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Utilization of Flexible Demand in a
Virtual Power Plant Set-Up

Anders Thavlov, Student Member, IEEE, and Henrik W. Bindner, Member, IEEE

Abstract—High penetration levels from renewable energy
sources in large-scale power systems demand a high degree
of flexibility in the transmission and distribution system. This
paper presents a method for utilization of flexible demand in the
low-voltage distribution system using the thermal mass of a build-
ing to defer power consumption from electric space heating. The
power consumption for heating is controlled by an operational
virtual power plant, which is sending a set point for requested
power consumption to the building management system. An
optimization problem is formulated such that the discrete dis-
patch of power from ten electric space heaters is following
the power set point given constraints on the indoor comfort
that is defined by the users of the building. The controlling
method has been implemented in an intelligent office building
and used for demonstration of flexible demand in the low voltage
network.

Index Terms—Demand response (DR), demand-side
management, flexible load, heat dynamics, smart grid,
virtual power plant (VPP).

I. INTRODUCTION

FLEXIBLE demand for power is expected to play a key
role in the future power system—or smart grid—and is by

many seen as a prerequisite for integration of large amounts of
renewable energy. The benefits of implementation of flexible
power consumption are many; these include the possibility of
shifting power consumption from peak load hours to periods
with less demand, consequently reducing the need for spinning
reserves. Furthermore, by a better coordination of the units
connected in the low-voltage network congestion problems can
be avoided, and hence flexible demand can help to reduce
investments in the distribution grid.

Until recently, power consumers have been regarded as pas-
sive players in the power system and only the generation side
has been involved in the process of controlling the system
balance. Now, large industrial companies are being integrated
as active players in the power system through the power
market, trying to reduce cost of operation by running indus-
trial processes during periods with inexpensive power. The
variety of flexible processes is large and varies from pump-
ing a fixed volume of water during a day to cold storages
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which have to maintain a maximum temperature. There is,
however, also a large potential in the integration of the numer-
ous small entities connected in the low voltage grid. Two
main approaches for control of demand-side resources (DSR)
are currently being pursued; the first one is utilizing indirect
control, where an incentive signal, possibly a price signal, is
broadcast to a large number of DSRs to incentivize changes
in power consumption. The second one is direct control,
where a centralized controller—or coordinator—is directly
controlling a number of distributed energy resources (DERs)
by sending a reference set point for requested power con-
sumption or generation to each of them. Moreover, there
exist other approaches for control, for example autonomous
and transactional control as defined in [1]. Whereas indirect
control relies on a stochastic demand response (DR) from
DSRs, direct control can deliver a requested DR with a high
certainty relative to indirect control. This, however, comes
at a higher investment cost, due to the need of establish-
ing a dedicated communication link, possibly bidirectional,
between the central controller and the DSR. When direct con-
trol is used to aggregate a number of units, the aggregator
is typically called a virtual power plant (VPP). The refer-
ence to power plants refers to the high certainty of up- and
down-regulation of the aggregator, due to the usage of direct
control.

Several projects are investigating the benefits of integra-
tion of residential households as active players in the power
system. In the Pacific Northwest GridWise Demonstration
project, a 20% reduction in peak load was obtained by control
of appliances in residential and commercial buildings using
a broadcast electricity price signal [2]. A similar approach
is used in the ongoing EcoGrid EU project, where flexible
demand from 2000 residential customers, on the Danish island
Bornholm, is used to balance power in a power system with
50% power generation from renewable energy sources [3]. In
the cell controller pilot project, a direct control approach is
used to coordinate the response from DER, e.g., CHP plants
and wind turbines, to deliver power system services in the
distribution system [4].

