formation in the associated synaptic-weight matrix. This enables us to analyze learning as
a bifurcation process and follow the unstable states as well. A simple time translation of the
learning window function shifts the bifurcation point of structure formation and goes along with
traveling waves in the map, without changing the animal’s sound localization performance.

Copyright c© EPLA, 2014

Introduction. – Combined with its gigantic dimen-
sion reduction, the notion of order parameter has turned
out to be extremely useful. One of the oldest exam-
ples is the “magnetization” m of an Ising ferromagnet,
m ≡ N−1

∑N
i=1 Si with Si = ±1 corresponding to spin

up or down. It describes whether the system is in an up
(m > 0) or down (m < 0) state below the critical tem-
perature [1]. An order parameter such as m is a macro-
scopic characterization of a microscopic system state, and
varies slowly in time as compared to its (very many) mi-
croscopic constituents. Here, we focus on an important
additional advantage of a well-conceived order parameter
in that we can now pursue dynamically unstable macro-
scopic states by employing recently developed multiscale
methods (equation-free analysis; see, e.g., [2]). One can
therefore perform a complete bifurcation analysis.

Biological physics has meanwhile provided a plethora
of systems that possess at least two different time scales,
a fast one and a slow one, but the accompanying order-
parameter choice has hardly attracted any attention and
its bifurcation analysis even less. As a generic example,
we analyze structure formation in the auditory system of
the barn owl [3,4] and the way in which a map of az-
imuthal sound localization arises in the laminar nucleus.
This is the first station where phase-locked signals from

the left and right ear come together to form a map as
a consequence of synaptic learning [3–7]. For a review of
early results on the relation between the neuronal code and
sound perception in mammals instead of birds, a far less
understood issue, the reader is referred to Eggermont [8].

In the present context, a map is a neuronal represen-
tation of the outside sensory world. What is actually
mapped here is the interaural time difference (ITD) corre-
sponding to the horizontal direction. Until now, all maps
were static. As we will see, under the high-dimensional
microscopic neuronal and synaptic dynamics a sound lo-
calization map arises that can be reduced to a bifurcation
of a corresponding low-dimensional order parameter. The
bifurcation analysis of the macroscopic dynamics is made
possible by equation-free methods [2,9–11]. The surprise
is both in the type of bifurcation and in the ensuing map
that behaves as a slowly traveling wave.

In the auditory system of the barn owl, feeder axons
come from the left and right ear (through the cochlear
and magnocellular nucleus) and pass along to the lami-
nar nucleus (NL), making a sharp turn when they enter
it [12]. There they all have a practically uniform signal
velocity of about 4m/s (see, e.g., [13]) and touch the lam-
inar neurons in an intertwining manner. For our purpose,
the latter can be imagined as a row of neurons; cf. fig. 1.
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Fig. 1: (a) Sketch of the structural setup of the barn owl’s lam-
inar nucleus (NL), an essential part of the auditory system.
The 1 ≤ n ≤ N neurons in a row (5 gray circles, in reality
and in computations N = 30) are connected to 1 ≤ a ≤ A
axonal fibers (3 from right and 3 from left). Axons from the
left and right ear are connected to laminar neurons through
synapses (small circles). Map formation needs a tuning of both
the synapses on each neuron through the firing of the neuron
they are on [5] and of the synapses on different neurons, which
should “know” what the others do, so that a topographically
ordered map can emerge [6]. The latter tuning is performed by
means of axon-mediated spike-based learning (AMSL), here in-
dicated by solid circles connected to the same axon; cf. eq. (6)
below. (b) Learning window for û = −1; cf. eq. (5).

The approximately uniform velocity is essential to map
formation, the precise speed in the feeder axons is not.

