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Abstract
Systems with azeotropes cannot be separated by simple distillation 
since the vapor and liquid compositions are the same. Variation of 
the applied pressure can shift the azeotropic composition out of the 
range of purification of a single column or may allow pressure swing 
operation of two columns. Because of the sensitivity of column size 
to accurate estimates of the relative volatility, it is important to use 
reliable phase equilibrium thermodynamics when exploring the 
possibility of varying pressure to avoid an azeotrope. Based on an
analysis of the pressure sensitivity of azeotropic compositions, we
show examples of the impact of different modeling strategies for
binary and multicomponent mixtures.
Keywords
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1. Introduction
Distillation has been the separation method of choice for systems that have 
coexisting vapor and liquid within the allowable temperature range, because of its 
simplicity of equipment, robustness of operation, and ease of maintenance. The 
process is viable as long as the phases have different compositions at equilibrium.  
Many combinations of substances will form azeotropes in which the vapor and liquid 
have the same composition, a phenomenon that has been known for at least one and 
a half centuries [i]. There are two fundamental approaches to eliminating azeotropes: 
One is to add another component, in extractive and azeotropic distillation, to shift the 
separability of the components to obtain one stream of desired composition followed 
by removal and recycle of the added component in another column also producing
the other desired product. This can be very effective, but requires addition and 
separation of a solvent that can have undesirable contamination and cost effects. An
alternative is to change the pressure of the distillation column either to conditions for 
which there is no azeotrope over the range of compositions, or to use two columns at 
different pressures (pressure swing) where azeotropes of different compositions from 
the columns are recycled while they also produce streams of the desired products.
However, there are limits to the effectiveness of pressure variations because the 
effect on composition may not be large enough to achieve the desired effect. 
Important elements of decisions about conceptual process design are commonly 
based on estimates of properties from thermodynamic models. With azeotropes there 
is high sensitivity of equipment size and operating costs to the separability of 
components. Here we analyze and show examples of the responses of azeotrope 
composition and temperature to variations of pressure that should provide reliable 
screening about the feasibility of using this approach for overcoming azeotropes. In 
particular, we address the impact of models and parameter regressions on pressure 
sensitivity of homogeneous azeotropes of binary and multicomponent mixtures. 
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2. Results and discussion
2.1 Theory
The thermodynamics of phase equilibrium shows that for P phases to exist in a 
system of C components with only PV work, the number of independent intensive 
variables, F, is given by the Gibbs Phase Rule

  F = C – P +2 - S        (2.1)

Here S is the number of special constraints on the system. For an azeotrope, the 
value of S is C - 1 for equality of vapor and liquid mole fractions of each of the 
components. Thus, setting the pressure for an azeotrope sets all phase mole
fractions and the temperature, a total of C variables. To find the values of these 
variables, C phase equilibrium relations are solved. Commonly these set the fugacity 
of a component, i, in the vapor equal to its fugacity in the liquid. Equation (2.2) shows 
the general form for a system below the critical temperatures of the pure components 
using the Lewis/Randall standard state: 
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Here, is the vapor fugacity coefficient, a function of system temperature, pressure 
and vapor composition, and is obtained with a selected equation of state model. Also,

i is the liquid activity coefficient, a function of system temperature and liquid 
composition, and is obtained from a selected excess Gibbs energy model. Further,

S S
i iP is the product of the fugacity coefficient and pressure of the pure saturated 

vapor, functions only of system temperature. Finally, , ,[ ]
i

V T p x is the partial molar 
volume of the component in the liquid [iii]. In the treatment below, we assume the 
pressure is low enough that the fugacity coefficients effectively cancel and the 
exponential term is unity. Then for an azeotrope at mole fraction, z
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i iP T P T         (2.3)

The analysis of Rowlinson and Swinton [ii] for the pressure derivatives of 
temperature and composition, directly shows the pressure sensitivity of the 
temperature and the azeotropic composition, z1, in a binary mixture:
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Here, the property difference between the vapor and the liquid phases.
Note that the properties in Eq. (2.4) are derivatives of the property models. For the 10 
systems we have examined here, the range of dz1/dP is from -0.08 to 0.2. Consistent 
with the approximations of Eq. (2.3), the pressure derivative of the composition can 
also be expressed

35



1
1 2 1 2

P

1
1 2P 1 1 1 1 1 2

1 1

1 1
( )

ln1( ) (1 ) (1 )
1

E E lv lv

E E lv lv

T

dz H H h h
dP P Det

Det z H z H z h z h
z z

J

J
  (2.5)

This is the binary result of a general multicomponent mathematical development. The
ternary azeotrope relation for the same approximations is
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Thus, for both binary and multicomponent systems, the principal effect on pressure 
sensitivity of the azeotropic composition is a difference of non-ideality terms plus a
difference of pure component enthalpies of vaporization. Enthalpies of vaporization
are much greater than the non-ideality terms, but often similar in magnitude. For 
example, Trouton’s rule gives a universal value at the normal boiling point, Tb, of