Research within DR has gained a lot of attention within
the last decade; consequently, there exists many studies in
building management systems (BMS) providing optimal con-
trol of commercial and residential appliances with respect
different criteria. As outlined earlier, these can generally be
separated into indirect and direct control; especially indirect
control using economic model predictive control (EMPC) with
respect to price signals has received a lot of attention. In [5],
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an autoregressive model with exogenous input (ARX) is used
together with EMPC to determine an optimal space cooling
schedule with respect to a given rate plan. Likewise, in [6]
a nonconvex EMPC method is proposed to minimize cost of
refrigeration in a nonlinear commercial refrigeration system
using hourly spot prices from the Nordic power market. In [7],
EMPC is used to optimize space heating from a heat pump,
with respect to both cost of electricity as well as the load
level of the distribution grid. Similarly, in [8] predictive con-
trol is used to comply with a contractual peak power constraint,
which is typically imposed on private customer in France and
Italy. Direct control has received less attention despite that DR
using direct control has been implemented by several energy
companies; for example by Southern California Edison, the
primary electric company in California, which is enrolling
their private customers in DR programs, by offering a discount
on electricity if they allow the utility to switch off their central
air conditioning (A/C) unit during peak load hours. This paper
presents a novel approach for delivering DR from an intelligent
office building, using a VPP set-up. Due to the server/client
relationship between the VPP and the controlled DSR, EMPC
is implicitly carried out by the VPP. Hence, EMPC is not
an option on the client side; instead, a dispatch problem is
formulated, which optimizes the discrete power consumption
from a number of resistance heaters—or Ohmic heaters—with
respect to a set point for power consumption provided by
the VPP.

This paper is organized as follows; initially, in Section II,
a description of the VPP, Power Hub [9], and the interface to
the VPP is given. Next, a model for heat load predictions is
derived, and an optimization problem for the control of electric
space heating in a building is formulated. In Section III, results
from a series of experiments using an intelligent office building
as a flexible load, are presented. Finally, in Section IV, the
results are discussed and the conclusion is given.

II. METHODOLOGY

In this section, we present the VPP set-up and the theory for
implementation of flexible heat consumption in an intelligent
building that is heated by electric resistive heaters.

A. Power Hub

Power Hub is an implementation of a VPP that is currently
being tested under market conditions in the Nordic power
market. Power Hub has been developed by the Danish energy
company DONG Energy as part of the Twenties project [10],
which is supported by the European Commission. The main
objective of the Twenties project is to investigate how large
amounts of wind energy can be integrated into large-scale
power systems. The main purpose of Power Hub is to increase
the flexibility in the power system by allowing small power
consuming and generating units to participate actively in the
power market, thus contributing as a balance to the intermittent
generation from the renewable energy sources.

By aggregation of small units, i.e., units with rated power
generation or consumption of less than 1 MW, Power Hub
is able to coordinate the response of numerous of units thus

increasing the total effect of DR. Additionally, Power Hub lets
small generation and consumption units, that are otherwise too
small, to participate in the power market. A large-scale demon-
stration of Power Hub was carried out on the Faroe Islands
in November 2012, where load shedding from three industrial
companies were actuated to prevent a total island blackout
due to a simulated 10% power loss in the total national
supply.

In operation, Power Hub manages a portfolio of consump-
tion and generation units, which in the following are named
local units (LUs). During the day, Power Hub minimizes the
cost of operation for consuming LUs, by shifting power con-
sumption to periods with less expensive power. Likewise, the
output of power generating LUs are increased—or activated—
when the price is relatively high, thus increasing the income
for the LU owner. Each unit is controlled locally given a set
point for a requested consumption or generation, which is pro-
vided centrally from Power Hub. To ease integration of new
units a standardized interface has been developed, which is
available on the site of the LU through a remote terminal
unit (RTU).

To plan the day of operation, a daily load or generation
forecast is generated for each LU by their respective owner.
These forecasts have to be received by Power Hub no later
than 10 A.M. the day before operation, such that potential
flexibility can be bid into the day-ahead market in the Nordic
power market, Elspot. Bids into the day-ahead market have
to be received by Elspot before gate-closure at noon, the day
before operation. Flexibility that is not bid into the day-ahead
market, or did not receiving any contract therein, can be saved
for primary reserve, which can be activated on request from
the transmission system operator. During the day of opera-
tion Power Hub can request changes to the power generation
or consumption of an LU if imbalances in the power system
emerge or if regulation power is needed. This is achieved by
sending an updated power set point of the requested genera-
tion or consumption to an LU through the RTU. Within some
predefined constraints, defined by the LU owners themselves,
an LU is expected to comply with changes in power set
point.

In the following, the heat consumption of an office building
is being modeled and controlled by Power Hub; other parts
of power consumption, which are mainly inflexible, are not
considered in this paper since they cannot be postponed or
accelerated. The controller can be seen as having influence on
the fuse block which contains the electric heating only.