Model of the barn owl’s auditory system. – We
adapt the NL model of Kempter et al. [6] with N = 30
neurons in a row connected to A = 280 axons, so that the
neurons receive input from 140 axons from each ear. For
each synapse there are two indices, the neurons 1 ≤ n ≤ N
and the axons 1 ≤ a ≤ A it is connected to. The distance
between neurons is given by d = 27μm and the propaga-
tion speed of the signals is taken [12] to be c = 4m/s. Ac-
cording to the finite propagation speed c of the signals, the
time delay between neighboring neurons connected to the
same axon is Δ̃ = d/c = 6.75μs. For all numerical simula-
tions, time has been discretized in steps of Δt = 5μs, with
time delays given in units of Δt. Due to a pre-processing in
the brain [12], input signals along different axons arrive at
the NL border at different times. Accordingly, a uniform
distribution of delays Δa ∈ [0, 2T ] has been chosen with

Δa =

{(
2T
A/2

)
a, 1 ≤ a ≤ A

2 (left ear),(
2T
A/2

)
(a − A

2 ), A
2 + 1 ≤ a ≤ A (right ear),

(1)

and T = A/4 is the period of the input cochlear signal,
a cochlear best frequency [12], covering two periods each
ear. Combining both delay types, eq. (1) gives for synapse
(a, n) connected to the left and right ear the total delay

Δan =

{
Δa + nΔ̃ + tITD, 1 ≤ a ≤ A/2,

Δa + (N + 1 − n)Δ̃, A/2 + 1 ≤ a ≤ A
(2)

with tITD as the interaural time difference in units of Δt.
The process of learning is modeled as spike-timing–

dependent synaptic plasticity (STDP) [5,7] and described
by the change of synaptic weights with time. Hence,
in order to study the learning behavior, we assign to
each synapse (a, n) a time-dependent synaptic weight
Jan(t) ∈ [Jmin, Jmax] = [0, 2]. The local synaptic weight
J loc

an changes on a slow time scale 1/ξ with ξ = 10−3 � 1
in units of Δt in dependence upon the arrival times ta of
presynaptic spikes and the firing times tn of the postsy-
naptic neuron n [5,6,14], while η ∈ [0, 1] is the important
learning parameter accompanying the learning window W,

d
dt

J loc
an (t) = ξ

[
winδ(t − ta) + woutδ(t − tn) + wunlearn

+ p(t) (Jmax − Jan) + ηW(t)
]
. (3)

Here, δ is a Dirac δ-function, win = 0.02 accounts for a
synaptic change on arrival of a spike at ta and so does
wout = −0.25 for tn, when the postsynaptic neuron fires
while wunlearn = −3 · 10−4 describes a slow “forgetting”.
The p(t) term incorporates intrinsic noise uniformly dis-
tributed in [0, 10−4] to model fluctuations on the level of
the synaptic strength. Finally, the learning window

W(t)=
∑
tn

Wû(t−tn)δ(t−ta)+
∑
ta

Wû(ta−t)δ(t−tn) (4)

describes STDP with the learning window Wû shifted by
û = −1. Later on, û is used as an additional parameter
in the study of traveling waves; see fig. 5. With hind-
sight [5], the underlying philosophy is simple. If we have
an excitatory synapse and ta − tn < 0 so that the arriving
spike instructs the neuron to fire and shortly thereafter it
does so, the synapse performs a good job. Accordingly, it
ought to be strengthened and hence Wû(ta − tn) > 0. If,
on the other hand, ta − tn > 0, the spike comes too late
and the synapse should be weakened: Wû(ta − tn) < 0.
The function Wû has already been specified in [6], as

Wû(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 exp( s−û
τ2

) − exp( s−û
τ0

), s < û,

exp(− s−û
τ1

)
[
2
(
1 + (s − û) τ1+τ2

τ1τ2

)
−

(
1 + (s − û) τ0+τ1

τ0τ1

)]
, s ≥ û.

