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Abstract

The human microbiome is an integrated part of the human body, outnum-
bering the human cells by approximately a factor 10. These microorganisms
are very important for human health, hence knowledge about this, ”our other
genome”, has been growing rapidly in recent years. This is manly due to the
advances in next generation sequencing, which has allowed for large-scale
metagenomics studies of different niches of the human microbiota. Especially
the gut microbiota has been studied intensively. However, most studies have
been purely descriptive, thus there is still a lot to learn regarding the in-
terplay between species in the microbiota and also between the host and
the inhabiting microorganisms. Additionally, the non-bacterial part of the
microbiota, which includes bacteriophages, plasmids and micro-eukaryotes,
is not very well described.

In this thesis, metagenomics data from the human gut, nose and oral
cavity has been analyzed. The central method has been a co-abundance
clustering method, which separates genes from metagenomics data under
the assumption that genes originating from the same DNA (e.g. a bac-
terial genome, a phage or a plasmid) will co-vary across samples. Thus,
co-abundance gene groups (CAGs) are obtained, which represent bacterial
genomes, phages, plasmid or other genetic elements in the system. The
ability to reassemble the metagenome in this way opens up new possibilities
for analyzing the functional potential of species in the microbiota as well
as the interactions in the system. Applying the CAG clustering method to
data from the human gut microbiome, we identified dependency-associations
between plasmids, phages and clone-specific gene sets to their bacterial host.
Connections between CRISPR-elements and phages were also observed. Ad-
ditionally, the persistence of some bacterial species in the human gut could
be predicted based on absence or presence of specific genetic modules.

Based on the same CAG clustering of the human gut microbiome data,
the link between bile acid degradation of bacteria in the gut and obesity
was investigated. There seemed to be a slight correlation between the two.
However, this remains to be a hypothesis for further studies. Furthermore,
the prevalence of the parasite Blastocystis in the human gut microbiome
data was analyzed. This is the first time a metagenomics approach has
been applied to this problem and the results were similar to previous Blas-
tocystis prevalence studies. Moreover, it was found that individuals with
a Bacteroides-driven enterotype were less prone to harbor the Blastocystis
parasite.

Finally, the CAG clustering method was applied to metagenomics data
from the human nose- and oral-cavity. It was concluded that this method
needs further improvement in order for it to be directly transferable to other
datasets.
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In summary this thesis presents co-abundance gene groups (CAG) clus-
tering as a valuable tool for analyzing human microbiome data. Furthermore,
results based on this method regarding important topics in relation to the
human gut microbiota are described, including the interplay between bac-
terial species and other genetic elements in the system, factors that might
influence development of obesity and prevalence studies of eukaryotes. Stud-
ies of other areas of the human microbiome might also benefit from CAG
based analyses once the tool has been optimized.
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Dansk Resumé

Det humane mikrobiom er en integreret del af den menneskelige krop og
overstiger det humane celle antal med cirka en faktor 10. Disse mikroorgan-
ismer er vigtige i forbindelse med human sundhed og viden omkring dette,
”vores andet genom”, er vokset hurtigt de seneste år. Dette er hovedsageligt
på grund af udvikling indenfor ”next generation” sekventering, hvilket har
muliggjort metagenomics studier i stor skala af forskellige nicher af det
humane mikrobiom. Specielt tarmmikrobiomet er blevet studeret intensivt.
Dog har de fleste studier udelukkende været deskriptive, og således er der
stadig meget at lære i forbindelse med samspil mellem arter i mikrobiomet og
mellem værten og de tilstedeværende mikroorganismer. Desuden er den ikke
bakterielle del af mikrobiomet ikke særlig godt beskrevet, hvilket inkluderer
bakteriofager, plasmider og mikroeukaryoter.

I denne ph.d.-afhandling er metagenomics data fra den menneskelige
tarm, mund og næse blevet analyseret. Den centrale metode har været en
”co-abundance clustering” metode, der separerer gener under den antagelse
at gener der stammer fra det samme DNA (f.eks. et bakterie genom, en
bakteriofag eller et plasmid) vil kovarierer henover alle prøver. Således opnås
”co-abundance gene groups” (CAGs), som repræsenterer bakterielle genomer,
bakteriofager, plasmider eller andre genomiske elementer i systemet. Evnen
til på denne måde at samle metagenomet igen åbner nye muligheder for at
analysere de forskellige arters funktionelle potentiale såvel som interaktioner
i systemet. Ved at anvende denne CAG clustering metode på data fra det hu-
mane tarmmikrobiom kunne vi identificere afhængighed mellem plasmider,
bakteriofager og klonspecifikke gen sæt og deres bakterielle vært. Også
sammenhænge mellem CRISPR-elementer og bakteriofager blev oberveret.
Ydermere kunne persistensen af nogle bakterie arter i den menneskelige tarm
forudsiges baseret på tilstedeværelsen af specifikke genetiske moduler.

Baseret på den samme CAG clustering af det humane tarmmikrobiom
data, blev sammenhængen mellem nedbrydning af galdesyrer udført af tarm-
bakterier og fedme undersøgt. Der forekom at være en svag sammenhæng
mellem disse to, dog forbliver dette en hypotese til videre studier. Endvidere
blev forekomsten af parasitten Blastocystis i det humane tarmmikrobiom
data analyseret. Dette er første gang en metagenomics fremgangsmåde er
blevet anvendt på dette problem og resultaterne stemte overens med tidligere
prævalens studier af Blastocystis. Desuden blev det observeret at personer
der havde en Bacteroides dreven enterotype havde en mindre tilbøjelig til at
være bærere af Blastocystis parasitten.

Afslutningsvis blev CAG clustering metoden anvendt på metagenomics
data fra human næse og mund. Det kunne konkluderes at denne metode
kræver yderligere forbedringer før den kan overføres direkte til andre datasæt.
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Sammenfattet præsenterer denne ph.d-afhandling ”co-abundance gene
groups” (CAG) som et værdifuldt værktøj til analyse af humant mikrobiom
data. Desuden bliver resultater, baseret på denne metode, der omhandler
vigtige emner i forbindelse med det humane tarmmikrobiom beskrevet,
hvilket inkluderer samspillet mellem bakteriearter og andre genetiske ele-
menter i systemet, faktorer der kan have en indflydelse på udvikling af fedme
og prævalens studier af eukaryoter. Studier af andre områder af det humane
mikrobiom vil formentlig også kunne have gavn af CAG baserede analyser
når metoden er blevet optimeret.
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Chapter 1

General Introduction

The field of metagenomics is a fairly new discipline within genomics. It is
the study of communities of microorganisms based on their DNA. The idea
of studying communities is not new, but the advances in next generation
sequencing within the last decade have made it possible to study bacterial
communities as a whole, instead of limiting research to small subsections, as
earlier culture dependent studies have been [25, 34, 149].

Some of the most studied microbial niches are the ones that are found
on/inside the human body, as this is of great interest in relation to health
and disease. This community is referred to as the human microbiota. It
has also been named our second genome, since bacterial cells outnumber our
own by approximately a factor 10. In these years it is becoming more and
more clear how big an impact, both positive and negative, these organisms
have on us, their host [58, 69].

This thesis focuses on the human microbiome, more specifically the human
gut microbiome, nose microbiome and oral microbiome, with an emphasis
on the gut microbiome. The analyzed data is whole metagenome sequencing
data originating from two of the largest metagenome studies, namely the
European METAgenomics of the Human Intestinal Tract (MetaHIT) project
[104] and the American Human Microbiome Project (HMP) [129].

Metagenomics relies on direct sequencing, meaning the DNA is extracted
from the samples without cultivation or amplification. This DNA is then
fragmented before sequencing, resulting in chaotic datasets consisting of
short DNA fragments originating from a whole range of species [18, 132].
Thus, some form of structuring of the data, determining which fragments
originate from the same DNA, greatly aids the downstream analysis of

3



4 CHAPTER 1. GENERAL INTRODUCTION

the taxonomy and functions of the metagenome in question. This work is
centered around such a clustering method, which was named co-abundance
gene groups (CAG) clustering. It was first employed on the MetaHIT data
with great success and subsequently applied to the HMP data.



Chapter 2

Metagenomics

Metagenomics has revolutionized the field of microbial ecology in that it
enables the study of whole microbial communities directly from a sample,
rather than through cultivation of single organisms and amplification of
their DNA [132, 149]. Microscopic life forms are by far the most common
on the planet. These include billions of bacteria, archaea, micro-eukaryotes
and viruses, and they have a huge impact on the ecosystems that they
inhabit. The study of microorganisms is naturally interesting because they
can cause disease, but this is definitely not the only reason. Bacteria and
other microorganisms are important players in maintaining stable ecosys-
tems in all thinkable and unthinkable places [130, 108, 141, 155]. In health
care, they are interesting because of the impact on human health and dis-
ease. Furthermore, pathogenic and beneficial microorganisms in livestock
have gotten some attention, since healthy animals yield better and larger
quantities of products and consequently larger profit [16]. A whole other
angle is the utilization of bacteria and other microorganisms for industrial
purposes, either as expression hosts or as a source of interesting proteins and
metabolites [25, 97, 149].

Classical methods for studying microorganisms were based on cultivation,
i.e. growing bacteria as single cultures on (artificial) media under labora-
tory/standardized conditions [79, 149]. This approach has its limitations
as the unculturable part of the microbes cannot be investigated. How big
this part actually is depends on who have done the estimate and what type
of samples has been investigated, however the scientific community seems
to agree that it is the majority [6, 18, 29, 80, 120]. Another drawback of
culture dependent studies is that it is not possible to measure the relative
abundance of the species in a biological niche, as the cultivation process will

5



6 CHAPTER 2. METAGENOMICS

introduce major biases, due to differences in growth rate on the artificial me-
dia. Furthermore, it is not feasible to study a whole community in detail in
a laboratory setting, as there are too many factors that need to be measured
simultaneously. To some extent these problems can be overcome by use of
metagenomic methods [25, 79, 149].

Metagenomics is a fairly new addition to the omics fields of study. The
term was first described in 1998 by Handelsman and Rodon [43, 69, 160]. It
is the study of all the microorganisms in a sample from a biological niche,
including unculturable ones, based on their genetic material [111]. Such a
community can be referred to as the microbiota, while the full genetic poten-
tial of this is called the microbiome [58], although the term microbiome tends
also to be used when describing a community and not only the genetic pool.
The term metagenomics can be used both as (1) targeted metagenomics,
which is based on amplification and sequencing of a phylogenetic marker.
This marker is typically the 16S ribosomal RNA gene for bacteria and the
18S gene for micro-eukaryotes [149]. And (2) shotgun metagenomics, where
all DNA from the sample is fragmented and analyzed without amplification
[59]. However, not all sources define the 16S approach as metagenomics
[111]. The first large scale shotgun metagenomics studies were conducted in
2004 [18, 138, 141]. Since then, the field of metagenomics has gained mo-
mentum, mainly because of the development of next generation sequencing
techniques, which has made it possible to sequence massive amounts of DNA
at a reduced cost. Targeted approaches only provide information regarding
the taxonomy, whereas the shotgun metagenomics method enables analysis
of both the taxonomical makeup of the community as well as the functional
potential [25, 80, 126].

Within shotgun metagenomics there are two main approaches, function-
based and sequence-based [18]. The first focuses on investigating the
biological function of gene products by cloning DNA from a sample into
expression vectors and observing the effect on the expression organism. The
other method relies on the sequencing of extracted DNA from a sample.
The function and taxonomy of the sequenced DNA can, to some extent, be
found using databases of known genes and genomes. The focus of this thesis
is on whole genome shotgun metagenomics using sequence-based methods.
From hereon the term metagenomics will refer to this method, unless stated
otherwise. A typical workflow for such an analysis can be seen in Figure 2.1.
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Figure 2.1: General workflow for shotgun metagenomics.

During the relatively short lifetime of metagenomics, an enormous num-
ber of samples has been sequenced. A large part of these have been made
publicly available through resources like NCBI [147], IMG/M [83, 82], GOLD
[99] and MG-RAST [89]. Table 2.1 shows the available datasets on the IMG-
M system. This is only a small part of the big collection of publicly accessible
data, however it still includes 1,957 samples1. It is clear from the table that
the main interests of metagenomic studies have been on aquatic and terres-
trial environments as well as on the human microbiome. This thesis will be
focusing on the human microbiome.

Table 2.1: Counts of the datasets available at the IMG/M
resource in December 2013. Source: http://img.jgi.doe.gov/cgi-
bin/m/main.cgi

Engineered 84 Environmental 1265 Host-associated 880
Bioremediation 20 Air 2 Annelida 5
Biotransformation 9 Aquatic 824 Arthropoda 53
Solid waste 25 Terrestrial 423 Birds 6
Unclassified 1 Unclassified 16 Human 753
Wastewater 29 Mammals 18

Microbial 1
Mollusca 9
Plants 32
Porifera 2
Tunciata 1

1http://img.jgi.doe.gov/cgi-bin/m/main.cgi, December 19th 2013
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2.1 Next Generation Sequencing

Although the first metagenomic studies were performed using Sanger se-
quencing, it was not until the development of next generation sequencing
(NGS) methods, with their lower cost and higher throughput, that the field
really expanded. 454 sequencing, or pyrosequencing, has been, and still is,
used extensively for 16S analyses of metagenomes. Whole metagenome se-
quencing studies have also been performed using this technique, but Illumina
(Solexa) sequencing with its very high throughput and low cost is now the
preferred method, despite the short read length of around 100-250bp (or
2x100-250bp if run as paired end) [59, 114, 132]. These methods are in some
cases also referred to as 2nd generation sequencing, as so called 3rd generation
methods have arisen, with the most popular being the Pacific Bio (PacBio)
system. This method yields very long reads in the range of 5,000-30,000bp1

(according to the manufacturer and users in the community), but the number
of reads is low. When first introduced to the market the error rate was high,
but according to the manufacturer, this has improved markedly. At present
PacBio is not a tool that is very widely used on its own for metagenomics
studies, but the read length makes it useful for gap closing of assemblies
for example from Illumina data [32]. Other methods are, and have been,
on the market, but have not be as important for the metagenomics filed as
the ones mentioned here [59, 132]. These include SOLiD and Ion Torrent
sequencing, which we have used for a pilot study described later in this thesis.