B. Power Hub Interface

On the LU—or client—side, the interface is represented
physically by an RTU, which is communicating with Power
Hub over a GPRS connection. The connection is facilitated
by the IEC 60870-5-104 transmission protocol and encrypted
using a virtual private network (VPN) connection. The inter-
face is presented in Table I. In the table, input is relative to
the house controller, i.e., input means input to the BMS. Of
special interest are the first three signals: the first one sends
a reading of the current power generation or consumption of
the LU to Power Hub, the second method provides a requested
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TABLE I
POWER HUB INTERFACE

power set point to the LU, which is the optimal power con-
sumption or generation with respect to the power market. The
third method sends an abstract measure of the capacity of the
unit back to Power Hub, which is LU specific and depends
on the process that the LU is running. Examples of capac-
ity can be the level of fuel in diesel genset, level of water
in a reservoir for hydro power or deviation from a reference
temperature in a cold storage. Using the measure of capacity
Power Hub maintains knowledge of the state of its LUs and
how much consumption or generation that can be postponed or
accelerated. Constraints on capacity and power consumption—
or generation—are defined by LU owners together with Power
Hub administrators prior initialization of the LU, and are main-
tained as static data in Power Hub. Additionally to the methods
stated above, there is a digital input in the RTU reading the
pulse output from an electricity meter mounted on the site of
the LU. This input is for Power Hub to verify consumption or
generation.

C. FlexHouse

FlexHouse is an intelligent office building located at the
DTU Risø Campus near Roskilde, Denmark. The building
is a part of SYSLAB, a research facility for control in dis-
tributed power systems, where it is utilized as a flexible load.
It is fitted with a wide range of sensors and actuators, which
allow the building to be monitored and controlled from a
custom-made BMS. The area of FlexHouse is approximately
120 m2, distributed over seven offices and a large meeting
room, together with a small kitchenette and a toilet. The build-
ing is free-standing, mounted on concrete slaps, thus leaving a
gap between the ground and the underside of the building. The
building envelope is made from plywood on the outside and
plasterboards on the inside, sandwiching a layer of insulation.
Consequently, FlexHouse is a thermally light building, relative
to an average Danish building. Likewise, the level of insula-
tion is quite low compared to an average Danish building.
Space heating in FlexHouse comes from ten electrical space
heaters that are distributed equally inside the building. The
rated power of the heaters ranges from 0.975 to 1.250 kW,
with a total rated peak power of 9.75 kW. Moreover, there are
five heat pumps providing heating during winter and cooling
during summer. These have not been utilized in the research
presented in this paper.

Fig. 1. RC-diagram for prediction model.

D. Heat Dynamic Model for Prediction of the Heat Load
Daily, for each LU, Power Hub expects to receive a load

or generation forecast for the following day of operation. In
this section, we derive a heat dynamic model for prediction of
the heat load of FlexHouse. No later than 10 A.M. Power Hub
must receive the forecast of the expected heat consumption in
FlexHouse for the following day. Hence, the heat load should
be predicted from 14 to 38 h in advance. Naturally, predictions
of the heat load up to 38 h in advance has a high uncertainty
attached, especially considering the uncertainty coming from
the weather forecast. However, the heat load of a small house
connected in the low voltage grid should—ideally—be seen as
part of an aggregate system, where the uncertainty of an aggre-
gate forecast decreases as the number of heat loads increases.
An exception to this is, naturally, when a weather forecast
is wrong the aggregate forecast is also likely to be wrong.
This, however, is one of the main reasons why Power Hub has
been developed; to handle imbalances during the day. Another
example is when a weather front is delayed with respect to
a forecast, potentially delaying the power generation from a
wind farm. This can be handled by Power Hub, by postponing
the heating of households until the weather front has arrived
and power generation has reached a predicted level.