(5)
The time constants are τ0 = 5, τ1 = 30 and τ2 = 50
(in units of Δt). Before proceeding, we need to give
map formation the finishing touch through axon-mediated
spike-based learning (AMSL); cf. Kempter et al. [6]. Let
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ρ = 0.1 be a small parameter accounting for contributions
from neighboring neurons in (6) and define for axon a at
neuron n the quantity San =

∑
k J̇ loc

ak . The sum over k
can be over nearest neighbors, or next nearest neighbors,
or here over all synapses connected to the same axon.
Then, with (3), the full synaptic dynamics is given by the
differential equation

d
dt

Jan ≡ J̇an = J̇ loc
an (t) + ρSan. (6)

Hebbian learning is in the style of “practice makes perfect”
and accordingly η is the important parameter. Once the
barn owl’s head is full-grown, it takes two more weeks be-
fore the animal can perform azimuthal sound localization
or, equivalently, before the laminar map has been com-
pleted. Hence, we can choose a time much longer than
the neuronal time scale (ms) and much shorter than the
time of map completion, say 10 minutes, so as to seg-
regate the two time scales of neuronal activity and map
formation.

Equations (4) and (6) describe learning, i.e., map for-
mation processes in terms of developing synaptic strengths
and, hence, contain the neuronal dynamics explicitly
through spike times ta and tn, which are generated by a
neuronal dynamics, orders of magnitude faster [4] than the
synaptic one. The neuronal dynamics may well be taken to
be simple, viz., the integrate-and-fire model [15,16], gov-
erned by a membrane potential of the form

hn(t) =
A∑

a=1

∑
j:tf

n<tan,j≤t

Jan(t)ε(t − tan,j), (7)

where tfn is the most recent firing time of neuron n, tan,j

is the j-th arrival spike at synapse (a, n), and

ε(t) =

{
(t/τ2) exp(−t/τ), t ≥ 0,

0, t < 0,
(8)

describes the excitatory postsynaptic response at the soma
with time constant τ = 20Δt. Despite its simplicity, the
model is nonlinear as hn is reset to 0, once hn passes a
threshold θ = 4.2 from below. The synaptic weights Jan

in (7) steer the dynamics of the neurons and, conversely, in
the long run the latter shape the way in which the former
develop.

Macroscopic bifurcation analysis. – To investigate
the map dynamics, we would like to average out the neu-
ronal dynamics and focus on the bifurcation behavior of
map formation in dependence on the learning window’s
amplitude η and the AMSL coupling strength ρ. In fact,
we expect the details of the neuronal dynamics to be im-
material. It is here that equation-free bifurcation analysis
proves to be quite helpful [2,9,10]. For the analysis, we
need to define a suitable macroscopic order parameter X
that should measure for the problem at hand how well
the map represents the sound source direction. To get an

1 10 20 300

50

100

150

n

sp
ik

es

n

a

1 10 20 30

20

60

100

140

n

a

1 10 20 30

20

60

100

140

n

a

1 10 20 30

20

60

100

140

n

a

1 10 20 30

20

60

100

140

n

de
la

y
Δ an

1 10 20 30

50

100

150

(a) left ear, initial state (b) right ear, initial state

(c) left ear, final state (d) right ear, final state

(e) (f)

Fig. 2: (a), (b): initial condition Jan(0) for synaptic strengths
connected to axons from the left and right ear. (c), (d): af-
ter a successful learning session employing model eqs. (1)–(7),
a striped structure emerges in the synaptic weight matrix J ,
i.e., a map, enabling the barn owl to azimuthally localize its
prey. A gray scale indicates the strength of the synapse from
the minimum weight (white) to the maximum weight (black).
Synapses are spatially arranged on parallel axons connected to
the left and right ear (see fig. 1). (e) According to (2) the delay
for an incoming signal depends not only on the axon a but also
on the neuron n. Plotting the delay Δan for strong synapses
(black stripes in (c), (d)) results in an overlap where signals
arrive at the same time (here at n = 20). A neuron being a
threshold element, the overlap of left and right white stripes
in a delay plot practically defines the map width. (f) During a
simulation of 10000 time steps with the fully developed connec-
tivity matrix the spiking activity shows a maximum at neuron
20 encoding the angle of prey.

impression of what we can expect, we turn to fig. 2. If
a map is random or unstructered, i.e., in a state without
stripe structure, we require X ≈ 0. On the other hand,
X ≈ 1 should signal a clearly organized map representing
the relative periodicity (cf. fig. 2) of the synaptic matrix
J = (Jan). In view of these requirements the choice below
is quite natural,