2.1.1 Quality Control and Data Processing
The quality of raw sequencing data will, in most cases, need to be assessed.
The standard way is by use of the Phred score. Sanger and newer Illumina
sequencing machines output this score directly (Solexa and older Illumina
machines use another format). For SOLiD and 454 platforms tools exist for
extracting quality score in this format [19]. The quality score is given to
each base denoting the probability of the base calling being wrong [33]. The
Phred score is defined as:

QPhred = −10log10P (error)

Based on the Phred score, reads with an overall bad quality can be
removed and reads with low quality ends are trimmed. A cutoff of 20 is often
used. Phred score 20 means a probability of the base being called wrong is 1
in 100. This corresponds to an accuracy of 99%. Another important step is
to remove adapter sequences from the reads, as these are sequencing artifacts
and not biologically meaningful. Additionally, read length, GC-content, over
represented sequences and k-mers might need to be assessed depending on
the data and the analysis that will be performed afterwards.

1http://www.pacificbiosciences.com
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2.1.2 Mapping and Assembly
Mapping is a key step in many studies, in some cases to annotate the
metagenome and in other cases in order to construct an abundance matrix
(see Chapter 4). Mapping methods have to be both fast and memory effi-
cient, due to the amount of data produced by the sequencing platforms and,
in many cases, also the size of the target database. Different methods have
been developed, the most widely used is the Burrows–Wheeler Transform
algorithm, which is employed in SOAPv2 [72], Bowtie [64] and BWA. For
more information on the algorithm please refer to the BWA paper by Li et
al. [70].

In many cases, the cleaned reads will have to be assembled into contigs.
The complexity of the data complicates this process considerably, usually
resulting in short contigs and many reads that do not assemble [95, 149].
This is important to have in mind when analyzing the data. A more thorough
description of this step is beyond the scope of this thesis as all assembly of
data used for this work has been done prior to my analysis.

2.2 Annotation of Metagenomes

Annotating metagenomes is not a trivial task due to the data sizes, the
complexity and the fragmentation of the data [25, 101]. The aim of the
annotation is to define which species are present in the samples and de-
termine the functional potential of the community. Figure 2.2 shows a
flowchart of common steps for metagenomic data processing. Taxonomical
and functional annotation are in some cases done directly on the sequencing
reads after quality filtering, simply by mapping to reference genomes or
genes [101]. In most cases, the reads are assembled into contigs on which
gene calling is performed to identify the coding genes. Additionally, tRNA
and rRNA genes can be located on contigs as well as non-coding segments
like Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)
motifs [101]. The predicted genes are annotated functionally and in some
cases taxonomically. The most common approach to functional annotation
is by homology search to databases. The preferred algorithm is BLAST [5],
but also BLAT [57], HMMER1 and UBLAST [30] are frequently used. In
addition, searches based on motif or patterns can also be performed using a
range of methods, many of which are incorporated in the InterProScan tool
[157]. Other less widely applied methods deal with annotation of specific
functions and knowledge regarding the genetic structure, such as operons,
co-expression and pathway structure [25, 101]. Most of the methods that
exist have been designed for single genome annotation or even analysis of
single genes. Thus, the performance of these are lacking, both with regard
to speed and in handling the large unknown proportion of the genes.

1www.hmmer.org/
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Figure 2.2: Flowchart showing the most common steps in data
processing of metagenomic samples. Adapted from Prakash et
al. [101]
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A range of pipelines have been developed for metagenomic annotation,
each having their own advantage. These integrate several methods to give
an overall description of the metagenome under investigation [25, 101].
Among the web-based servers are IMG/M [81], MG-RAST [89], CAMERA
[124], WebMGA [151] and CoMet [75]. Most of these have the advantage of
access to a whole range of metagenomes that can be included in the analysis
for comparison. However, web-based analyses are not feasible when the
number of samples exceed a certain level. Annotation pipelines for local use
include MEGAN4 [46], HUManN [2], RAMMCAP [73], Parallel-META [123]
and SmashCommunity [7]. Additionally, the METAREP tool is available
both as web-server and local tool [40]. Moreover, targeted pipelines like
VIROME and VMGAP have been developed for analyzing the viral part of
the metagenome, as this is particularly hard to annotate [77, 148].

The main limitation of sequence annotation is that, one way or another,
all types of annotation are based on previous knowledge, so the quality of
the annotation is dependent on efforts to better describe the microbial world
both functionally and taxonomically [25, 97, 101].





Chapter 3

The Human Microbiota

The human microbiota is the collection of microbes found on and inside the
human body, where microbial communities are formed in numerous niches.
These are some of the most studied microbiotas on the planet, especially
the gut and the oral cavity have gotten a lot of attention. In fact we are
more microbe than human if calculated by cell count, as the microbe cells
outnumber the human cells by a factor of 10 [69]. In addition to that, a
massive amount of viruses are also found all over the human body as well
as a range of micro-eukaryotes [69]. Looking at functional potential the
microbiome coding genes outnumber those of the human host by a factor of
100 [58, 126].

Most metagenomic studies concerning the human microbiota have used
targeted methods focusing on the 16S marker gene [58, 111]. This has given
a fairly clear picture of which organisms are present in the different sites
of the body. However, in resent years the field has been shifting towards
whole genome sequencing, which adds the functional layer to the informa-
tion. Comparing the taxonomy annotation and the functional annotation of
human microbiomes across a population has shown that the microbiotas are
generally more stable with respect to the functional composition compared
to the species composition (see Figure 3.1), at least when looking at the
most abundant functions as in Figure 3.1(b). Hence, bacteria with similar
functions can substitute each other in the ecosystem, hereby retaining a
stable system [130, 126]. Figure 3.1(a) shows the most abundant phyla
in the human microbiota. It is worth noticing that each site seems to be
dominated by one phylum.

The microbiota has many beneficial functions that influence the immune
system, the metabolism and aids in keeping the general homeostasis of the
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Figure 3.1: Phylum frequency and metabolic pathways in the
human microbiota of healthy test subjects. The columns in
both figures correspond to samples, each represented on both
plots. (a) The phylum level annotation based on 16S data.
(b) Metabolic pathway annotation based on whole genome se-
quencing. Seven sites are included: anterior nares (nose), RC
(retroauricular crease -skin behind ear), buccal mucosa (oral
soft tissue), supragingival plaque (teeth), tongue dorsum (oral
soft tissue), stool (gut) and posterior fornix (vagina). Reprinted
from The Human Microbiome Consortium [130].
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body [58, 69, 111, 126]. Thus, humans and the human microbiota have
co-evolved into a symbiotic state. The human body and the diet provide
nutrition for the microorganisms, which in turn produce products that are
essential for the human host, such as short chained fatty acids (acetate,
butyrate and propionate) and vitamins. Furthermore, they aid in degrada-
tion of indigestible foods [69, 111, 126]. Accordingly, our microbiota is very
important for a healthy body. Some of the health promoting properties of
bacteria have been known for many years, like bacterial cultures in yogurt,
and with the enormous focus on the human microbiota, we are getting a
much better understanding of what characterizes a healthy microbiota [93].

Though more and more evidence emerge regarding the health benefit of
the microorganisms we harbor, there are also studies showing that an imbal-
ance, called dysbiosis, in the system might be involved in a whole range of
illnesses including obesity, infant colicky, arthritis, type 2 diabetes, chronic
inflammations, allergy and even mental disorders like autism, among others.
These are all complex diseases and we still do not have the full picture of
how microorganisms contribute to these phenotypes [31, 58, 94, 106, 146].

The focus of this thesis is primarily on the human gut microbiota and
this will be introduced below. I have also in one project worked with data
from the human nose and mouth. A brief introduction to these systems can
be found in the chapter concerning that project (Chapter 8).

3.1 Human Gut Microbiota

The intestinal tract harbors the most diverse microbiota associated with the
human body and it is competing with the oral microbiota for being the most
studied human microbiota [17, 53, 126].

Each person harbors approximately 160 bacterial species [104]. Quite
distinct variations can be seen on species level between individuals. How-
ever, on phylum level the diversity between people is fairly low [111]. Studies
have shown that the most abundant phyla in the gut are Bacteroidetes and
Firmicutes, constituting over 90% of the total bacterial pool [104]. Most gut
bacteria are obligate anaerobes [111, 140], which is necessary in the oxygen
poor environment of the gastrointestinal tract.

The gut microbiome does not seem to differ markedly between people of
different nationalities. Rather, the gut microbiomes can be separated into so
called enterotypes [69]. Although, the presence of enterotypes are highly de-
bated in the scientific community [61]. The first report of enterotypes stated
that it was possible to divide the test population into tree enterotypes, driven
by Prevotella, Bacteroides and Ruminococcus, respectively [8]. However, fur-
ther studies have shown that there is less support for the Ruminococcus
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enterotype, and that it should be merged with the Bacteroides enterotype
cluster [150]. There appears to be a connection between diet and at least the
two well defined enterotypes. Hence, people with a diet high in animal fat
and protein are more likely to have a Bacteroides driven enterotype and high
intake of carbohydrates seem to correlate with the Prevotella enterotype.
However, short term diet changes does not affect the enterotype [69].

One of the reasons for the immense interest in the human gut micro-
biota is the impact of these microorganisms on human health. The gut
microbiota has been linked to inflammatory bowel disease (IBD), irritable
bowel syndrome (IBS), obesity and diabetes [26, 69] among others. Patients
suffering from these diseases all seem to have a dysbiotic intestinal micro-
biota. This is an imbalance in the system, which otherwise, once matured, is
quite stable unless it is disturbed. Factors like antibiotic treatments, which
kill both the pathogenic organisms as well as the commensals, can cause
dysbiosis. It can also be brought about by pathogenic bacteria, an example
is Clostridium difficile infections. Western-diet, i.e. high fat and high sugar
content, also seems to have undesired effects on the balance of the gut mi-
crobiota [63, 69, 91]. Whether the unhealthy microbiota is the cause or the
effect of the illnesses observed is still unclear [56]. Despite the uncertainties
that still exist regarding the health effect of the intestinal microorganisms,
there seems to be a consensus about high richness of species and higher
Bacteroidetes versus Firmicutes ratio being important for a healthy gut
microbiota [31, 69, 111, 140].

It is important to mention that our microbial inhabitants of the gas-
trointestinal tract also perform very important functions. These include
protection from pathogens, aiding in degradation of food, development of
the immune system and production of short chain fatty acids and vitamins,
just to name a few [24, 68, 69, 144]. Presently, there is a great interest in
determining treatments that can restore a dysbiotic gut system to a healthy
balance. Methods like functional foods such as probiotics, prebiotics and
synbiotics have been used [140]. A rather new approach is to use fecal trans-
plants, which among others have been successfully used for treating illnesses
caused by Clostridium difficile infections and to combat the metabolic syn-
drome, which is related to various phenotypes, like type 2 diabetes, obesity
and heart disease [55, 140, 142]. In time, a more controlled manipulation
of the microbiome should be possible, which is somewhere between the
controlled low complexity culture probiotics and the rather uncontrolled
community infusion performed when using fecal transplants [91, 140]. Thus,
introducing a desired function into the system by constructing a network of
species that cooperate.

Although it is evident that the gut microbiota has a great influence on
the human body, the interplay between host and microbiota and the driving
forces of their co-evolution are still not very well described [69, 98]. In order
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to study this we need a broader test population, preferably including remote
populations. These people have a very different diet, which is perhaps
more ”ancient” than the western diet. This will hopefully be reflected in
the microbiota. Accordingly, these individuals can function as a form of
out group when studying diseases related to the gut microbiota [69]. A
better understanding of the gut microbiome might aid in the development of
personalized medicine, as the microbiome makeup might influence response
to treatment [69, 98]. Furthermore, there is a need for biomarkers to detect
various diseases. Even though several studies have set out with exactly
that aim, no adequate markers have been discovered by studying the gut
microbiota [69]. However, some species might be indicative of a low richness
microbiota, thus indicating the risk of obesity. These species might be
targets for biomarker development [66].

In addition to the cellular proportion of the gut microbiota, there are
a vast amount of viruses inhabiting the intestinal tract, including bacterio-
phages, most of which are unknown [90]. These are thought to have a very
important role in stabilizing the microbiota by killing bacteria. The virome
seems to be much more individual than the bacterial part of the microbiome
and it is very sensitive to changes in diet [69, 90].

The bacteria, viruses and micro-eukaryotes inhabiting the gastrointesti-
nal tract constitutes an ecosystem in which each member has a part to
play. Until now, most studies have been focused on determining who is
there and what each individual contributes in terms of functional potential
[24]. However, only a few studies concern the interplay of species, and the
variability within species as well as the mechanisms driving persistence in the
gut [107, 117, 135]. These questions are what we are addressing by using the
co-abundance gene groups (CAG) clustering method on stool samples. This
will be described in Chapter 5. This is a first step towards an understanding
of the system that hopefully will aid in answering some of the pending
questions that I have described in this overview.





Chapter 4

Metagenomic Binning

The purpose of metagenomic binning is to try and recreate the community
under investigation, since in the sequencing process the data is fragmented
and even with the best assembly methods it is not possible to recreate full
genomes of the entire content of the sample from the short reads. In this
context, metagenomic binning is to define which sequences originate from the
same organism and cluster these together. Binning methods exist for data
reduction by removing redundant sequences [132], but this is not the focus
here. This chapter is devoted to give an overview of the existing methods
for binning metagenomics data as well as introducing the method we have
employed to construct co-abundance gene groups. It will only cover methods
for shotgun metagenomics.

4.1 Existing Methods

Different approaches exist that rely on different information in order to
cluster the data. Numerous methods have been developed, some of which
will be described here.

4.1.1 Sequence Homology Based Binning
Homology based methods are based on similarity of the sequences (genes,
contigs or reads) to known species or proteins. Thus, these are dependent
on previous knowledge stored in a database. In this way, the data is binned
based on the taxonomic or functional annotation [114, 149].
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The LCA (Last Common Ancestor) method is a widely used approach
which is implemented, in different forms, in SOrt-ITEMS [92], MTR [41] and
CARMA3 [38] among others. These binning tools are based on alignment of
reads or genes to known genomes and then binning the sequences according
to the hits. A cutoff is set to define what level in the taxonomical tree to
assign each sequence to. CARMA3 can also be used on data aligned to a
protein database, thus giving a functional binning of the data rather than
a taxonomical [38]. Others have also applied this method using databases
like Pfam [103] or COG [127] or whole protein databases like UniProt [131]
and NCBI nr [23, 102, 134]. In some cases, a binning method is applied to
reduce the redundancy in the data and remove the shorter sequences before
the actual annotation clustering [23, 38]. A fast and more precise method is
the MetaPhiAn [116], which bin reads based on known clade-specific genes
from reference genomes. The speed gain comes primarily from the reduced
search database [59].