A linear time-invariant model of the heat dynamics of
FlexHouse has been developed for predictions of the indoor
temperature and heat load. This model is currently being used
in various applications using FlexHouse as a source for pro-
vision of DR, e.g., in EMPC of the heat load using an actual
time varying price signal from the Nordic power market [11].
By approximating the temperature to be homogeneous dis-
tributed in the indoor air, including the interior mass, the space
heaters, and the building envelope, respectively, the model can
be formulated as a lumped model. The RC-diagram presented
in Fig. 1 illustrates how the heat dynamics of the building
are modeled. At the top is noted the three temperature states,
i.e., the heaters, interior, and envelope states, each represented
by a capacitor in the diagram, together with the ambient envi-
ronment to the far right. The heaters are seen to receive a heat
input �h, which is multiplied by the efficiency factor, η. The
heaters are seen to exchange heat with the interior state only,
which exchanges heat with the ambient environment directly
and through the building envelope. Moreover, the interior state
receives heat input from solar irradiance, �s, coming through
the windows with an effective area Aw. Finally, the envelope
is exchanging heat with both the interior state and the ambi-
ent environment. To account for disturbances not encompassed
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TABLE II
MAXIMUM LIKELIHOOD ESTIMATES OF

MODEL PARAMETERS IN (1)

by the model, e.g., unrecognized or noisy measurement of
input, the energy balance equations are formulated as three
coupled stochastic differential equations (SDE). From Fig. 1,
the energy balance equation can be derived

dTi =
(

Th − Ti

RihCi
+ Te − Ti

RieCi
+ Ta − Ti

RiaCi
+ Aw�s

Ci

)
dt + σ1dω1

dTh =
(

Ti − Th

Rih · Ch
+ �h

Ch

)
dt + σ2 · dω2

dTe =
(

Ta − Te

Rea · Ce
+ Ti − Te

Rie · Ce

)
dt + σ3 · dω3 (1)

where Ti, Th, and Te are the temperature states for the indoor
air, heaters, and building envelope, respectively. Rih is the ther-
mal resistance—also known as the UA-value—between the
heaters and indoor air, Rie is the thermal resistance between
the indoor air and the house envelope, Rea is the thermal
resistance between the envelope and the outdoor environment,
and Ria is the heat transfer from the indoor air directly to
the outdoor environment. Ci, Ch, and Ce are the heat capac-
ities of the interior mass, heater mass, and envelope mass,
respectively. The exogenous disturbances to the equations from
the ambient environment are the outdoor temperature Ta and
the solar irradiance, �s. �h is the controllable electric input
of the space heaters. The disturbances not encompassed by
the model are described by a diffusion process, added to each
of the equations, which is driven by the stochastic process
dω with variance σ 2. Equation 1 can be written in the state
space form

dT = A Tdt + B Udt + σdω (2)

where T = [Ti, Th, Te]T is the state vector, U = [Ta,�s,�h]T

is the input vector. A ∈ R
3×3 and B ∈ R

3×3 are the state
and input matrix, respectively. σ ∈ R

3×3 is a diagonal matrix
containing the variances of the diffusion process dω ∈ R

3×1.
Assuming ω is described by a standard Wiener process the
parameters in (2) can be estimated using a maximum likeli-
hood estimation method as described in [12]. Based on a five
days time series of the input U, sampled at a 5-min interval,
the maximum likelihood estimates presented in Table II have
been found. In the table, the efficiency of the resistance heaters
are assumed to be equal to one which is reasonable for resis-
tance heaters; however, if another heating method were used,

e.g., using a heat pump, the efficiency could be significant
higher.

By integration of (2), using the parameter estimates pre-
sented in Table II, a discrete model with 5 min steps has
been derived. This model can be used for discrete prediction
of the heat load of FlexHouse given an indoor temperature
reference and a forecast of solar irradiance and outdoor tem-
perature. For a more detailed description of the heat dynamic
model of FlexHouse, readers are referred to [13] and for max-
imum likelihood estimates in linear state space models in
general [12] and [14].