/ 10lv
bh RT . Table 1 shows some substances without hydrogen bonding within the

range from 10.2 to 10.6; those with hydrogen bonding range from 12.5 to 13.2. Out of
the 220 substances tabulated by Poling et al. [iii], boiling between 300 and 460 K, 
less than ¼ deviate from the average over 10%. Table 1 also shows the liquid molar 
volumes and Antoine vapor pressure model parameters used in calculations below.
As we will show, the term for the non-ideality difference can be greater than the term 
for the pure component difference in Eqs. (2.5) and (2.6). Thus, the reliability of
computed pressure sensitivity may in some cases be determined by the reliability of 
the temperature dependence of the selected excess Gibbs energy model. 

2.2 Method of analysis
To illustrate the effects of different systems and excess Gibbs energy models, we 
choose binary systems for which ternary azeotrope pressure data exist. We show 
that there can be an impact of non-ideality from fitting the model parameters to only 
vapor-liquid equilibrium data or to a combination of VLE data for activity coefficients 
and heats of mixing data for hE as well as when the parameters are considered 
temperature independent as well as linearly dependent. An indication of the non-
ideality term will be the excess Gibbs energy at equimolar composition, while an 
indication of the pure component vaporization enthalpy difference is found from the 
last column of Table 1. We also compare the resulting pressure dependencies with 
results from smoothing the azeotrope composition variation with pressure with 
polynomial fitting of azeotropic data [iv] directly. 
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Table 1. Pure Component Properties [iii]

Substance V, m3 kmol-1 Tb, K A* B* C* hlv, kJ mol-1 hlv/RTb

acetone 0.0738 329.22 4.42448 1312.253 -32.445 29.1 10.6
chloroform 0.0805 334.33 4.56992 1486.455 -8.612 29.2 10.5
n-hexane 0.131 341.88 4.00266 1171.530 -48.784 28.9 10.2
methanol 0.0406 337.69 5.20409 1581.341 -33.500 35.2 12.5
ethanol 0.0586 351.80 5.24677 1598.673 -46.424 38.6 13.2
water 0.0181 373.15 4.65430 1435.264 -64.848 40.7 13.1

*A,B,C: Antoine Constants for the form: log10(PS ) = A - (B / (T + C)); PS, bar; T, K

2.3 Results
2.3.1 Binary Systems
The Wilson model parameters have been fitted to VLE data only and VLE plus heats 
of mixing data [v] for several binary systems. 
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Here T0 = 273.15 K [vi]. We have used the liquid volumes and Antoine constants in 
Table 1. We have treated ternary systems with the NRTL model, in addition (see 
below). Table 2 lists the excess Gibbs energy at midpoint composition, to indicate the 
non-ideality of the system, and the derivative, dz1/dP, evaluated at 1 atmosphere for 
ethanol(1)/water(2) from the Wilson model with constant (all Bij = 0) and linearly 
dependent parameters (Bij . Also given is a “Smoothed” result from differentiation 
of a function which described well, measured (z1,P) data [iv]. Scatter in the data limits 
the number of reliable significant figures, but the signs and orders of magnitude 
should be reliable. Because the hlv/RTb values are very similar for water and 
ethanol, the pure component terms are comparable to the non-ideality terms. 
Depending upon the data included, we find pressure sensitivities can even differ in 
sign, so temperature dependence of the parameters makes significant difference. 
Consistent with this, Gmehling and Kolbe [vii] concluded that the Wilson model (only 
fitted to VLE data) produces erroneous pressure dependence of the azeotropic 
composition for this system. Addition of heats of mixing improves the predicted 
pressure sensitivity, however.

Table 2. Ethanol (1) + Water (2) with the Wilson Équation. 
Data Included A12 A21 B12 B21 gE/RT (x1 = 0.5) dz1/dP (bar-1)
VLE [viii] 289.6 471.9 0 0 0.32 (352.5 K) 0.04
VLE [viii]+hE [v] -7.33 424.7 3.0 0.76 0.32 (352.5 K) -0.01

Smoothed [iv]: -0.03

Table 3. Chloroform (1) + Ethanol (2) with the Wilson Equation. 
Data Included A12 A21 B12 B21 gE/RT (x1 = 0.5) dz1/dP (bar-1)
VLE [ix] -164.0 763.2 0 0 0.24 (335 K) -0.08
VLE [ix]+ hE [x] -206.5 964.4 0.94 -4.2 0.24 (335 K) -0.08

Smoothed [iv]: -0.05

Table 3 shows results for chloroform(1)/ethanol(2) with VLE and VLE plus hE data 
fitted to the Wilson model. In Table 3, however, the same pressure sensitivity is 
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found regardless of the data and temperature dependence of the parameters 
because the pure component difference term is much larger than the non-ideality 
difference. Table 4 shows results resembling the ethanol/water system for 
chloroform(1)/n-hexane(2). Meanwhile, Table 5 shows that although n-
hexane/ethanol is much more non-ideal than chloroform/ethanol, the pure component 
vaporization enthalpies differ substantially, and so their azeotropic pressure 
sensitivities are independent of liquid non-ideality. In a s
in all cases) parameters have been determined from regressing binary data for the 
three pairs of the and acetone(1)/chloroform(2)/n-hexane(3) systems [xi], using VLE
with and without hE data. For brevity we do not give the equation and parameters; 
they can be obtained from the authors upon request. Table 6 gives the pressure 
sensitivities. The pressure sensitivities chloroform/hexane are very similar, but not 
exactly the same as those from the Wilson model given in Tables 4-5.