These types of methods work best when dealing with very well described
ecosystems, as they are heavily dependent on already known species and
proteins. However, in most cases metagenomics data contain sequences
from unknown bacterial species. Additionally, existing databases are still
biased towards model organisms and pathogens, even with the great efforts
going on to fill in the missing gaps, like the Human Microbiome Project
and the Earth Microbiome Project [39, 129, 114]. Even if an acceptable
annotation is obtained for the bacterial part of the microbiome, the viruses
and plasmids will cause problems, as these are generally very poorly anno-
tated. The method cannot account for horizontal gene transfer and clonal
differences. The methods based on alignment using BLAST or HMMER
are computationally very challenging, especially if done on read level [85, 116].

4.1.2 Composition Based Binning
Another way to manage the problem is by clustering the data based on
sequence composition. These methods are typically based on GC-content
or k-mer abundance, which is conserved between closely related organisms.
Additionally, codon usage has been used for binning [132, 149]. Many of
these have the advantage of being independent of reference databases.

Most of the composition based methods rely on k-mer frequency. The
method TETRA is based on tetranucleotide composition [128]. This has also
been improved by combining it with codon-usage [139]. The PhyloPythia bin
the sequences based on their k-mer frequency, for which it relies on a training
set of genomes [88]. This works best when the data resembles the training set
and with sequences longer than 1kb. S-GSOM also bin the sequences based
on an analysis of the k-mer frequencies, but only in the region around 16S
rRNA genes [15]. PCAHIER, TACOA and Phymm are additional methods
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that cluster data based on k-mer frequencies [28, 159]. However, Phymm
uses complete bacterial genomes for training, hence it is not independent of
databases. It has the advantage of performing well on short sequences and
the method was improved by combining it with a BLAST approach. This
was named PhymmBL [12].

Generally, composition based methods are more computationally efficient
than the homology based methods. However, the accuracy is often low, espe-
cially when dealing with short sequences, such as sequencing reads [116, 132].

4.1.3 Co-Abundance Based Binning
A third and, to my knowledge, rather new form of binning is based on co-
abundance. Basically these methods work under the assumption that DNA
sequences that originate from the same DNA will co-vary across samples.
The method employed in the analyses described in this thesis is based on
this principal. Thus, this will be explained in more detail than the methods
mentioned above.

The input to the clustering algorithm is some form of abundance matrix.
A simplified version of such a matrix is shown in Figure 4.1. It contains the
abundance of each sequence in each sample. In this case, the sequences are
genes, but they could also be contigs. The clustering bins genes that have
a similar abundance profile across all samples. Hence, in Figure 4.1, gene 1
and 2 will be binned together in a cluster and gene 3, 4 and 6 in another.

This approach has been applied in two studies on the human gut mi-
crobiota in relation to type 2 diabetes. In these, the clusters were named
metagenomic clusters (MGS) and metagenomic linkage groups (MLG) re-
spectively [54, 105]. The aim of these studies was to investigate if any MGS
or MLG were associated to diabetic traits. Using this method, they were
able to better pinpoint the organisms responsible for the functional changes
they observed in the metagenomes.

In another study, this method was applied to one waste water sample,
which was sequenced twice using different DNA extraction methods, thus
resulting in two samples with different abundance measures of the genes. In
this case, other factors like tetranucleotide frequency and GC-content were
also taken into account in addition to the co-abundance clustering. From the
resulting bins, they were able to assemble 31 bacterial genomes, including
four from the possibly new bacterial phylum TM7, thus markedly improving
the assembly [4].

Carr et al. [14] performed a similar clustering, however, they chose a
slightly different approach as the genes for constructing the abundance ma-
trix were obtained from the KEGG database, whereas for the other studies
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Figure 4.1: Example of an abundance matrix with N samples
and M genes. The blue bars represent the abundance of each
gene in each sample. Gene 1 and 2 have similar abundances,
thus they are clustered together, as are gene 3, 4 and 6.

it was genes or scaffolds originating from assemblies of the metagenomic
samples that were used. This makes this method dependent on database
information.

The co-abundance approach seems to yield better results than any of the
other methods for metagenomic binning in terms of accuracy [4, 14, 54, 105].
Further development of these tools and integration with composition based
or homology based methods will lead to better annotation of metagenomes.

4.2 Co-Abundance Gene Groups

Co-abundance gene groups or CAGs were generated using the above de-
scribed co-variance principal. Figure 4.2 depicts a work flow describing how
we performed the analysis. The first step is to clean up the sequencing data
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Figure 4.2: Work flow for constructing CAGs from metage-
nomic data.

as described in Section 2.1. The reads are used as input for assembly. Each
sample is assembled on its own. Genes are predicted on the resulting contigs
using a gene caller that can handle metagenomic data, e.g. MetaProdigal
[47] or MetaGeneMark [161]. All genes are pooled and redundant genes
are removed by applying a homology based clustering program, this could
be CD-HIT-EST [74] or UCLUST [30]. This produces a gene catalogue to
which all the trimmed reads are mapped in order to construct the abun-
dance matrix. Thus, the raw count matrix contains counts for all genes
in all samples. These will then have to be scaled to account for different
gene lengths and then either scaled or downsized in order to correct for
varying sequencing depth between samples, as comparing samples of very
unequal quality, in terms of sequencing depth, cause false correlations in
the data. The level of downsizing depends on the samples at hand. The
processed abundance matrix serves as the input for the co-abundance gene
groups clustering. The clustering could likely also be used directly on contigs.

The CAG clustering is based on the canopy clustering algorithm. This
was originally intended as a pre-sorting of data before an actual clustering
and, as such, it is developed for speed [87]. We use Pearson correlation to
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Figure 4.3: Illustration of the canopy clustering method.
A seed gene is picked randomly as an initial cluster center
(P). The genes that are within the inner circle with the limit
T2 are members of the canopy. Genes between the circles
could possible be part of the cluster. The center is recalcu-
lated based on the genes inside the T2 circle and the canopy
is recalculated based on the genes inside the T1 circle, as
some of the genes between the circles might now fall inside
the T2 circle. All genes outside T1 are not included in the
recalculation. Adapted from http://www.shahuwang.com/wp-
content/uploads/2012/08/canopy.png, January 2014.

calculate the abundance correlation between genes. In Figure 4.3 is an illus-
tration of the algorithm. A center is picked randomly and the correlations to
all other genes in the data are calculated. All genes within the limit T2 (see
Figure 4.3) are included in the cluster. All that are outside T2 but inside T1
(also in Figure 4.3) can possible be part of the canopy. A recalculation of the
center is performed and the cluster is recalculated for all genes within the
T1 limit. This is called canopy walks and is done until the optimal center is
found (or a defined number of times) at this point all genes within the T2
limit are binned. Then a new center is picked from the gene pool, excluding
the binned genes, and the process starts over. This is done until all genes
are clustered.
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This binning method was first applied to the metagenomics data provided
by the MetaHIT project. A short description of this project and the paper
written on the analysis can be found in Chapter 5. Subsequently, the CAG
clustering approach was attempted on the HMP oral and nose data. This is
described in Chapter 8.
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Chapter 5

Metagenomic analysis of the
Human Gut Microbiota

5.1 Introduction

Co-abundance gene group (CAG) clustering is a highly valuable tool for
studying metagenomes. It enables investigation of functions of specific
organisms and interaction between elements (bacterial species, phages and
plasmids etc.) in the system, which is a great improvement over the purely
descriptive studies that have been the norm [24]. Thus, the first CAG clus-
tering was performed on sequencing data from stool samples collected under
the MetaHIT project. The fecal samples serve as a proxy for the human
gastrointestinal tract. This, and the following two chapters, describe the re-
sults obtained from analyzing CAGs identified in the human gut microbiome
data. The importance of studying the human gut microbiota has already
been introduced in Chapter 3, hence in this chapter I will only describe
the MetaHIT project and include the paper concerning the CAG clustering
performed on the MetaHIT data.

5.1.1 The MetaHIT Project
MetaHIT is an abbreviation for METAgenomics of the Human Intestinal
Tract. It was a large project including 13 academic and industrial partners
from 8 countries. The funding was obtained from the European Commission
for four years of work running between 2008 and 20121.

1www.metahit.eu/, February 2014
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MICROBIOTA

The aim of the study was to better understand the human gut microbiota
in relation to human health. Accordingly, the first paper published described
the human gut microbiota of 124 individuals with varying BMI from lean
to obese and patients suffering from ulcerative colitis and Crohn’s disease
[104]. This was based on Illumina deep sequencing of fecal samples and it
was the first study of this magnitude to be published on the human gut
microbiome. The importance of the work can be illustrated by the 1,236
citations this paper has gotten according to Web of Science as of February
2014. The dataset included ~3.3 million non-redundant genes in total and
approximately 1,100 bacterial species. Based on the gene count for each
sample it was estimated that every individual harbored ~160 species, most
of which were shared between all patients.

Two other studies have been published by the MetaHIT consortium. The
first being the controversial paper describing how the MetaHIT samples could
be separated into enterotypes, which has already been described in Chapter
3 [8]. The other study describes the difference in the microbiota of lean and
obese individuals [66]. However, this is not performed on the original 124
samples but on 292 samples from individuals ranging in BMI from lean to
obese. They found that the microbiome in lean and obese differ in relation
to richness and species composition, but the difference is more significant if
looking at high gene count versus low gene count of the microbiome. This
could be due to differences in the severity of the obesity phenotype in the
patients. Thus, individuals with a low gene count gut microbiota might have
a higher risk of developing obesity related diseases than individuals with a
high gene count microbiome. The sequencing data of the first 124 samples
was made publicly available and has been used in many other studies. One
of these concerned the metabolic potential of the microbiota and how this
is involved in interactions with the host [48]. Another study compares the
human and guinea pig gut microbiotas, which is interesting because guinea
pigs are used as model organisms [44]. Others have included the samples in
larger scale comparison studies [35, 51, 62, 113, 125].

The MetaHIT sequencing effort did not end with the 124 samples. In the
present study we include 396 deeply sequenced samples from the MetaHIT
collection. This data is clustered as described in Chapter 4. The analysis of
the resulting CAG clustering is described in the manuscript included in the
next section. Supplementary information for the paper can be found in Ap-
pendix A (supplementary methods) and Appendix B (other supplementary
information).

5.2 Manuscript - Variable gene modules predict
persistence of microbes in the human gut
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ABSTRACT 
The genetic diversity of the human gut microbiome includes numerous plasmids, 
phages and clonal differences and extends far beyond what is covered by reference 
genomes. Here we present the first microbiome-wide analysis of dependency-
associations that link plasmids, phages and clone-specific genetic elements, to their 
bacterial hosts. The dependency-associations reveal specific CRISPR-phage 
relationships and longitudinal samplings show that the occurrence of some associated 
genetic elements predicts persistence probabilities of the microbes that carry these. 
The mapping of the dependency-association is made possible by an exhaustive co-
abundance segregation of the gut metagenome into 7,381 highly correlated co-
abundance gene groups (CAGs) including 741 metagenomic-species (MGS) across 
396 human faecal samples. 

INTRODUCTION 
The human microbiome has recently gathered substantial attention because of its 

importance for human health and disease1. The gut microbiome is among the most 
complex microbial communities studied, with an estimated number of common 
microbial species about one thousand across humanity2. These microbes are generally 
believed to have co-evolved with the human host3 and yet the composition of the 
microbiota varies considerably among human individuals4. 

In adults the species composition is relatively resilient, though changes over longer 
time periods have been reported. Genetic and environmental factors including diet 
and, not surprisingly, the use of antibiotics have been shown to influence the 
microbiota5,6. Finally, both the innate and the adaptive immune systems are likely to 
be important factors, though their impact is not fully known.  

These factors are likely to shape the genetic makeup of the microbes that persist in 
the gut. Understanding of such genetic adaptations may be critical for modulating the 
microbial community. With the exception of a few well-studied species, the genetic 
makeup of the gut microbes is at best known from a small number of reference 
genomes. Consequently, the genetic variation of the microbial species is largely 
unknown. We recently described single nucleotide polymorphisms across the gut 
microbiome7 and showed that comparison of genomes from different isolates of the 
same species indicates substantial differences at the level of gene composition8. 
Examples of such heterogeneity are genetic islands, bacteriophages and plasmids, but 
also clonal differences. While plasmids and phages have been identified in the human 
gut microbiome they have with a few exceptions9–12 not been associated to specific 
microbial host species within the community. A first step towards unfolding such 
associations is a de novo description and profiling of the microbial species and their 
clone-specific and mobile genetic elements, across gut samples from a series of 
individuals.  

Progress in assembly from metagenomics data utilizing sequence abundance and 
composition to segregate species, has resulted in genome assembly from several 
ecosystems13,14. Recently partial assembly of 47 microbial genomes based on co-
abundance gene aggregation, has been reported from human faecal metagenomics 
data1,15. 
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Here we exhaustively bin the genes of a new 3.9M gene catalogue from 396 deep 
sequenced human faecal samples by co-abundance clustering. In this way we 
aggregate 40% of the gene catalogue into 7,381 highly correlated co-abundance gene 
groups (CAGs), which range in size from small groups of only a few genes to what 
corresponds to complete prokaryote genomes. The latter we denote metagenomic-
species (MGS). The smaller CAGs are likely to represent an ensemble of genetic 
variations associated with cognate species, including plasmids, phages, genomics 
islands and clonal differences. We link numerous smaller CAGs to MGS by 
determining dependency-associations between these. We also show that the 
persistence probabilities differ between bacterial populations with or without specific 
dependency-associated CAGs.  

RESULTS  

Exhaustive co-abundance gene segregation 
In this study we use deep sequencing data from 396 human stool samples from 

Spain and Denmark, including 124 samples from a previous study16 (see Methods and 
Supplementary Data 1 for details). 77 of the Spanish individuals were sampled twice, 
with, on average, six months between the samplings. The sequence reads were 
assembled separately for each sample and merged to form a non-redundant gene 
catalogue of 3.9M microbial genes (Supplementary Fig. 1). 

An exhaustive and unsupervised co-abundance segregation of the entire gene 
catalogue was deployed to identify all CAGs (Supplementary Fig. 2 and 3). In brief, 
the profile of a randomly picked seed gene was used to capture groups of highly 
abundance-correlated genes (canopies, with Pearson correlation coefficient (PCC) > 
0.9). The canopy profile was determined as the median abundance profile of the 
comprised genes and was used for recapturing the canopy until the profile stabilized. 
This process was iterated until all genes were assigned to a canopy. Canopies, with at 
least three genes and where the canopy abundance signal from any three samples 
constituted less than 90% of the total signal across all samples, were identified as 
CAGs (for additional details see Methods). The approach is ultra-fast because it is 
simple and because the large canopies tend to be extracted quickly and thereby 
reduces the computational cost of subsequent canopies. 