E. Optimization of Power Consumption

The power consumed by a number of electric space heaters
in the building should be controlled as close to the given
set point as possible but without compromising the indoor
comfort of the residents of the building. Thus, the controller
should take into consideration the trade-off between flexibility
and comfort, allowing the users of the building to specify the
level of comfort. Assuming n individual electric space heaters,
each with rated power Pj, an optimization problem can be
formulated as

min

∣∣∣∣∣∣
n∑

j=1

(
xjPj

) − S

∣∣∣∣∣∣ +
n∑

j=1

xjPj w
(
Tj

)
(3)

where the decision variable xj ∈ {0, 1} is the off/on state of
heater j, Pj is the rated power of heater j, S is the power
set point received from Power Hub and n is the total num-
ber of heaters in the building. The weight function, w (·), of
the temperature in the room with heater j, is used to imple-
ment a soft constraint on the discomfort felt by the resident,
by gradually penalizing temperature deviations from the ref-
erence, where Tmin and Tmax are the minimum and maximum
tolerable indoor temperature, respectively. The weight function
should penalize heaters being on when the indoor temperature
reaches Tmax. Likewise, should the weight function penalize
heaters being off when the indoor temperature reaches Tmin.
In the implementation of flexible demand in FlexHouse, the
following weight function has been used:

w
(
Tj

) =
(

2
(
Tj − Tref

)
�T

)m

(4)

where m is an odd number to create an odd function around
the indoor reference temperature, Tref. �T = Tmax − Tmin
is the width of the comfort band—or temperature band—in
which the temperature is allowed to vary. Tref and �T can
be specified by the residents, whereas m is a BMS specific
parameter defining the steepness of the weight function on
the boundaries. In Fig. 2, some examples of weight functions
are presented for a varying m.

From the figure it is seen that w(Tj) < −1 for Tj < Tref −
�T/2, making the last term in (3) to dominate, thus forcing
heaters to be turned on. Likewise, w(Tj) > 1 for Tj > Tref +
�T/2 is forcing heaters to be turned off. Due to the time
delay in the heat transfer from heaters to the indoor air, the
boundaries specified by �T , should not be seen as “hard”
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Fig. 2. Weight function with Tref = 21, �T = 2, and m = 1, 3, 9.

boundaries, but a boundary where the heaters are forced to be
switched on or off.

The optimization problem formulated in (3) can be split
in two, for

∑n
j=1

(
xjPj

) ≥ S and
∑n

j=1

(
xjPj

)
< S, and

formulated as two constrained optimization problems. For∑n
j=1

(
xjPj

) ≥ S, we find

min
n∑

j=1

(
xjPj

) − S +
n∑

j=1

xjPj w
(
Tj

)

= min
n∑

j=1

(
w

(
Tj

) + 1
)

xjPj

s.t.
n∑

i=1

xjPj ≥ S. (5)

Likewise, a constrained optimization problem can be for-
mulated for

∑n
j=1

(
xjPj

)
< S

min
n∑

j=1

(
w

(
Tj

) − 1
)

xjPj (6)

s.t.
n∑

i=1

xjPj < S.

These two constrained optimization problems, (5) and (6),
can be solved using mixed integer linear programming
individually, where the solution with the lowest cost function
gives the global solution to (3).

F. Implementation

For demonstration of flexible demand using FlexHouse, an
optimization process for the problem derived in Section II-E
was implemented in the BMS, which is controlling the power
input to the ten space heaters. Using a bus coupler, the output
from the RTU is converted to Modbus over Ethernet, which is
read by the BMS. In the optimization process m ≡ 9 were used
to enforce relative sharp boundaries on the weight function.
To ensure a fast response on changes in power set point the
optimization problem, derived in (5) and (6), was solved every
time changes in set point was detected. Using the GNU Linear
Programming Kit, the problem was solved in sub-seconds;
consequently, delivering a DR within a few second from when
the updated set point was received. In periods with no changes

in set point, the problem was solved every fifth minute. Finally,
a fallback controller was implemented in case of lost commu-
nication with Power Hub or other errors, e.g., set point out of
range. This controller emulates a thermostatic controller with
the same reference temperature, Tref, as the set point controller
and 0.5 ◦C hysteresis.

III. RESULTS

Several experiments were conducted during the period from
January to April 2013 using FlexHouse as a flexible load. The
results from three of these experiments are presented in this
section. The indoor temperature reference for all experiments
were set to Tref = 21 ◦C, with �T = 4 ◦C for the first exper-
iment and �T = 8 for the second and third experiment. The
comfort band used for control should be consider an approx-
imation to the actual indoor comfort and should merely serve
to illustrate the possibilities in demand response in the low
voltage grid rather than providing optimal thermal comfort as
in large-scale HVAC systems. Daily, a heat load forecast was
generated from the discretized state space model presented in
Section II-D using 5 min steps.