X =
1

(A − 2T )N

∑
n

⎡
⎣A/2−T∑

a=1

Jan +
A−T∑

a=A/2+1

Jan

⎤
⎦ , (9)
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Jan = (Jan − Ja+T/2,n) δ(Jan, J(a+T )n)Θ(Jan − J̃),

where X depends on the time t, J̃ = 1.3 is a significance
level for the synaptic weights (see below), and Θ is the
Heaviside step function. The Kronecker δ(Jan, J(a+T )n)
assures a correct period across the axons and the prefactor
1/(A − 2T )N normalizes the sum. The Kronecker δ is
implemented with tolerance 0.01. If the period is T , a
synapse is weighted with the difference to the synapse half
a period in front. For a fully developed matrix J , this is
usually Ja+T/2,n − Jan = Jmax − Jmin = 2 with Jmin = 0.

Accordingly, a uniform matrix without stripe structure
results in a small positive value of X. Furthermore, the Θ
function in (9) takes only synaptic weights Jan > J̃ into
account. The point is that a synaptic weight matrix with
stripe structure but too small |Jan| values is not able to
let the neurons fire. Accordingly, prey detection would be
impossible. We note that, due to the rectangularly shaped
spatial patterns across the axons, a Fourier representation
to check the periodicity is not useful [17].

We like to gain insight in the way in which the macro-
scopic order parameter X evolves in time in dependence
upon η. Hence, we need a bifurcation analysis on a coarse
level and disregarding the details of the underlying micro-
scopic dynamics of the neurons. Exactly here equation-
free analysis [2,9] comes in and allows to investigate the
macroscopic behavior of the neuronal network as it leads
to a map. The number of synapses is 2 to 3 orders of mag-
nitude larger than that of the neurons and the dynamics
of the former is adiabatic with respect to the latter, i.e., at
least 6 orders of magnitude slower to account for the fact
that, after the hatching period, a young barn owl needs
two more weeks to develop the neuronal map.

Equation-free methods. – In equation-free computa-
tions (see [2] for a review), a microscopic dynamical system

ẋ(t) = f(x(t), η), x ∈ R
m, f : R

m × R → R
m (10)

is described by a model function f depending on a
parameter η ∈ R. Here the microscopic model (10)
summarizes the learning of the neuronal network de-
fined in eqs. (1)–(7). By choosing a suitable order
parameter X such as the one in (9), the high-, i.e.,
m-dimensional dynamics in (10) can be reduced to a
coarse, say M -dimensional scale,

Ẋ(t) = F (X(t), η), X ∈ R
M , F : R

M×R → R
M , (11)

where F describes the not explicitly but only implicitly
given macroscopic dynamics and M � m; here M = 1.
We can obtain the macroscopic dynamical properties of F
by running suitably chosen short simulation bursts, i.e.,
short simulations, of the microscopic system f and using
(see [2,10])

X(t + δt) = R[sk(L(X(t)),dt)] (12)

where s solves (10) numerically with time step dt where
δt = kdt, k ∈ N. To be able to perform the continuation

(micro) R
m

(macro) R
M X(t)

x(t) x(t + kdt) = x(t + δt)

X(t + δt)

lifting L

s(·, dt) s(·, dt)

R restriction

R(sk(t,L(·)))

k times

Fig. 3: Sketch of the macroscopic time stepper used in the
equation-free method. A macroscopic state X(t) is mapped
onto a microscopic state x(t) by using the lifting operator (15).
The available microscopic model represented by eqs. (1)–(7)
constitutes the microscopic time stepper s that is applied for k
steps of size dt to yield a microscopic state x(t + kdt) at time
t+kdt. Finally, the microscopic state is mapped onto a macro-
scopic state X(t+δt) through the restriction operator (9). This
procedure defines the macroscopic time stepper (12).

of the macroscopic quantity depending on the parameter
η, i.e., the amplitude of the learning window in (3), the
lifting operator L: R

M → R
m and restriction operator

R: R
m → R

M are used repeatedly to switch between mi-
croscopic and macroscopic levels. This procedure is shown
in fig. 3. In order to perform a macroscopic time step, a
macroscopic state X(t) is lifted with L (see also (15)) to
a microscopic state x(t), which is then evolved in time by
the underlying model (eq. (1)–eq. (7)) with the time step-
per s. The resulting state x(t + δt) is subsequently used
to compute the macroscopic state X(t + δt) at time t + δt
by applying the restriction operator R (defined by (9)).