Some 1.53 million genes (representing 68% of the mapped sequence reads) were 
assigned to 7,381 CAGs, ranging in size from 3 to 6,319 genes. Interestingly, the size 
distribution of the groups, in terms of genes contained, was bimodal with peaks 
around 50 genes and 1,700 genes, respectively (Fig. 1A). The 741 largest CAGs with 
more than 700 genes correspond approximately to complete genomes of bacteria or 
archaea, in terms of the number of genes they contain (Supplementary Fig. 4). 
Furthermore, the genes contained in these CAGs were highly consistent in base 
composition, had highly correlated abundance profiles in an independent set of 115 
samples17 and had consistent taxonomical annotation (Supplementary Fig. 5, 6 and 
7C; Supplementary information; and Supplementary Data 2). Thus, for 115 of these 
more than 95% of the taxonomically annotated genes were similar to a reference 
genome from a single species. Finally, 238 of these could be assembled to the high 
quality draft genome assembly standard of the Human Microbiome Project (for details 
see Methods; Supplementary Information; Supplementary Fig. 7-10; and 
Supplementary Data 3 and 4). We therefore refer to these as metagenomic-species 
(MGS) or species.  

5.2. MANUSCRIPT - VARIABLE GENE MODULES PREDICT
PERSISTENCE OF MICROBES IN THE HUMAN GUT 33



Because 19 individuals consumed a defined fermented milk product containing the 
previously sequenced Bifidobacterium animalis subsp. lactis CNCM I-249418, this 
species may serve as a benchmark for the co-abundance clustering. Thus, although 
MGS:337 only constitute on average 0.3% of the 19 samples, it captures 95% of the 
B. animalis reference genes and the MGS augmented genome assembly covered 95% 
of the reference genome with 99.9% identity (Supplementary Fig. 10). Furthermore, 
sub-sampling of the data demonstrates that the B. animalis MGS can be segregated 
using as little as 700K sequence reads per sample or from a much smaller sample set 
consisting of only 18 samples (for details see Supplementary Fig. 11 and 12). 

Functional characterization of small CAGs  
While the majority of the abundance co-varying genes are contained in MGS, the 

6,640 smaller CAGs with less than 700 genes, and on average 44 genes, show equally 
tightly correlated abundance profiles. With 848 small CAGs enriched for proteins 
characteristic for bacteriophages10 or with consistent phage taxonomy19 (for details 
see Supplementary Data  and Methods), this is the most common type of annotation 
enrichment among the small CAGs. On average 113 (± 37) phage-like CAGs could be 
identified per sample. Although, bacteriophage taxonomy is relatively poor we 
observed consistent species or family level taxonomical annotation in 35 and 172 
phage-like CAGs, respectively. In accordance with the many observed phage-like 
CAGs, transposase, integrase and recombinase encoding genes were primarily 
enriched in the smaller CAGs (Fig. 1B). 

Another class of functions that were found primarily enriched in smaller groups 
may be described as functions that are important for biotic interactions. These include 
Clustered Regulatory Interspaced Short Palindromic Repeat (CRISPR) associated 
genes, which function in Bacteria and Archaea as a sequence dependent adaptive 
immune system directed against alien DNA20. In addition to core CRISPR associated 
genes, several CAGs were enriched for specific subtypes of these genes 
(Supplementary Fig. 13). Similarly, restriction endonucleases and DNA methylases, 
which are part of the non-adaptive defense system, were enriched in 120 small CAGs. 
Also, genes involved in modification of the bacterial exterior, important for bacterial 
identification and masking thereof, were enriched in a number of small CAGs. These 
included genes involved in modifications of the cell wall and, in particular, 
glycosyltransferases.  

Dependency-associations affiliates small CAGs to MGS 
Existence of small CAGs, representing mobile genetic elements and clone 

differences, implies that they depend on cellular organisms, for their proliferation. In 
relationships that are non-promiscuous, a dependent CAG should never occur 
independently of the hosting microorganism. Significant dependency-associations 
were indeed identified by comparing absence/presence profiles for all pairs of CAGs 
(incl. the MGS) across samples using Fisher’s exact test and excluding relationships 
where a potential dependent CAG was observed independently of the hosting CAG 
(Fig. 2A). Notably, these relationships are directional, with one CAG being 
dependency-associated to the other CAG. The resulting network of the most 
significant dependency-associations is shown in Fig. 2B and contains 882 
relationships between 1,205 CAGs (for details see Supplementary Data 6). The 
dependency-association network is dominated by sub-networks, most of which are 
centered on an MGS. However, the network also contains nine MGS-interconnecting 
small CAGs, which all connect MGS pairs of the same genus. 
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413 of the associations were supported by sample-specific sequence contigs that 
bridged between the dependency-associated and the hosting CAG (odds ratio 2,513, 
Fisher’s exact test P << 1 ! 10-100). This points to occasional genomic integration for 
some of the dependency-associated CAGs. As expected, the network is significantly 
overrepresented for small CAGs that associate to an MGS (odds ratio 12.7, Fisher’s 
exact test: P << 1 ! 10-100). 

An important aspect of the dependency-associations lies in their ability to connect 
CAGs into sub-networks, which guide explorations and understanding of the parts. 
For example, the sub-network centred on Sutterella wadsworthensis (MGS:135, Fig. 
2C) contains eight dependency-associations including the associations of the phage 
like CAG:3731 and the CRISPR associated genes and repeat region containing 
CAG:4011. Interestingly, the sample-wise detection of the CRISPR and phage like 
CAG were anti-correlated (Matthew’s correlation coefficient -0.7) and one of the 
CRISPR spacers had a 15 bp sequence match to the phage. Observations that fit the 
interpretation that the CRISPR prevents the homologous phage from infecting the 
bacterium20. Obviously, all the features of this sub-network and of many others are 
not presently understood, but the description of the dependency-associations lays the 
ground for future studies. 

Another example illustrating the non-syntenic nature of some dependency-
associations is shown in Fig. 2D. Here sample-specific MGS augmented assembly of 
the E. coli MGS:4 and its dependency-associated CAGs (Supplementary Fig. 14; 
Supplementary Data 7) are shown. The sample-specific assemblies demonstrate 
strong sequence similarities throughout the majority of the chromosome, but also 
demonstrate differences. The largest of the E. coli associated CAGs (CAG:427, 
containing 345 genes) is indicated in red throughout the 11 best assemblies, and in 
agreement with its detection profile, it was absent in some sample-specific 
assemblies. Strikingly, the non-redundant integration of CAG:427 was found to be 
scattered across the genome. This lack of chromosomal continuity suggests that 
CAG:427 describes differences between E. coli strains that cannot be explained by a 
single mutational event.!

Dependency-associated CAGs influence the persistence probability of 
their MGS host 

To investigate the effect that dependency-associated CAGs may have on their host 
MGS, we analysed the 73 human individuals that where sampled at two different 
time-points. From each of these sample pairs it could be determined if a given MGS 
was present at the first time point, and whether it was still present at the second time 
point. Based on this information, it was possible to estimate how well a given MGS 
typically persisted, both with and without its dependency-associated CAGs present. 

Some dependency-associated CAGs did indeed greatly influence the persistence of 
their hosting MGS. For instance, see the survival curve in Fig. 3A, where 
Bifidobacterium adolescentis can be seen to persist for much longer when co-
observed with its dependency-associated CAG. To further analyse this phenomenon 
we employed logistic regression to infer annual persistence probabilities for MGS 
with and without their dependency-associated CAGs (Supplementary Data 6). The 
credibility of these estimates was quantified using Bayesian statistical methods21, 
which in brief, outputs a so-called posterior probability distribution over the possible 
annual persistence probabilities (for details see Methods). From this analysis we 
identified 26 cases where the presence of a specific dependency-associated CAG 
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correlated with a substantially altered annual persistence probability of its hosting 
MGS. For example, the annual persistence probability of the aforementioned B. 
adolescentis (MGS:119) was estimated to be 88% in individuals where it was 
observed in association with CAG:2298, but only 18% in individuals where 
CAG:2298 was absent (posterior mean estimates). This corresponds to an increase of 
70 percentage points in annual persistence probability (Fig. 3B, posterior probability 
that the effect is larger than zero = 99.94%). Similar positive effects were observed 
for Prevotella copri, Escherichia coli, Faecalibacterium prausnitzii and 12 additional 
MGS (see Supplementary Fig. 14). Additionally, 10 dependency-associated CAGs 
had a substantial negative effect on the persistence probability (Supplementary Data 
6). 

Across the dependency-associated CAGs which elevated the MGS persistence 
probability we observed a diverse set of functions including complexes of CRISPR 
associated genes (CAG:2720), collagen adhesion protein and gram-positive anchor 
proteins (CAG:2888) and ‘thioredoxin family proteins’ that may be important for the 
tolerance of reactive oxygen species (ROS). This is in line with the observation, that 
the most common species in the human gut microbiome are prone to have functions 
that mediate ROS tolerance (see Supplementary Information and Supplementary Data 
8). Among the dependency-associated CAGs that contributed negatively to the MGS 
persistence probability we observed three phage-like CAGs. 

DISCUSSION 
We present a method for producing a complete co-abundance clustering of an entire 

microbiome. The resulting MGS and CAGs offer an unprecedented insight into the 
microbial species and their genetic makeup, and thereby elucidate details important 
for rationalizing the content of the gut microbial community. Importantly, the 
clustering is purely data driven and hence it circumvents the use of reference genomes 
and cultivation of microbial species and yet in a single analysis uncovers hundreds of 
microbial organisms and thousands of smaller genetic modules. The discrimination 
between strains of the same species indicates that the co-abundance is very powerful 
in segregating closely related biologically entities. In comparison, gene sets that are 
defined by sequence similarity to known reference genomes often displayed 
incoherent abundance profiles (Supplementary Fig. 15), which potentially could lead 
to false associations between clinical conditions and putative species. While we see a 
few cases of chimeric assemblies (see Supplementary information) we have no 
indication of CAGs constituting multiple species, however, such entities could in 
principle exist in very close co-abundance. 

Interestingly, we found that genes involved in resistance to antibiotics had distinct 
single gene abundance profiles (except vancomycin resistance genes, for details see 
Supplementary Text). This is in line with the fact that most antibiotic genes, except 
vancomycin resistance genes, are known to single-handedly provide antibiotic 
resistance. It suggests that some genes may be highly dynamic and perhaps are best 
understood non-contextually, at the single gene level. 

While the strong dependency-associations observed primarily between small CAGs 
and MGS are merely associations, they point to an occasional affiliation of the 
associated CAGs. This interpretation is strongly supported by sample specific 
sequence contig overlap, taxonomical consistency across associations, and the 
preferential direction from small CAGs to MGS. Furthermore, the occurrence of some 
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dependency-associations was found to discriminate between populations with 
different persistence probabilities. These discriminative CAGs contribute functions 
that suggest a role in tolerating ROS, a common innate immune response mediator 
and in anchoring to the intestinal epithelia. These CAGs may serve as adaptations to 
the conditions in the gut including the co-existence with other species or persistence 
in their absence (Supplementary Fig. 16). These findings are important because they 
generate insight on the selective pressures faced by the gut microbes and the genetic 
adaptations that these undergo. These findings also indicate factors that may prevent 
less adapted species from colonizing the system and suggest directions for future 
engineering of microbial communities, e.g. for substitution of faecal microbiome 
transplantation. It may even pinpoint critical genetic elements for this. However, the 
adaptations to species co-existence also indicate that there may not be one solution 
that will fit all communities. 
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METHODS SUMMARY 
396 human faecal samples were deep sequenced (Illumina) and assembled into a 

non-redundant catalogue of 3,871,657 genes. Genes were clustered into co-abundant 
gene groups (CAGs) with a fixed inclusion criterion (PCC > 0.9 to the median 
profile). CAG augmented assembly (Velvet22, SOAPdenovo GAPCloser23) was done 
on a subset of reads recruited by mapping sample specific reads to CAG gene 
containing contigs. Gene-wise species, genus and phylum level taxonomy were 
assigned using best-hit sequence similarity to a reference sequence (from NCBI, 
3,048 reference genomes) that exceeded 95%, 85% and 75% over 100 bp, 
respectively. Genes were functionally annotated by sequence similarity to 
ACLAME24, UniPro25, VFDB26, eggNOG database27 and Bacillus subtilis essential 
genes (Supplementary Data 9). CRISPR repeat-spacer segments were identified 
using CRT28. Functional enrichment for CAGs was done using Fisher's exact test (P < 
0.001). A CAG was called phage-like if it passed one of two criteria: a) If a CAG 
contained a minimum of 10 phage-taxonomy annotated genes19 and 80% of these 
were consistent at species, genus or family level, or b) if a CAG encoded " five 
distinct characteristic phage functions10 and " 40% of the CAG genes were most 
similar to known phage genes. A CAG was considered dependency-associated to 
another CAG if the pair co-occurred significantly (Fishers exact test, P < 1 ! 10-10, 
after Bonferroni correction) and if the candidate CAG was not observed 
independently. Annual persistence probabilities for MGS with or without a given 
dependency-associated CAG were estimated from 73 individuals that were sampled 
twice using a probabilistic (Bayesian) model-based framework that explicitly 
accounts for time-dependence. 
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FIGURES AND FIGURE LEGENDS 

 