A. Flexible Consumption Experiment

The first experiment was conducted to demonstrate that
the heat load can be shifted from day to night, where a
surplus of electricity is often available and thus less expen-
sive. Daily, a consumption plan was transferred to Power
Hub (see Section II-A). The set point given by Power Hub
was the reported forecast, at the given time, with a sinusoid
added. The amplitude of the sinusoid was set to 1 kW and
the period to one day, with minima at noon and maxima at
midnight. By superimposing the sinusoid on the forecast, 1
kW of heat load was shifted from midday to midnight. The
outcome of the experiment can be seen in Fig. 3, where the
heat consumption is seen to follow the set point (top) while
the indoor temperature is within the temperature band (bot-
tom). The average heat load during the experiment was close
to 6 kW and hence the 1 kW load shifted from midday to
midnight corresponds approximately to 17% of the average
heat load. The first day the indoor temperature is seen to
drop to the boundary of the comfort band and that the power
consumption is increasing relative to the set point when the
boundary is reached. The drop was caused by an inaccu-
rate forecast of the outdoor temperature, where a 2 ◦C lower
temperature was observed compared to the forecast; thus, con-
sequently estimating the heat load too low for the given day.
From the top plot is noted a daily abrupt drop in set point
at noon and likewise the power consumption. The drop in
set point was caused by a necessary restart in the FlexHouse
BMS, an error that was solved for the following experiments.
This drop caused the indoor temperature to decline outside
the comfort band, but the controller brought the temperature
back up, when the controller was restarted. Furthermore, there
was an error in the timestamps in the reported load forecast
made for January 27th which resulted in that the set point
was not updated after midnight (gray area). The controller
is seen to handle the nonupdated set point and is able to
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Fig. 3. Flexible load experiment. Top: power set point and actual consumption. Bottom: indoor air temperature.

Fig. 4. Set point following consumption. Top: power set point and actual consumption. Bottom: indoor air temperature.

maintain the indoor reference temperature within the comfort
band. The error was realized during the 27th and corrected
in the evening. The following three days are seen to proceed
without reaching the comfort limits and the controller is actu-
ally able to dispatch the requested consumption through the
heaters.

B. Set Point Following Experiment

Subsequently, with the gathered experience from the ini-
tial experiments, a new experiment was conducted to see how
well the heat load forecast performed by investigating how
wide the temperature band had to be to dispatch the predicted
power. Thus, the comfort temperature band was widened to
8 ◦C and the set point returned by Power Hub was simply
given by the load forecast. The outcome of the experiment is

presented in Fig. 4, where the actual power consumption is
seen to follow the set point quite close considering the dis-
cretized power consumption of the ten space heaters, which
can only be controlled with a resolution of 0.250 kW. Ideally,
if the forecast model described in Section II-D was perfect, the
indoor temperature would stay at 21 ◦C during the experiment.
However, the indoor temperature is seen to vary significantly
around the reference temperature, with a maximum of ±4 ◦C.
Especially, around noon, the temperature is seen to decrease
periodically and in the afternoon it increases again. The spikes
during midday are caused by a restart of the controlling soft-
ware, where the fallback thermostatic controller takes over.
During the restart of the BMS, which takes a few minutes,
the thermostatic controller turns on all the heaters in the rooms
where the temperature is below Tref (see Section II-F).
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Fig. 5. Demand-response experiment. Top: power set point predicted and actual consumption. Bottom: indoor air temperature.

C. Demand-Response Experiment

Fig. 5 shows the outcome of the last experiment, where the
impact on the indoor temperature was investigated as a con-
sequence of postponing the heating on request from Power
Hub. At the initial day of the experiment, the set point was
given by the load forecast as in the previous experiment. At
midnight, a negative set point was given, thus activating the
fallback thermostatic controller (gray area), which brought the
indoor temperature into a known state, i.e., 21 ◦C in all rooms.
At 1 A.M. the set point was set to zero, thus requesting all heat-
ing in the building to be switched off. After a few seconds,
the building switched off all heating and within the first
hour the indoor temperature is seen to decline approximately
1 ◦C after four hours the indoor temperature was declined
3.5 ◦C. At 5:30 A.M., thermostatic control was reestablished,
thus bringing the indoor temperature back to the temperature
reference. It is noted that the power consumption is significant
higher, relative to the predicted consumption, after heating has
been reestablished.