The unknown macroscopic right-hand side F is usually
approximated as

F (X) =
X(t + δt) − X(t)

δt
. (13)

This explicit scheme makes it difficult to determine the
correct dynamics, since the lifting operator usually ini-
tializes the microscopic state away from the slow manifold
where the macroscopic dynamics takes place (lifting error).
Recently introduced implicit equation-free methods [10]
allow to determine the not explicitly given right-hand side
of eq. (11) as

F (X) =
R[sk+kskip(L(X(t)),dt)]−R[skskip(L(X(t)),dt)]

δt
,

(14)
where tskip = kskipdt is the “healing” time. The implicit
scheme (14) circumvents these lifting errors [10].

To numerically compute bifurcation diagrams, the sta-
tionary states of the order parameter X defined by
F (X, η) = 0 are continued with respect to the parame-
ter η using a predictor-corrector method [18,19]. A linear
secant prediction and a Newton method as corrector are
used. The Jacobian is computed by means of a finite-
difference scheme.

The restriction operator R is determined by the defini-
tion of the macroscopic variable (9) and the lifting opera-
tor L(X) = J is chosen as

Jnew = Jold + rand(−ε, ε) + α bin(Jold > 1). (15)

48005-p4
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The above computation adapts the previous state Jold of
the continuation using noise with amplitude ε = 0.005.
rand(−ε, ε) is a A×N uniformly distributed random ma-
trix in [−ε, ε] and bin(Jold > 1) is a binarization of the
connectivity matrix J . The binarization modifies strong
synapses that are relevant to the restriction operator R.
The random matrix with small elements is added to ob-
tain a small perturbation to the known state Jold. Note
that the definition of the lifting operator L is not unique.
The choice to modify known solutions through (15) on a
branch is a convenient way to utilize the knowledge from
previous solutions in order to construct such a lifting close
to the low-dimensional slow manifold (see, e.g., [9] for a
description of different lifting operators). To initialize J
close to a desired macroscopic value X̂, the coefficient α
is adjusted so that R(Jnew) = X̂.

We start the continuation of the macroscopic stable
branch with the fully developed connectivity matrix for
η = 1 (cf. fig. 2) corresponding to a macroscopic fixed
point of the system with X(η) = 0.8; see fig. 4, where the
stable branch for η = 1 is found at the macroscopic value
of X = 0.8. Continuing this fixed point in η yields a sta-
ble branch of solutions. In fig. 4, the branch obtained by
implicit equation-free continuation (dots) coincides with
the results from direct simulations in an up- (crosses) and
down-sweep (circles), respectively. Here the macroscopic
solution X > 0 encodes the stripe structure, i.e., the cor-
rect connectivity matrix for sound localization. By in-
vestigating the eigenvalue of the (1 × 1) Jacobian of the
linearized system along the branch, a bifurcation point is
found at η∗ ≈ 0.16. For η < η∗, the solution X = 0 cor-
responds to a non-structured connectivity matrix, leading
to a system that is not able to perform sound localiza-
tion. Choosing a microscopic state with X = 0 as ini-
tial condition for an arbitrary η < η∗, it is possible with
the equation-free continuation techniques presented here
to find an unstable macroscopic solution at X = 0 even
for η > η∗. The detection of an unstable branch gives
information about the underlying dynamics and is never
possible by direct simulations. By visual inspection of the
bifurcation diagram in fig. 4, the bifurcation is reminiscent
of a transcritical one, and not the usual pitchfork.