Fig. 1. Co-abundance gene groups (CAGs). A) Histogram showing the CAG size 
distribution in terms of gene content. The scale is logarithmic as indicated by the bar 
widths. B) Bee swarm plot showing CAGs that are significantly enriched for the 
indicated gene annotation (as dots) vs. the number of genes contained. Phage-like 
CAGs and dependency-associated CAGs are defined in Methods. The dashed line 
marks the small CAGs to MGS size threshold (700 genes).  
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Fig. 2. Dependency-associations among MGS and CAGs. A) A typical example of a 
significant dependency-association. The abundance of the MGS:135 (Sutterella 
wadsworthensis) and the small CAG:2350 across 318 faecal samples are shown as 
blue and red curves, respectively (upper panel, logarithmic scale). Below the sample-
wise presence of the two CAGs is shown as bars. CAG:2350 is significantly co-
occurring with MGS:135 and never detected independently (P = 9 ! 10-74). B) A 
directional network showing all 882 significant dependency-associations among 287 
MGS and 918 small CAGs. Arrows indicate the dependency-associations among 
CAGs (circles). The size of the circles indicates the number of genes in a specific 
CAG and the phylum level gene annotation is indicated by colour (green: 
Bacteroidetes, orange: Firmicutes, blue: Proteobacteria, pink: Actinobacteria). The 
blue circle indicates the S. wadsworthensis (MGS:135) centred sub-network shown in 
Fig. 2C and the red circle the E. coli (MGS:4) centred sub-network in Supplementary 
Fig. 14. C) The dependency-association sub-network of CAGs associated to S. 
wadsworthensis (MGS:135). Arrows show dependency-associations and solid arrows 
indicate that co-assembly of the MGS and the CAG in one or more samples supported 
the association. Blue colouring indicates CAGs dominated by genes with species level 
similarity to Sutterella wadsworthensis. CAG:2543 and CAG:3731 are significantly 
enriched for phage like genes and CAG:4011 contains a series of CRISPR associated 
genes and a CRISPR cluster. The CRISPR (CAG:4011) and the one of the phages 
(CAG:3731) anti-correlate (Matthews correlation coefficient = - 0.7) and spacers of 
the CRISPR show sequence complementarity to the phage. D) The E. coli (MGS:4) 
and its nine dependency-associated CAGs were co-assembled to high quality draft 
genomes in each of 11 samples. The outer black circle represents the consensus 
assembly of the E. coli centred agglomerate and each of the gray circles represent 
alignment of the assembly from a particular sample. The positions and sequence 
coverage of CAG:427 are marked in red, across the assemblies. 
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Fig. 3. Bifidobacterium adolescentis (MGS:119) has substantially higher persistence 
probability when the dependency-associated CAG:2298 is present. A) Persistence 
curves, shoving the cumulative loss of B. adolescentis over time as observed across 
54 human individuals who had the bacterium in the first of two samples. The B. 
adolescentis containing individuals was stratified into two sub-populations, with or 
without the dependency-associated CAG:2298. Points indicate time (in days) between 
the first and second sample. The curve shows the “losses” when they are registered at 
the second time point (i.e. the data is interval-censored). B) Posterior probability 
densities of the annual persistence probability for B. adolescentis with or without 
the dependency-associated CAG. The shaded areas indicate the 95% probability 
distributions of the respective sub-populations. 
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Chapter 6

Bile Acid Degrading Bacteria in
Relation to Obesity - A
Hypothesis

6.1 Introduction

The relation between obesity and the gut microbiota was touched upon in
Chapter 3. This seems to be a very complex phenotype, which cannot simply
be described by absence or presence of a single species or gene [31]. There
are trends pointing towards low richness of species and a skewed balance
between Bacteroidetes and Firmicutes are more often found in obese than in
lean individuals [136]. Although, there has been recent findings that seem to
contradicting this [35].

It has been suggested that the difference in the obese microbiota may not
be found in the taxonomical makeup, but rather at the functional level [35].
This was supported by a study by Turnbaugh et al. [137], which showed an
increase in genes related to energy harvest from lipids and carbohydrates in
obese individuals [133, 137].

The changes observed in the microbiota of obese individuals could be
the effect of the obesity rather than the cause. However, in mouse studies
it has been shown that transferring the microbiota from an obese mouse to
a lean one will induce weight gain in the lean mouse, indicating that the
gut microbiota directly affects the weight status of the host [31, 111, 137].
Additionally, the fact that obesity is associated with tissue inflammation
hints at bacterial involvement, as these are able to produce inflammatory
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agents like lipopolysaccharides and peptidoglycans [133].

One of the factors that might influence the progression of obesity is the
ability of the intestinal bacteria to degrade bile acids [13]. These molecules
are produced from cholesterol in the liver. The primary function of bile
acids is in the digestion of fats and fat soluble vitamins from the diet, but
they are also very important in regulation of lipid, glucose and cholesterol
homeostasis as well as in immune cell regulation [3, 13, 106]. By degradation
of the bile acids to deconjugated bile acids and secondary bile acids, the
intestinal microbiota has a great influence on the bile acid functions and
thus might also affect the development of obesity and other related diseases
[50, 158].

Metagenomic analysis has shown that the degradation of bile acid is
a conserved function in the gut microbiota. However, the abundance of
bile acid degradation genes can vary considerably between individuals [50].
The reduction of species in a dysbiotic system can subsequently result in
a reduction in bile acid degrading bacteria. This in turn, has an influence
on the glucose and lipid balance as well as on cholesterol breakdown and
excretion [52, 106]. Moreover, studies in mice have shown that obese test
animals seem to have a reduction in bile acid degradation functions [52].

The first step in degradation of bile acids by bacteria is the deconjugation
of the molecule. This is performed by the bile salt hydrolase (BSH) enzyme
[110]. The deconjugated bile acid can subsequently be transformed to sec-
ondary bile acids or be excreted, the latter resulting in elevated cholesterol
turnover [13, 52]. The primary pathway for bile acid degradation is shown
in Figure 6.1.

In this study we wanted to investigate if any of the CAGs, obtained by
clustering the MetaHIT data described in Chapter 5, could be related to
obesity. As mentioned, no clear connection between obesity and species of
the gut microbiota has previously been found. Thus, we wanted to investi-
gate if any functional properties correlated with the BMI of the MetaHIT
test population. Here, the focus is on the bile acid degradation potential.
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Figure 6.1: Biotransformation of bile acids by intestinal bacte-
ria. The primary bile acids are cholic acid and chenodeoxycholic
acid. These are conjugated to glycine or taurine in the liver
thus resulting in bile salts. This figure shows the pathway for
degradation of cholylglycine, the conjugated form of cholic acid.
BSH: bile salt hydrolase, HSDH: hydroxysteroid dehydrogenase.
Adapted from Ridlon et al. [110]

.

6.2 Methods

This project is also based on the CAG clustering of the the MetaHIT
data, which was described in Chapter 5. Only the species sized CAGs, i.e.
the ones containing 700 genes or more, were included. In the paper pre-
sented in Chapter 5, these are renamed MGS, however I keep the name CAG.

COG annotation

All CAGs were functionally annotated based on the COG database [127].
The annotation was performed as described by Qin et al. [104] for the first
124 MetaHIT samples. Essentially, a BLAST [5] search was performed with
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an E-value cutoff of 10-5.

BLAST annotation

Bile acid related genes were selected from the NCBI database based on the
pathways described in the papers by Ridlon et. al [110] and Philipp [100].
In this way, a database was constructed containing 782 3-α-HSDH genes,
1829 3-β-HSDH genes, 2170 7-α-HSDH genes, 27-β-HSDH genes and 4008
BSH genes. Additionally one of each of the genes baiB, baiCD, baiE, baiA,
baiF, baiG, baiH, baiI, baiA2, baiA3, acad, HsdA, tesH, tesI, KshA, KshB,
HsaA, HsaB, HsaC, tesB, HsaD, tesD, ORF18, tesE, tesG and tesF were
included. The full MetaHIT gene catalogue was aligned to this database
using BLASTp [5] with a bit score cutoff of 60.

6.3 Results

Initially, it was investigated if any of the CAGs correlated significantly with
BMI by means of Pearson correlation. The correlations were very weak,
ranging between -0.24 and 0.20. This corresponds to the results described
in the introduction, that no single species can be associated to obesity. A
Wilcoxon signed-rank test between BMI and each COG annotation for all
CAGs was performed to investigate if presence of any COG annotations
were skewed towards either obesity or leanness. We identified 19 (p<0.0001
after Bonferroni correction) such COGs, 18 of which occurred mostly in
leanness associated CAGs and 1 was primarily found in obesity correlated
CAGs. Looking at the functional description of these COGs, COG4927
was biologically interesting, as it was annotated as ”predicted choloylglycine
hydrolase”. Choloylglycine hydrolase is a bile salt hydrolase (BSH), which is,
as mentioned in the introduction, the initial step in the bile acid degradation
pathway of bacteria. The correlation to BMI of the 27 CAGs that include
this COG is shown in Figure 6.2. 26 of these 27 CAGs are marginally
correlated to leanness.

Although these are weak correlations, we take this as an indication that
bile acid degradation could be important for the obesity phenotype. Next,
we wanted to better annotate the bile acid pathways in the CAG set. This
was done by BLAST search of the gene catalogue to a database of bile
acid degradation pathway genes, as described in the methods. We did not
identify any CAGs with a full degradation pathway. Most of the significant
hits were to the three HSDH genes or BSH, which is most likely due to these
genes being over represented in the database compared to the other genes.
However, we did observe that the CAGs that were annotated as having
COG4927, thus possessing the bile salt hydrolase function, had a higher
number of different bile acid pathway genes on average than the rest of the
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Pearson correlation of CAGs to BMI
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Pearson correlation of CAGs to BMI

Figure 6.2: BMI correlation of the CAGs that are positive for
COG4927 are shown in green circles. The red squares depict
the minimum and maximum correlations of all CAGs to BMI
and the purple diamond shows the correlation of all COG4927
CAGs (summarized abundance over all samples) to BMI (Pear-
son correlations).

CAGs (mean of 7 versus 5). This supports the annotation of these CAGs,
as these being involved in bile acid degradation. The correlations between
presence of the other bile acid degradation pathway genes and BMI were
examined and we found that these do not correlate as well as the presence of
COG4927. Additionally, the CAGs including most bile acid genes (by count
of genes) did not correlate better to BMI than the COG4927 annotated
CAGs.

There is also the possibility that the correlation could be stronger looking
at the COG4927 annotation for each patient, leaving out the CAG clustering,
but this was not the case.

6.4 Discussion and Perspectives

The weak correlation of BMI to CAGs possessing the choloylglycine hydro-
lase activity we see in this data is not enough to make any final conclusions.
However, it could be an indication of a relationship between bile acid degra-
dation of intestinal bacteria and obesity, which has also been suggested by
others [50, 158]. To better assess this, improvement of the annotation is
needed. By using, BLAST as we have done here, it is very easy to either
over- or under-annotate the genes, depending on the number of genes in the
selected database and the chosen cutoff.

A general limitation when analyzing metagenomics data is the fact that
it only illustrates the potential of the system, not which genes are actually
being expressed. In this case, it would be very valuable to integrate the
metagenomics data with transcriptomics or metabolomics data to see if there
are any correlations between the BMI of the test subjects and the bile acid
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degradation activity of the intestinal bacteria.

Studies in mice might also be valuable in order to better understand the
effect of bile acid degradation on the metabolism. This will hopefully be
transferable to humans. In the future, perhaps bile acid degrading species
could be used as probiotics against obesity.

In conclusion, the hypothesis of bile acid degrading bacteria having a pos-
itive influence on the BMI still requires further investigation. However, this
study illustrates one type of analysis that is enabled by the CAG clustering
method. Thus, it was possible to extract data regarding bacteria possessing
a certain function from the genomic data and analyze this in connection to
the metadata.



Chapter 7

Blastocystis Occurrence in the
Human Gut

7.1 Introduction

Blastocystis is a human gut parasite that is found in a large proportion of
the general population. Worldwide, an estimated 1-2 billion people harbor
this organism [112]. The parasite was first described in 1911 and named
in 1912 as Blastocystis hominis. However, this name is rather misleading
as the parasite also infects other animals, thus the name is at the moment
changing to Blastocystis spp. [22]. Already in 1916, a study was conducted
on the prevalence of this parasite in South Carolina [78]. It is striking
that a parasite that has been known for about 100 years is still relatively
poorly described with respect to its pathogenicity [22, 112, 122]. Some
sources describe this parasite as part of the normal gut flora, whereas others
contradict this and believe this to be an emerging pathogen [10, 22, 109, 112].

Symptoms suspected to be caused by Blastocystis include irritable bowel
syndrome (IBS), diarrhea of varying severity, abdominal pain, nausea,
anorexia and flatulence [9, 112]. However, studies describing Blastocystis as
a pathogen generally suffer from limited sample sizes and detection methods.
Furthermore, efforts to rule out other possible causes of the symptoms have
been lacking in these works [22, 121]. Some results suggest that the severity
of the infection depends on the subtype of the infecting agent. However, there
is no consensus regarding which subtypes are found to be more pathogenic
than others [22]. It is possible that symptomatic infections are caused by
virulence genes expressed by some strains [112]. In most cases, the infection
is asymptomatic, which is fortunate, as it is hard, if not impossible, to erad-
icate the parasite [112, 122]. Blastocystis has been described as the cause of
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chronic diarrhea in patients suffering from other health issues, such as HIV
infection and cancer [22]. This suggest that the parasite is an opportunistic
pathogen, since a large part of the population, as mentioned, carries this
parasite without any symptoms [112, 122].

In order to better describe the distribution of Blastocystis in the pop-
ulation and to identify possible connections to the remaining gut flora,
metagenomic data from cohort studies like the MetaHIT project [104] can
be very valuable [112, 145]. With this in mind we set out to describe the
Blastocystis prevalence in the MetaHIT samples. To my knowledge this is
the first time Blastocystis frequency in a test population has been described
using metagenomics data. The analysis, which is presented in the paper
included in the next section, is based on the CAG clustering described in
Chapter 5.

7.2 Manuscript - A Metagenomic Approach to
Studying Intestinal Microbial Eukaryotes
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THE HYPOTHESIS 
Advances in Next Generation Sequencing (NGS) methods have led to the production of vast 
amounts of sequencing data. Metagenomic studies of relevance to human clinical microbiology 
have generally been limited to studying bacterial communities in various types of patient samples 
(1). Meanwhile, large pools of sequence data representing microbial eukaryotes are apparently 
being ignored despite eukaryotes being part of many habitats, including the intestinal tract. Long 
lasting intestinal colonisation with microbial eukaryotes is common in both healthy individuals and 
patients with common functional bowel diseases such as irritable bowel syndrome (2, 3). One of the 
most common micro-eukaryotes is Blastocystis, an anaerobic stramenopile of unsettled clinical 
significance (4-7). The genus comprises multiple ribosomal lineages, the so-called subtypes, which 
are arguably separate species, and of which nine have been found in humans (8, 9). In most 
countries, humans are primarily infected by ST3, followed in prevalence by ST1, ST2 and ST4, 
although clear geographical differences are seen (10). Here, we show that it is possible to extract 
data on Blastocystis from whole genome sequencing metagenomic data intended for analysis of 
bacterial communities. Such data represent a valuable source of information, enabling the linkage of 
data on microbial eukaryotes to bacterial microbiota profiles. At present, there are massive amounts 
of publicly available metagenomic datasets ready to be analyzed.  
In this work we ‘sift’ metagenomics data generated by the MetaHIT consortium (Nielsen et al., 
submitted) for DNA signatures of Blastocystis. We suggest this method be applied to other 
microbiome datasets for elucidation of the micro-eukaryotic component. 
 