Table 4. Chloroform (1) + n-Hexane (2) with the Wilson Equation. 
Data Included A12 A21 B12 B21 gE/RT (x1 = 0.5) dz1/dP (bar-

1)
VLE [xii] 112.9 66.8 0 0 0.10 (334.5 K) 0.001
VLE [xii] +hE [xiii] 116.6 77.5 0.40 -0.86 0.10 (334.6 K) 0.01

Smoothed [iv]: 0.03

Table 5. n-Hexane (1) + Ethanol (2) with the Wilson Equation. 
Data Included A12 A21 B12 B21 gE/RT (x1 = 0.5) dz1/dP (bar-

1)
VLE [xiv] 149.4 1082.1 0 0 0.53 (332.0 K) -0.08
VLE [xiv] + hE [xv] 181.9 1140.2 -0.41 -1.3 0.53 (332.0 K) -0.08

Smoothed [iv]: -0.07

Table 6. dz1/dP (bar-1) (using linearly dependent parameters).
Acetone Chloroform n-hexane

Acetone -0.07(-0.03)* 0.006(0.01)*
Chloroform -0.04(-0.03)+ -0.01(0.03)*
n-hexane 0.018(0.01)+ 0.012(0.03)+

*Temperature independent parameters (all Bij = 0) (Smoothed Value [iv])
+Linearly dependent on T (Bij (Smoothed Value [iv])

2.3.2 Ternary Systems
We now examine ternary systems composed of the substances considered above:
ethanol(1)/chloroform(2)/n-hexane(3) [iv] {System I}, and acetone(1)/chloroform(2)/n-
hexane(3) [iv] {System II}. We want to test whether the binary parameters can 
describe the ternary azeotrope compositions and their variation with pressure as well 
as whether the apparent pattern of sensitivity to the parameter dependence on 
temperature and data regressed would be maintained. Table 7 shows the variations 
for System I where there are 3 data points over the pressure range from 0.53 to 1.01 
bar, while Table 8 shows results for System II where there are 6 data for pressures 
from 0.27 to 1.01 bar. First it can be seen that the calculated azeotrope compositions 
are close to experiment for System I and for System II (though less), with little 
difference between the parameter sets. Second, both constant and linearly 
dependent parameters describe the azeotrope composition dependence on pressure 
of System I, as well as for its binaries. The linearly dependent parameter set 
describes the pressure sensitivity of System II somewhat better. This is consistent 
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with the pattern described above for binaries because the components of System II
all have similar hlv values whereas those of System I are significantly different.

Table 7. Ternary Azeotrope of Ethanol (1)/Chloroform (2)/n-Hexane(3) [iv]
Parameters Ethanol (1) Chloroform (2)

z1 dz1/dP z2 dz2/dP
Constant 0.42 (0.44) -0.2 (-0.2) 0.370 (0.358) 0.066 (0.08)

Linear in T 0.42 (0.44) -0.2 (-0.2) 0.367 (0.358) 0.068 (0.08)

Table 8. Ternary Azeotrope of Acetone (1)/Chloroform (2)/n-Hexane(3) [iv]
Parameters Acetone (1) Chloroform (2)

z1 dz1/dP z2 dz2/dP
Constant 0.0358(0.065) -0.014 (-0.01) 0.695 (0.60) 0.054(0.1)

Linear in T 0.0347(0.065) -0.003 (-0.01) 0.688 (0.60) 0.066(0.1)

3. Conclusions
In determining the variation of azeotropic composition with pressure, we have shown 
that if enthalpies of vaporization of the components forming a binary or ternary 
azeotrope are similar, e.g., all hydrogen-bonding, care must be taken in regressing 
the parameters of the applied excess Gibbs energy model since the calculated 
pressure sensitivity of these cases depends on the accuracy of predicting the 
temperature dependence of activity coefficients. In particular, heat of mixing data 
should be included and temperature-dependent parameters should be used in these 
cases. However, if one or more of the components in a binary or ternary azeotropic 
system have significantly different enthalpy of vaporization, e.g., nonpolar with 
hydrogen bonding, the sensitivity of the estimate to the gE model is much less, and 
prediction of composition dependence is adequate, regardless of the gE model and 
parameterization. Though the testing of these conclusions as presented here is 
limited, we believe they are correct for all systems.
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