IV. CONCLUSION

In this paper, a method for providing flexible demand in
the low-voltage grid using a direct control scheme has been
presented. The method utilizes the infrastructure provided by
an operational VPP, by implementing a specified interface. In
this way, the BMS of an intelligent office building is able
to communicate with the VPP and receive a set point for
the requested power usage. It has been demonstrated that
the building is able to track a given set point over time, by
acceleration and postponement of its power consumption for
electric space heating, and in this way adapt to the needs of
the power system. Furthermore, with the first experiment it
has been demonstrated, that by allowing the indoor temper-
ature to vary within ±2 ◦C, approximately 17% of the heat
load can be shifted from midday to midnight; a similar result

was obtained in [2], where an indirect approach was used to
control household appliances.

From the outcome of the 2nd experiment, it is concluded
that better models for the prediction of heat loads are needed
if the flexibility is to be traded in the day-ahead market.
Predictions of the heat load up to 38 h in advance is sim-
ply subject to high uncertainties and likewise is the input
data, i.e., weather. However, as stated in Section II-D, the heat
load should be seen as an aggregate system, where the uncer-
tainty of the aggregate forecast decreases as the number of
LUs increase. Alternatively, due to the small time constants of
FlexHouse, the flexible demand could more suitably be traded
as balancing power in the intraday market, which has a much
shorter trading horizon.

Finally, the last experiment demonstrates that the heat load
of a thermally light building can be postponed up to an
hour, without having significant impact on the indoor com-
fort. Considering an aggregate system, under control of a
VPP, this means that the heat load of an aggregator can be
reduced by 50% during peak load hours, assuming a 2 h
peak load period. Likewise, in power systems where frequent
brownouts or blackouts are experienced, an ability to post-
pone power consumption for heating—or cooling—could be
an important tool to maintain the stability of the power sys-
tem. Another important thing to notice from this experiment
is how fast heating can be reestablished; if no coordinating
control is enforced on the reestablishing of heating, conges-
tion problems might arise in the distribution grid. Also, this
experiment shows that postponement of heating comes at a
price, meaning that lost heating has to be provided later in
time.

The results presented in this paper should be seen in the
light of that the heat capacity of FlexHouse is quite small;
approximately 3–4 kWh/◦C, Bacher and Madsen [12] com-
pared to approximately 15 kWh/◦C for a regular Danish house
of similar size, but constructed from bricks and concrete. Also,
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the level of insulation of Danish houses is substantial higher
than in FlexHouse, which means that the need for heating
is less per area. The average annual power consumption of
electrically heated households is around 100 kWh/m2 and the
average size of single-family houses is around 140 m2. This
means that the annual heat consumption in a single-family
household is approximately 14 000 kWh/y. When distributed
over the seven months heating season in Denmark, this gives
an average heat consumption of around 2–3 kW, which is
equivalent to what is used for heating FlexHouse. With higher
thermal mass and insulation, the time constants of average
households are expected to be significantly larger compared
to FlexHouse and with the same amount of heating needed,
better results with respect to the amount of energy that can
be stored in the building structure and variations in indoor
temperature, are expected to be found.

In this paper, the parameter used to describe indoor com-
fort is exclusively given by the indoor temperature. However,
indoor comfort is a complex measure and is therefore not given
by the temperature alone; generally, indoor comfort comprises
parameters for CO2 level, humidity, and thermal radiation from
interior walls. Further work should therefore strive to include
more optimal comfort indicators like for example predicted
mean vote (PMV) and predicted percentage dissatisfied (PPD).
Using such indicators, parameters like CO2 level and humid-
ity could be controlled using actuators on windows for control
of natural ventilation of the building. Moreover, the discrete
state space model, used for prediction of the heat load, should
be improved, such that a better forecast of the heat load can
be achieved. Instead of formulating the heat dynamic model
using SDE existing ISO models, e.g., ISO 13 790 [15], could
be used to formulate a more adequate model. Finally, future
work should include control of the A/C from the five heat
pumps in FlexHouse, taking into consideration the coefficient
of performance, η, of the heat pumps.
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