BLASTOCYSTIS CARRIAGE – PREVALENCE AND ASSOCIATED INTESTINAL 
MICROBIOTA 
In the previous study (Nielsen et al., submitted), fecal genomic DNAs from 396 study individuals 
(177 Danish and 219 Spanish) were sequenced. Danish test subjects included only healthy 
individuals, whereas the Spanish cohort included 20 with Crohn's disease (CD), 127 with ulcerative 
colitis (UC), and 72 healthy individuals. The age of the study individuals ranged from 18 to 70 with 
a median of 49 (IQR: 40.25—59). All individuals had been assigned to one of three enterotypes as 
defined by Arumugam et al. (11) prior to this study (Nielsen et al., submitted). 
 
We utilized the metagenomic binning method described by Nielsen et al. (submitted); genes were 
called in the metagenomics data for each sample, and the abundance of each gene in each sample 
was quantified. The abundance of each gene between all 396 samples would then result in an 
abundance profile, where genes from all samples were clustered according to co-abundance based 
on the assumption that genes originating from the same organism would have similar abundances 
profile between all samples. We refer to these clusters as CAGs (co-abundance gene groups). We 
searched our data for CAGs containing Blastocystis subtype-specific DNA signatures and found 
four CAGs that corresponded to Blastocystis ST1-ST4 respectively.  
 
The distribution of the 4 subtypes in the different cohorts is summarized in Table 1. Blastocystis 
CAGs were detected in 20 % (81/396) of all study individuals, of whom 14 had ST1, 14 ST2, 17 
ST3, and 36 had ST4. The prevalence of Blastocystis of any of the subtypes was not associated to 
gender, nationality, BMI or age of the sample donors. However, there were clear differences in 
Blastocystis prevalence among the enterotypes, commonly used for gut microbiome stratification. 
While Blastocystis colonized only 5 % of the 154 individuals with the Bacteroides-driven 
enterotype, Blastocystis was observed in 26 % (n=62) and 32 % (n=180) of the individuals with 
Prevotella- and Ruminococcus-driven enterotypes, respectively (p<0.0001, χ2-test). A possible 
explanation for this is that Blastocystis may be positively correlated to species richness; the 
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Bacteroides-driven enterotype appears to be negatively correlated to species richness and therefore 
possibly also to Blastocystis. The finding could also be explained by the possibility that Blastocystis 
colonization is dependent on the activity of certain types of fermenting bacteria; indeed Blastocystis 
is found in the cecum and colon, which is also where SCFA-producing bacterial communities exist. 
 
We also analyzed the co-occurrence of the four Blastocystis subtypes and found that none of the 
investigated CAGs were found together in any of the patients. However, cases of mixed subtype 
colonization have been reported (12-15)   
 
None of the 20 patients with CD had Blastocystis, consistent with previous findings (16). 
Blastocystis was common in all other groups included in the study, being most prevalent among 
healthy individuals (24 %). Although ST3 is the most common subtype world-wide, ST4 has 
previously been found particularly predominant in Danish and Spanish cohorts (17, 18); hence, the 
present results are comparable to findings for similar cohorts obtained by detection and 
differentiation of SSU rRNA genes, which is currently state-of-the-art for Blastocystis diagnosis 
and subtyping (19, 20). We believe that screening CAGs for Blastocystis has imminent potential as 
a valid method for detection and genetic differentiation of the parasite. Also, further investigations 
of the remaining genes in the CAGs, especially the genes with no similarity to known genes, might 
yield more knowledge about this parasite and its role in human health and disease. 
 
CONCLUSION 
We have shown that metagenomic data focused on prokaryotes can also be valuable for detection of 
eukaryotic DNA signatures. Other body sites and other poorly described species can be investigated 
in the same manner provided that there is data available from enough samples. Most metagenomic 
studies include both study and control groups, and so it should be possible to analyze the health 
impact of various micro-eukaryotes (some of which are still surrounded by conundrums (1)) in the 
context of the bacterial microbiota by phylogenetic interrogation of relevant genes. Utilizing 
existing metagenomic data from studies across continents could be used to produce standard 
microbiomes of healthy populations, which in turn could serve as reference enabling us to identify 
dysbiosis in both pro- and eukaryotic components of the intestinal microbiome.  
 
Co-abundance gene groups clustering 
The CAG construction that we utilize in this study was performed previously by Nielsen et al. 
(submitted). This is a summary of how it was done; for more information refer to the original paper. 
Sequencing data from 396 samples was assembled and a gene catalogue containing 3,871,657 genes 
was produced by gene calling and homology reduction (cut off 95 % identity over 90 % of the 
length of the shortest gene). An abundance matrix was generated by mapping back all the 
sequencing reads to the gene catalogue and counting the hits for each gene in each sample. The 
dataset was downsized to 3 million reads per samples, and samples with less than 3 million reads 
were discarded. Genes that were observed in less than 3 samples were removed and genes that had 
more than 90% of the signal coming from one sample were also ignored. The data was normalized 
based on the gene lengths and the total signal for each sample, and the resulting matrix was used as 
input for the clustering. The clustering method used canopy clustering that had a fixed inclusion 
criterion set to PCC >0.9 to the median profile. In this way, the genes that had similar abundance 
profiles were binned together in co-abundance gene groups (CAGs). 
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Blastocystis annotation of CAGs 
CAGs that had an overrepresentation of genes with similarity to Blastocystis ST7 (the only 
published complete Blastocystis genome at the time of analysis) when BLASTing to the UniProt 
database (http://www.uniprot.org/) were annotated as Blastocystis. Further annotation of these 
CAGs to Blastocystis subtypes were performed by comparing the CAG genes to genomes of 
mitochondrial-like organelles (MLO) of known Blastocystis subtypes (ST1–ST4) (21, 22) 
unpublished observations). Four CAGs could be assigned to a Blastocystis subtype based on the 
rps12 gene of the MLO, which was chosen as marker gene. For validation, the CAGs were blasted 
to draft genomes of Blastocystis subtypes 2, 3, 4, 6, 8, and 9 (unpublished data), using the CLC 
Genomics multi BLAST function (default settings and expect = 10; word size = 30). Of the 2041 
sequences in the CAG that had been annotated as ST2 using the rps12 gene, 10 sequences matched 
the draft genome of Blastocystis ST9, 2 sequences matched ST8, 12 sequences matched ST6, 9 
sequences matched ST4, 34 sequences matched ST3 and 1698 sequences matched the draft genome 
of Blastocystis ST2. The other CAGs had similar BLAST result patterns. This demonstrates that 
1698/2041 (83.2%) of the genes combined into this specific CAG could be located in this crude 
draft genome of Blastocystis ST2 and that this CAG had a maximum similarity to any of the other 
five subtype draft genomes of 0.98%. The missing 16.8 % of the ST2 CAG is probably due to a cut-
off of 2000 nt in minimum contig sizes when the draft genomes were assembled and could probably 
also be due to genomic differences within the different ST2 strains.  
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Table 1. Blastocystis subtype (ST) prevalence in numbers (#) and percentages (%) of total 
according to cohort. A total of 396 individuals were included; each cohort group (seperated by 
horisontal lines) that does not add up to 396 is due to undetermined cohort status of one or more 
individuals. The bottom cohort group is based only on the Spanish participants. CAG = Co-
abundance gene groups; CD = Crohn’s Disease; UC = ulcerative colitis.  
   CAG-ST1  CAG-ST2  CAG-ST3  CAG-ST4  Total 

Cohort1 
Size 
(N)  # %  # %  # %  # %  # % 

Gender:                 
    Female 224  9 4.02  6 2.68  8 3.57  16 7.14  39 17 
    Male 171  5 2.92  8 4.68  9 5.26  20 11.70  42 25 
Body mass:                 
    Lean 163  6 3.68  5 3.07  7 4.29  15 9.20  33 20 
    Obese 113  2 1.77  5 4.42  7 6.19  5 4.42  19 17 
    Overweight 70  5 7.14  3 4.29  1 1.43  10 14.29  19 27 
Enterotype:                 
    Bacteroides 154  1 0.65  2 1.30  1 0.65  4 2.60  8 5 
    Prevotella 62  4 6.45  3 4.84  5 8.06  4 6.45  16 26 
Ruminococcus 180  9 5.00  9 5.00  11 6.11  28 15.56  57 32 
Nationality:                 
    Danish 177  8 4.52  9 5.08  10 5.65  15 8.47  42 24 
    Spanish 219  6 2.74  5 2.28  7 3.20  21 9.59  39 18 
Spanish:                 
    CD 20  0 0  0 0  0 0  0 0  0 0 
    Healthy 72  0 0  2 2.78  4 5.56  11 15.28  17 24 
    UC 127  6 4.72  3 2.36  3 2.36  10 7.87  22 17 
1The age of the 396 persons ranged from 18—70 with a median of 49 (IQR: 40.25—59); body mass 
index (BMI) ranged from 16—42 with a median of 25 (IQR: 22—31). 

7.2. MANUSCRIPT - A METAGENOMIC APPROACH TO STUDYING
INTESTINAL MICROBIAL EUKARYOTES 59





Chapter 8

Metagenomic Analysis of the
Human Nose and the Human
Oral Cavity Microbiotas

8.1 Introduction

After having generated the CAGs for the MetaHIT data we decided to apply
the method to oral microbiome data. This is an interesting environment to
study, as the oral microbiota has a great impact on human health and disease
[27]. The mouth is connected to most of the internal part of the body, thus
oral microorganisms do not only influence the site they inhabit, but also
the rest of the human body [27]. Additionally, the oral cavity is charac-
terized by extreme conditions, to which the microbiota has adapted [60, 118].

The initial plan for this project was to sequence saliva samples collected
from the MetaHIT test subjects in order to investigate their oral microbiome.
This could in turn be compared to the gut microbiome. The sequencing
was never conducted. However, we did perform initial studies on DNA
extraction for sequencing, which I have chosen to include in this chapter.
We proceeded to apply the CAG clustering to metagenomics data from oral
and nose samples made available by the Human Microbiome Project (HMP).
The nose samples were included because this site is in very close proximity
to the mouth. Thus, the hypothesis was that we might find a range of CAGs
that recur in both environments, but maybe with some site specificity that
could be interesting. Hence, there might be gene sets that are necessary for
the survival in the oral cavity that are not found in the nose and vice versa.
Furthermore, the nose data was considerably smaller in size than the oral
data. Thus, it could function as a test set to investigate how the clustering
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performed. This introduction includes a brief description of the microbiotas
which were investigated as well as of the Human Micorbiome Project.

8.1.1 The Human Oral Microbiota
The human oral cavity is a habitat for some 500-1200 different bacterial
species depending on the source of the estimate [1, 27, 84, 143]. Approxi-
mately 280 of these have been cultivated and about 600 species have been
validated by 16S analyses [27]. These numbers are the total pool of species
found across test populations. However, in one single individual the number
of species is markedly lower, usually somewhere between 80-200, but is likely,
in some cases, as high as 500 species [1, 60, 84]. The easy access to the site
and the importance of the oral microbiome to human health have made this
one of the most studied communities on the planet [60].

The human oral microbiota is actually not one uniform community.
Rather, it is made up of multiple site-specific communities, inhabiting both
hard and soft tissues. Very big variations between microbiotas of different
niches can be observed [27, 118]. In addition to the tissue sites there are
also planktonic cells in the saliva. The mouth is connected to the trachea,
esophagus, nose and middle ear, thus functioning as a gateway to the internal
parts of the body [27].

The mouth is an environment characterized by constant saliva flow,
large but short term, temperature changes and availability of nitrates and
various types of carbohydrates in addition to the saliva, which is a very
complex, but energy poor nutrient source [60]. Properties like oxygen, re-
dox potential, pH and nutrient accessibility differ between oral sites [60, 118].

The oral microbiome has a great impact on the health of the host. Oral
microorganisms are the cause of a range of oral diseases, such as caries,
periodontitis, root canal infections, tonsillitis and alveolar osteitis [27]. Ad-
ditionally, oral bacteria have been found (with varying amount of evidence)
to be linked to non-oral diseases including pneumonia, stroke, cardiovascular
disease, preterm birth, diabetes, endocarditis, meningitis and spondylodisci-
tis among others [27, 143, 156].

When looking at the health impact of the oral bacteria, it is important
to mention that the commensal bacteria perform many beneficial functions.
First of all they form biofilms, which function as a barrier for pathogenic
bacteria [143]. This is very important due to the flow of bacteria through
the oral cavity, illustrated by the fact that people on broad spectrum antibi-
otics in many cases develop bacterial or yeast infections in the mouth [84].
Through the degradation of nitrate, the oral microbiota aids in maintaining
a healthy gastrointestinal system as well as cardiovascular system [84, 143].
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As mentioned, bacteria are found as free cells in the saliva, but the
majority of bacteria are located as biofilms on the various surfaces in the
mouth. These biofilms have been studied extensively, especially the biofilms
formed on the teeth, which constitutes the hard tissue of the oral environ-
ment [60, 84, 143]. The organisms in the biofilm adapt to this cooperative
state of living, hence behaving very differently than free cells [45, 60]. Thus,
it is important to consider the oral microbiota as a community, rather than
individual organisms.

In addition to culture based methods, 16S and whole metagenome studies
have been used to elucidate the composition and function of the oral micro-
biota [1, 11, 76, 96, 152, 154], with the biggest effort, in terms of number of
samples, being the HMP [129]. Figure 8.1 shows the distribution of genera
and phyla in oral sites (and the gut) in a healthy test population [115]. The
most abundant phylum in the mouth is Firmicutes, of which Streptococcus
is the most prevalent genus. Through the oral sites moving towards the gut,
the ratio of Firmicutes to Bacteroidetes shifts towards the Bacteroidetes
dominated state of the gut microbiota.
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B Genera	  distribu/on	  in	  9	  oral	  sites	  and	  stool	  

Phyla	  distribu/on	  in	  9	  oral	  sites	  and	  stool	  

Figure 8.1: Distribution of phyla (A) and genera (B) in nine
oral sites and the gut of a healthy test population. The sites
are grouped in four groups (G1-G4) according to the Firmi-
cutes/Bacteroidetes ratio. Group 1: Buccal mucosa (BM), ker-
atinized gingiva (KG), hard palate (HP). Group 2: Throat (Th),
palatine tonsils (PT), tongue dorsum (TD), saliva (Sal). Group
3: Supragingival plaque (SupP), subgingival plaque (SubP).
Group 4: Stool. Adapted from Segata et al. [115]
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8.1.2 The Human Nose Microbiota
The nose constitutes the upper part of the respiratory system. Here, the air
is filtered before entering the airways and lungs [67]. Most of the studies
regarding the nose microbiota have been focused on either one or a few
species [67]. Especially, the carriage of the pathogen Staphylococcus aureus
has received a great deal of attention, since people carrying this bacteria are
at risk of server infections [42, 119, 153].