Strict detection of the bifurcation type is, however, com-
plicated by two factors. First, because of the very na-
ture of X, only the non-negative part of the bifurcation
(X ≥ 0) can be observed, thereby obscuring the branch
in the strictly negative domain. Second, inherent noise
in the macroscopic dynamics because of stochasticity in
the underlying microscopic model complicates determin-
ing higher-order derivatives and thereby the bifurcation
type. Additional analysis has shown that even though a
variation of the AMSL coupling strength ρ induces spa-
tial inhomogeneities, the periodicity measure X hardly
changes.

Traveling waves in the synaptic connectivity ma-
trix. – Besides the dependence upon η, the position of

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

η

X

0.15 0.2 0.25
0

0.1

0.2

Fig. 4: (Colour on-line) Macroscopic bifurcation diagram of
order parameter X as a function of the learning window am-
plitude η. Using equation-free bifurcation analysis, it is pos-
sible to continue branches and to detect bifurcation points of
the network learning. A stable branch is found for X > 0
using different methods, down-sweep (circles) and up-sweep
(crosses) in direct simulations and implicit equation-free con-
tinuation (dots). The bifurcation diagram shows a bifurcation
reminiscent of a transcritical bifurcation at η∗ = 0.16. The
branch at X = 0 changes stability and the unstable branch
after the bifurcation is continued using one-sided Newton cor-
rections (circles). The big inset shows a magnification of the
bifurcation region. The three small insets show the correspond-
ing microscopic states for comparison. See the supplementary
file LearningNL.mp4 for a video of the learning process.

the bifurcation point also depends on the learning window
shift û (see eq. (4)) and corresponds to traveling waves in
the map that can be observed for all values η > η∗. The
maps found until now in previous work were always sta-
tionary. It turns out that the striped structure, although
a fixed point of the macroscopic order parameter X, is not
a stationary state of the connectivity matrix J . Instead,
very slowly traveling waves are observed; see fig. 5. The
traveling waves have the same speed on axons from the
left and right ear, which is the reason why the function of
the network does not change and prey detection remains
possible as the maximum activity of the network stays at
the same neuron; cf. fig. 2. The speed of the traveling
waves depends on the shift û in the learning window. By
using a certain value (here û = −10), it is possible to ob-
tain standing waves, corresponding to a stationary state
also on a microscopic level. Surprising as they are, the
present findings are purely numerical but invite biological
interpretation and experimental verification, e.g., through
periodically waxing and waning of dendritic spines [20].
The computation time of the traveling wave dynamics can
be significantly reduced by using a coarse projective inte-
gration method, i.e., an Euler scheme with time step Δt
for the macroscopic dynamics of eq. (11). The speed-up
depends basically on the required accuracy and is deter-
mined by the ratio Δt/δt; cf. also eq. (13).
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Fig. 5: Traveling waves in the synaptic weight matrix for neu-
ron n = 1 at η = 1 for different values of the shift û in the learn-
ing window; cf. (5). The other neurons (n > 1) show the same
traveling-wave behavior. (a) For û = −1, the stripes travel
through the network at a nonzero but slow speed. (b) The trav-
eling waves turn into a standing wave for û = −10. The tempo-
ral multiplication factor of 106 clearly indicates that synaptic
dynamics leading to map formation is adiabatic with respect
to the neuronal one.

Conclusion. – In conclusion, the application of
equation-free methods in conjunction with a bifurcation
analysis of learning in neuronal networks gives rise to new
insights into previously inaccessible phenomena such as:
1) study of unstable solutions; 2) detection and classifi-
cation of macroscopic bifurcation points. Here we exhibit
a transcritical bifurcation replacing the well-known pitch-
fork and identify the onset of structure formation in, e.g.,
maps of synaptic connectivities; 3) significant reduction
of computing time. The macroscopic time step Δt can be
chosen much larger than the microscopic time δt. A strik-
ing example is provided by our finding of traveling waves
instead of a time-invariant pattern in the sound localiza-
tion map of the barn owl, as shown in fig. 5.
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