To the best of my knowledge, not many culture independent studies
have been performed on the nose microbiota [67]. Although, samples from
this site have been included in large scale studies like the HMP study [130]
and the study by Costello et al. [20]. These and a few others have shown
that healthy individuals mostly harbor Actinobacteria in the nose but also
Proteobacteria and Firmicutes are commonly found in this site [36, 130].

8.1.3 The Human Microbiome Project
The Human Microbiome Project is funded by the US National Institute of
Health (NIH) and is the largest resource of its kind. It includes samples from
242 healthy individuals across 18 body sites for women and 15 for men. Sam-
ples have been collected at up to three time points for each individual. Both
16S sequencing and whole metagenome sequencing have been performed.
Additionally, single species have been isolated and sequenced [129].

The aim of this study is to define what constitutes a healthy human
microbiota in order to use this as a baseline in studies regarding microbial
impact on human health. Another part of it is to widen the reference
databases for better annotation of metagenomes [129].

The sites that have been sampled include the gut (stool), oral cavity
(buccal mucosa, hard palate, keratinized gingiva, palatine tonsils, saliva,
subgingival plaque, supragingival plaque, throat, tongue dorsum), airway
(anterior nares), skin (left antecubital fossa, left retroauricular crease, right
antecubital fossa, right retroauricular crease) and vagina (mid-vagina, pos-
terior fornix, vaginal introitus). All data is made publicly available [129].

8.2 DNA Extraction for Oral Microbiome Sequencing

The main concern about the DNA extraction from saliva samples was that
we expected a substantial amount of the DNA to originate from the human
host (80-90% [49, 65]). This proportion could possibly depend on the collec-
tion method of the saliva. This section describes how the DNA extraction
procedure was optimized.
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8.2.1 Methods
Sample Collection

Paraffin was used to stimulate saliva flow. The test subjects were asked to
chew on the paraffin until it formed a uniform mass, which took approx-
imately one minute. No saliva was collected at this stage. Subsequently,
all saliva formed during the next 3 minutes of chewing on the paraffin, was
collected. The samples were stored at -80°C. For all DNA extractions 1 ml
of saliva was used.

Assessing Human DNA Content

DNA was extracted from a saliva sample using UltraClean Microbial DNA
Isolation Kit supplied by MoBio Laboratories, Inc. This was sequenced in-
house on the SOLiD platform, producing ~267 million singled end sequencing
reads with an average read length of 75bp. The quality was assessed using
the FastQC tool1. This was used for all quality checks for all the data in
this project, and will not be described further. The reads were cleaned up
using the genobox tool developed in-house. Bases with a quality below the
threshold of Phred score 20 were trimmed of and whole reads with a quality
average less than Phred score 20 were removed. Reads shorter than 25bp
after trimming and reads containing ”N”’s were also removed. This reduced
the number of reads to ~152 million. These reads were mapped to the human
reference genome build 372 using BWA [71] to calculate the abundance of
human DNA in the sample. Subsequently, the reads were mapped to all
bacterial reference genomes from NCBI (April 2011). Lastly the unmapped
reads were mapped to a catalogue of oral microbiome genes obtained from
the HMP data.

Removing Human DNA Prior to Sequencing

It was decided to test a method for depleting the samples of host DNA.
The same sample was used as for assessing the human DNA content. We
chose to apply the MolYsis® kit, Molzym GmbH & Co., which relies on
differential lysis of prokaryotic and eukaryotic cells prior to DNA extrac-
tion. The applied DNA extraction kit was the same as above. This yielded
approximately 200ng of DNA material. This was sequenced on the Illumina
platform by Beijing Genome Institute (BGI). The data had been cleaned up
by the provider and did not need trimming. This yielded ~29 million read
pairs of a length of 90bp. All reads were mapped, using BWA [71], to the
human genome build 37. The unmapped reads were subsequently mapped
to bacterial genomes from NCBI (April 2011), then to the MetaHIT gene

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
2http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/
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catalogue of 3.9million genes (see paper in Chapter 5) and lastly to the oral
microbiome catalogue as described for the previous sample.

Testing DNA Extraction Methods

The UltraClean Microbial DNA Isolation Kit used for DNA extraction of the
first samples did not to perform sufficiently stable (i.e. the resulting DNA
concentration fluctuated between samples). Accordingly, we tested several
protocols for DNA extraction, which can be seen in Table 8.1. The QIAamp
DNA Blood Mini Kit provided by QIAGEN seemed to be the best performing
method. Three samples from three individuals were collected, the DNA was
extracted using the selected kit and sequenced in-house on the Ion Torrent
platform. The samples will be referred to as Ion Torrent 1, 2 and 3 (IT-1,
IT-2 and IT-3). This was first of all to validate that the DNA extraction kit
performed stably and that the human versus non-human distribution was
as expected and secondly to assess if the results were comparable between
individuals, which is important when deciding on a sequencing depth at a
later stage.

The read counts for the raw data were ~2.3 million, ~2.3 million and
~3.1 million for samples IT-1, IT-2 and IT-3, respectively. It was cleaned
up in three steps. (1) Remove the first 9 bases from the 5’ end using fastx_
trimmer provided in the FASTX-Toolkit1. (2) Quality trimming the reads to
Phred score 20 using the DynamicTrim script provided with the SolexaQA
software package [21]. (3) Hard trimming the ends to 200bp for one sample
(IT-1) and 160bp for the last two (IT-2 and IT-3) and removing reads
shorter than 40bp for all three samples. This reduced the read counts to ~1.4
million for IT-1, ~0.8 million for IT-2 and ~1.8 million for IT-3. The clean
data was mapped to the human genome build 37, NCBI bacterial genomes
(July 2012), the MetaHIT catalogue and the HMP oral microbiome cata-
logue like described for the other samples. However, BWA was not able to
map the Ion Torrent data. Thus, the TMAP2 mapper was chosen in this case.

1http://hannonlab.cshl.edu/fastx_ toolkit/
2https://github.com/iontorrent/TMAP
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Table 8.1: DNA Extraction Methods Tested.

Method DNA yield (µg/ml saliva)
MoBio Ultraclean <0.01-1.3
Spin down + MoBio Ultraclean <0.01
MoBio Powerlyzer <0.01
Spin down + MoBio Powerlyser <0.01
Freeze dry + MoBio Powerlyzer <0.01
QiaAmp 10

8.2.2 Results
Based on the sequencing of a saliva sample on the SOLiD platform, we could
determine that the human DNA content in our sample was within the range
we expected, i.e. approximately 85%. The mapping results for this sample
can be seen in Figure 8.2. The same sample was used when experimenting
with removing human DNA prior to sequencing. It is evident from the
results in Figure 8.3 that the host DNA depletion was successful.

Adding a DNA depletion step will inevitable introduce bias in the data.
An indication of this bias can be seen in Figure 8.4, which displays the
comparison of the non-human part of both the sample with and the sample
without the depletion step. Hence, if there had been no bias, the bacterial
fractions should have been the same, especially when the material originates
from the same sample. It should be kept in mind that this is only based on
one sample and the sequencing platforms differ.

Lastly, it was investigated if the DNA extraction method was reliable and
how much the sample composition fluctuated between individuals in terms
of human versus non-human DNA content. Figure 8.5 shows the mapping
results for the three Ion Torrent samples from three individuals. The DNA
was extracted successfully using the selected kit. As expected there is some
variance between the three test subjects, especially IT-3 seems to have a
larger proportion of non-human DNA compared to human DNA than the
other two. IT-1 and IT-2 are very alike. Again, the human DNA content
was within the expected range.
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Figure 8.2: Mapping results for the saliva sample without
adding a human DNA depletion step before sequencing.

Figure 8.3: Mapping results for the saliva sample when adding
a human DNA depletion step before sequencing.
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Figure 8.4: Comparison of the non-human mapping results
with and without human DNA depletion.

Figure 8.5: Mapping results comparing saliva samples from
three individuals.
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8.2.3 Conclusion
This experiment was a pilot study to investigate how best to handle the
saliva samples we were planning to sequence. We verified that the human
DNA content was within the 80-90% range we expected. We found that it
was very efficient to remove human DNA using the MoLyzes® kit. However,
we observe a bias in the non-human fraction of the data when applying this
method (this might of course be partly due to differences between sequencing
platforms). Lastly, we identified the QIAamp DNA Blood Mini Kit from
QIAGEN to be the best option for DNA extraction.

If the sequencing of the saliva samples had been pursued, we would
have omitted the DNA depletion step because we did not want the bias
it introduces and since this DNA reduction result in very low amounts of
DNA, which would cause problems in the downstream sequencing. The
samples would then have had to be sequenced very deep in order to get
an accurate detection of the microbiome. If aiming at an average depth of
4.5Gb per sample, which was the sequencing depth of the first MetaHIT
fecal samples [104], it would require the sequencing depth to be somewhere
close to 22Gb/sample. We might not have sequenced the samples that deep,
thus accepting a lower coverage of the microbiome. Not removing the human
DNA adds an extra layer of information, as it enables studying connections
between the host genome and the microbiome.

8.3 Co-Abundance Gene Groups Clustering of Oral
and Nose Metagenomic Samples

This section describes the results of the CAG clustering of the HMP samples.
The method was applied successfully to the MetaHIT data and the hope was
that it would be directly transferable the human nose and oral microbiome
data.

8.3.1 Data
All available whole genome sequencing (WGS) samples from the nose and the
oral cavity were downloaded from the HMP Data Analysis and Coordination
Center1. The samples originated from one site in the nose, the anterior nares
(i.e. nostrils) and from nine sites in the mouth including six soft tissue sites,
two hard tissues sites and saliva. 90 nose samples were included out of 94
available. The excluded samples were technical replicates. All oral sites and
the number of samples included in the analysis are listed in Table 8.2. Six
additional samples were available, but they were excluded due to errors in the

1http://hmpdacc.org/, November 2012
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Table 8.2: The sampling sites and the sample counts for sam-
ples included in the oral cavity CAG clustering.

Body site Tissue Type Number of samples
Attached keratinized gingiva Soft 5
Buccal mucosa Soft 121
Hard palate Soft 1
Palatine tonsils Soft 6
Saliva Saliva 5
Subgingival plaque Hard 8
Supragingival plaque Hard 126
Throat Soft 7
Tongue dorsum Soft 136
Total 415

files. The number of samples was further reduced for some of the clustering
runs, which will be described when presenting the results. Assemblies of
most samples were also available. These were used for constructing the gene
catalogue, which will be described later. Assemblies from stool samples were
also included, because we wanted to compare the oral and nose results to
the gut at a later stage and having a combined gene catalogue would make
that easier.

8.3.2 Methods
The workflow for the data processing and clustering was introduced in Chap-
ter 4. Here, only the specific details for this work will be described.

Pre-processing of Data

The sequencing data was downloaded as FASTQ files. Human DNA had
already been removed and the reads had been quality trimmed to a quality
score of 2, which was far from sufficient to remove the low quality data.
FastQC1 was run on all samples to assess the quality and identify possible
problematic issues with the data. First step in the trimming of the data
was to remove the adapters used for the sequencing. For this cutadapt [86]
was applied. Adapter sequences were identified by use of FastQC, as no
information regarding which adapters had been used was given in the data
documentation. Different adapters seemed to have been applied, which was
expected as the sequencing was performed at different labs. Only known
adapter sequences were removed, as other repetitive sequences in the data

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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could be biologically important. In the same step as removing the adapters,
the reads were also trimmed to a Phred score of 20 and only reads with a
minimum length of 30bp were kept. Next step was to trim off 9 bases of the
5’ end, as these bases generally were of very low quality, and to remove reads
with ”N”s in the sequence. After the trimming, some of the read pairs in the
paired end files were not complete anymore. To correct for this a modified
version of cmpfastq1 was applied. The modification was to make it accept
gzipped files, as all the files were gzipped. The read counts for the data after
trimming can be seen in Table 8.3.

Gene Catalogue

The non-redundant gene catalogue was constructed by first predicting genes
on the assemblies, provided by HMP, using MetaGeneMark [161] with the
following settings, -a -d -f G -m MetaGeneMark_v1.mod. The modification
file was provided by the developer. The genes called on all contigs from
all samples were pooled and CD-HIT-EST [37, 74] was applied to remove
redundancy. The cutoff for this clustering was 95% identity over 90% of
the length of the shortest gene. The settings were, -c 0.95 -n 8 -M 102400
-l 100 -d 0 -aS 0.9 -B 1 -T 16 -g 1. The representative sequences from this
clustering constituted the gene catalogue.

Abundance Matrix

All reads from all samples were mapped to the gene catalogue using the BWA
aln program [70] with the default settings. Only reads that had one best hit
were accepted, as reads mapping to several genes equally well would hinder
proper downstream clustering. A count matrix was generated from the
mapping results by counting the number of mapped reads to each gene for
each sample. Single reads that mapped to a gene and a read pairs with both
reads mapped to the same gene were counted as one observation. Whereas,
if a read pair mapped to two genes this counted as two observations. The
rational for this was that it is possible to hit two adjacent genes (e.g. in
an operon), and this should be allowed for. The counts were normalized by
dividing the counts by the length of the gene (excluding any ”N”s in the
sequence) and the total count of the sample. The matrix was modified so
that genes observed in less than 3 samples were removed from the matrix,
as well as genes for which more than 90% of the signal originated from three
samples or less.

1http://compbio.brc.iop.kcl.ac.uk/software/cmpfastq.php
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Clustering

The Co-abundance Gene Groups (CAG) clustering was performed on the
constructed abundance matrix. The clustering program is an in-house de-
veloped C implementation, which has been benchmarked to work as the
one used in the paper included in Chapter 5. The clustering settings are
all Pearson correlation and were set as follows: Genes included in a cluster
should have a correlation of 0.9 or better to the cluster center. The closeness
cutoff was set to 0.6 or better. These are the genes that are included in the
recalculation when cluster centers are moved. Clusters were merged if the
cluster centers correlated more than 0.9. The canopy walks, i.e. recalculation
of centers, were done maximum 3 times or until the latest walk was between
two genes that correlate more than 0.995. Only CAGs that including 3 or
more genes and which was observed in minimum 3 samples were included.
For more details on the method see Chapter 4.

Taxonomic annotation

The taxonomic annotation was done by aligning the gene catalogue to the
NCBI bacterial genomes database (April 2013) using BLASTn [5]. Hits with
an E-value <= 10-5 were considered significant and the best hit for each
gene was selected.

8.3.3 Results
Clustering of Nose Samples

CAG clustering was first performed on the 90 nose samples. The abundance
matrix included 91,997 genes after the filtering. The clustering resulted in
1,623 CAGs ranging in size between 3 and 2,117 genes pr. cluster. The
size distribution was heavily skewed towards small CAGs. Thus, 75% of the
CAGs contained less than 10 genes. Only 9 CAGs contained more than 700
genes, which was the cutoff previously set for being a bacterial species sized
CAG (see Chapter 5). Most of the clusters did not separate out properly
from the rest of the genes. An example of this can be seen in Figure 8.7 top
panel. This is likely due to the very low sequencing depth of these samples.
Even with the less than optimal clustering, there is still some taxonomic
consistency within the CAGs, as can be seen in Figure 8.6.

To remove the problematic CAGs, a limit was set as to how many genes
were allowed to fall between 0.8 and 0.9 Pearson correlation to the cluster
center, which is right outside the cluster limit. This was set to maximum
50% of the CAGs size, i.e. if the CAG had 1000 genes, no more than
500 genes were allowed between 0.8 and 0.9 correlation to that CAG. This
reduced the number of CAGs to 32 of which 7 CAGs included more than 100
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Figure 8.6: Plot showing the taxonomic consistency of the
CAGs obtained by clustering anterior nares samples. On the
x-axis are all the CAGs with a size larger than 10 genes. The
y-axis denotes the percent genes that are annotated to the top
annotation. This is shown for species, genus and phylum anno-
tation.

genes and 21 contained 10 or less genes. These 32 CAGs had a much better
separation and could be candidates for further investigation. An example of
the separation of two such CAGs is shown in Figure 8.7 bottom panel.

The largest of all the CAGs, CAG:1, which is one of the clusters that
separate out properly, could be annotated as Staphylococcus aureus, having
99.5% of the genes annotated to this species. As described in the introduction
to this chapter, this is a bacteria commonly found in the anterior nares of
humans. According to the NCBI genome database it encodes in the range of
2,600 to 2,900 genes depending on the strain. CAG:1 includes 2,117, hence,
the clustering captures this bacteria quite well despite the issues we had
with this data. It could be because this bacteria is on of the most abundant
across the sampled individuals, which would make it more likely to sample
it in these low depth samples.
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Figure 8.7: Scatter plots showing the Pearson correlation of
all genes (one data point pr. gene) to the selected CAG centers.
The dots are overlaid with color according to most prevalent an-
notation for both CAGs. Top: All genes versus the CAG:2 (size:
1420 genes) and CAG:20 (size: 320 genes) profiles. Bottom: All
genes versus the CAG:1 (size: 2117 genes) and CAG:16 (size:
372 genes) profiles.
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Clustering of Oral Samples

All of the oral samples were included in the input abundance matrix for the
first clustering of the oral data, thus consisting of 415 samples and 2,967,572
genes after filtering. The clustering resulted in 11,297 CAGs in the size range
of 3 to 8,250 genes. This was again dominated by small sized CAGs, hence
80% included less than 10 genes. The separation issues were more profound
than what was observed for the clustering of the anterior nares samples.
133 of the CAGs that included more than 100 genes passed the criterion
regarding the number of genes allowed to fall between 0.8 to 0.9 Pearson
correlation, which was described for the nose samples. However, only a few
of these were, by manual inspection, found to be separated properly. Exper-
imenting with the settings for the clustering did not resolve the problem.

The poor clustering could be due to the substantial variation in sequenc-
ing depth of the samples (from approximately 2,000 to 74,000,000 reads pr.
sample) and also a few of the samples were replicates. Thus, the replicate
samples and samples having less than 10,000,000 reads mapping to the gene
catalogue were removed from the dataset. Cutoffs at 1,000,000 and 2,300,000
mapped reads were also tried out, but this will not be described further. The
reduced dataset included 275 samples and 2,880,105 genes after filtering.
Clustering of this dataset resulted in 2,801 CAGs ranging in size between
3 and 9,688 genes. 44% of the clusters containing 10 genes or less. The
reason for the big difference in CAG numbers compared to the clustering
of all samples is that the clustering of all samples was allowed to run for a
longer time, i.e. these datasets are too big for the clustering to complete fully
within a reasonable time frame and the longer it runs the more small CAGs
are picked up. Analyzing the CAGs with more than 100 genes, 151 passed
the 50% criterion for the 0.8 to 0.9 Pearson correlation to the center. This
was again not enough to properly correct for the clustering problems, al-
though a few acceptable clusters were identified by further manual inspection.

We hypothesized that the clustering of samples from diverse sites simul-
taneously might not be possible. Hence, we continued to only clustering
samples from one site at a time. 133 tongue dorsum samples were clustered
as well as 111 supragingival plaque samples. These sites were chosen be-
cause of the number of samples for each site and the sequencing depth was
reasonable. The results from clustering the two sites were comparable, thus
only the results for the tongue samples will be described. The abundance
matrix included 2,382,512 genes after filtering. These clustered into 5,543
CAGs, the largest CAG including 3,557 genes. 80% of the CAGs were small,
thus containing less than 10 genes. After applying the 50% cutoff to how
many genes were allowed between 0.8 and 0.9 Pearson correlation to the
cluster center, 59 CAGs with a minimum size of 100 genes were left, of which
31 were of a species size, i.e. contained more than 700 genes. Again this
criterion was not effective in distinguishing nicely clustered CAGs and as
in the results above only a few reasonable clusters could be picked out by
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Figure 8.8: Taxonomic consistancy of the CAGs obtained from
the clustering of tongue dorsum samples. On the x-axis are all
the CAGs with a size larger than 10 genes. The y-axis denotes
the percent genes that are annotated to the top annotation.
This is shown for species, genus and phylum annotation.

visual inspection. As for the clustering of the nose samples, even with the
non-optimal clustering, we still see some taxonomic consistency within the
CAGs (see Figure 8.8).

8.3.4 Discussion and Perspectives
The clustering method for generating Co-Abundance Gene Groups showed
great promises as a tool for deeper analysis of metagenomics datasets when
applied to the MetaHIT dataset. However, in this case it was not possible to
get the genes separated into CAGs to a satisfactory level. The settings of the
clustering could not be adjusted to correct for poor separation. Removing
low sequencing depth samples did not significantly improve the results and
neither did only clustering samples originating from a single site.

We do not know exactly what gives rise to these problems. Maybe the
method is sensitive to which genes are included when constructing the abun-
dance matrix. Hence, in this study, all reads were mapped to a catalogue
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including genes from all samples. It could be that this is not possible and
that only genes from the samples in question should be included. We applied
the full gene catalogue in the construction of all abundance matrices, as it
would make downstream comparisons of the CAGs easier. It could also be
that the settings for generating the non-redundant gene set is not optimized
for these samples or the mapping needs to be more strict.

Better measures of how well the clustering has performed and how to
distinguish a nicely separated cluster from the rest need to be established. In
this work most of this assessment was done by visual inspection of different
segments of the data and not on quantifiable values. These types of data are
simply too big for this approach. We have tried to set up some guidelines,
such as how many genes to allow close to a cluster, but this did not properly
define ”good” versus ”bad” clusters.

The taxonomic consistency we see in the data and the fact that we
capture the Staphylococcus aureus quite well in the nose data indicates that
the clustering is working to some extent and it should be possible to improve
on this. However, more work needs to be done in order to get the results we
are looking for.
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Chapter 9

Conclusion

This thesis presents projects which concern the human microbiota, with the
main focus on the human intestinal tract microbiome. Furthermore, results
regarding analyses of the nose- and oral-cavity microbiotas are described.
The work was centered around a clustering method that bins genes from
metagenomic samples according to their co-abundance under the assumption
that genes located on the same DNA would co-vary in abundance across
samples. These bins have been named co-abundance gene groups (CAGs).
The ability to define which genes originate from the same organism, or other
genetic element, is very valuable for obtaining a deeper understanding of the
structure and function of metagenomes.

The CAG clustering method was first applied to the MetaHIT data.
MetaHIT is a large-scale metagenomics study of the human intestinal tract.
The dataset included 296 samples from which a gene catalogue of ~3.9 million
non-redundant coding genes were obtained. These genes were clustered into
7,381 CAGs of which 741 had a size corresponding to that of a bacterial
genome. Dependency-associations were observed between CAGs, some of
which were phages and clone-specific elements that were dependent on the
presence of their host. Relationships between CRISPR-elements and phages
were also observed. Additionally, CAGs were identified that influenced the
persistence of the host bacteria in the human gut. This effect could either
be positive or negative. These results were described in the manuscript
”Variable gene modules predict persistence of microbes in the human gut”,
which is included in this thesis.

Two additional projects which were based on the CAG clustering of
human gut microbiome data are described in this thesis. The first study was
an effort to investigate if bile acid degradation by intestinal bacteria was
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associated to the BMI of the test population. Since bile acid degradation
products are known to be involved in lipid and glucose homeostasis, this
hypothesis seemed plausible. We identified a slight correlation between BMI
and presence of CAGs encoding the first gene in the bile acid degradation
pathway. This work does not give a final conclusion, but it indicates that the
hypothesis could be true. The second project describes the prevalence of the
gut parasite Blastocystis in the MetaHIT data. We identified four CAGs that
could be annotated as four subtypes of Blastocystis. The occurrence of these
four subtypes in our cohort was very similar to what has previously been
observed. Blastocystis infection seemed to be less frequent in individuals
with a Bacteroides-driven enterotype. To the best of my knowledge, this
is the first time the presence of this parasite in a large test population has
been investigated using metagenomics data. The results are described in
the included manuscript ”A Metagenomic Approach to Studying Intestinal
Microbial Eukaryotes”.

This thesis also describes the analysis of the human oral and nose micro-
biomes. The data was obtained from the Human Microbiome Project (HMP)
and included 505 whole metagenome sequencing samples in total. The CAG
clustering method was applied to this data in the attempt to obtain a deeper
understanding of these ecosystems. Clustering of the nose samples resulted
in 32 CAGs that were separated fairly well from the rest of the genes. One
of these CAGs captured the bacterium Staphylococcus aureus with a high
coverage. Three subsets of the oral samples were clustered. However, all
three oral clustering runs only resulted in a few acceptable CAGs. We had
expected this method to be directly transferable to these other datasets, but
this was clearly not the case. We conclude that further optimization of the
process is needed before CAG clustering can be used as a tool for analyzing
all types of metagenomic datasets.

Lastly, preliminary experiments regarding DNA extraction from saliva
samples for metagenomics sequencing were described. It was concluded that
the best practice would be to use the QiaAmp DNA Blood Mini Kit without
adding a human DNA depletion step. Deep sequencing would be necessary,
as approximately 80-90% of the reads would be human.

In conclusion, this thesis describes CAG clustering of the human gut
microbiome data as a valuable tool for better understanding the system. It
was used for describing important topics like the interplay between species
as well as other elements of the system, factors that might influence de-
velopment of obesity and the prevalence of eukaryotic parasites in the gut.
However, there are many other aspects of the human microbiome that could
be studied based on CAG clustering, although it needs further improvement
before it can be directly transferred to any given dataset.



Chapter 10

Future Perspectives

It was pointed out by Chistoserdova [18] in 2010 that the metagenomics
field had yet to establish a golden standard for data analysis and this still
seems to be the case. Development of a common practice will enable easier
comparison of results and faster sample analysis throughput. With respect
to sequencing, which is the corner stone in metagenomics, technologies are
improving constantly and, with platforms such as PacBio, we are moving
towards significantly longer reads1 which will greatly simplify the data pro-
cessing of metagenomics studies.

At present, metagenomic datasets are fragmented and imperfect. Thus,
methods like co-abundance gene groups clustering are valuable tools in re-
assembling the ecosystem under investigation. This is an important step in
the data analysis, as the time, in my opinion, is running out on large-scale
metagenomics studies of the human microbiome that only define the overall
species composition and functional potential of the system. The field is
shifting towards trying to understand the dynamics of the various niches and
defining which of the organisms are responsible for what functions and how
that affects the host. To this end, methods like the CAG clustering are very
valuable.

Numerous papers have, during the last decade, been published regarding
the human microbiome [1, 3, 20, 36, 42, 130, 54, 65, 67, 104]. However, these
have mostly focused on the bacterial fraction of the systems, while other
parts of the microbiome such as plasmids, phages and micro-eukaryotes have
been neglected [51, 90]. With better methods for binning the data, it will be
possible to also describe this part of the data in more depth. Additionally,

1http://www.pacificbiosciences.com/
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unknown species in the system can be picked out and studied further.

Annotation of metagenomic datasets is challenged by the lack of reference
genomes. Even when studying the human microbiome, which has been the
target for many microbiology studies through history, there is still a large
part of the data that does not have a proper match in any database. It
is improving all the time, especially with efforts like the HMP [129], but
there is a lot of work to be done in this area. In this respect single genome
sequencing is still immensely valuable.

The human microbiota is very important for human health. Better
understanding of the mechanisms involved in this relationship will enable
better treatment of many illnesses. Fecal transplants have already been per-
formed, which was very effective in treating Clostridium difficile infections
and metabolic syndrome [140]. In the future it will be possible to better
modify the microbiota in order to treat various conditions, most likely in
a more controlled manner than transplants of whole communities from one
person to another. To this end, knowledge regarding the effects the microbial
organisms have on each other and the host is necessary.

Through comprehensive studies like HMP and MetaHIT, we have gotten
an insight into the genetic potential of the human microbiome. Hopefully
future large-scale studies will emerge, which integrate metagenomics with
metabolomics, metaproteomics and metatranscriptomics to also describe the
activity of the genes [69].

The study of the human microbiome in health and disease has gotten off
to a great start and a lot of knowledge has been collected, especially within
the next generation sequencing era. However, there are still many pending
questions to answer and I believe we can look forward to many exciting re-
sults in the years to come. I am sure these will lead to better understanding
and treatment of numerous illnesses, thus improving the quality of life for
many people.
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METHODS (ONLINE) 

Sample description 
396 stool samples from 177 Danish and 141 Spanish human individuals were 

collected (Supplementary Data 1). 124 of the samples were sequenced and used 
previously16. The Spanish samples include 13 individuals with Crohn’s disease and 69 
with ulcerative colitis. 78 of the Spanish individuals were sampled twice with, on 
average, 6 months between the samplings. The Danish samples include healthy 
individuals ranging in body mass index from 18 to 42. All were subjected to Illumina 
deep sequencing resulting in 4.5Gb sequence per sample on average, and a total of 
23.2 billion high quality sequencing reads with an average length of 77 bp.  

Construction of a non-redundant metagenomic gene catalogue 
Illumina raw sequencing reads from 396 metagenomic samples (Supplementary 

Data 1) were processed using the MOCAT software package29. In brief, >23.2 Billion 
raw sequencing reads were filtered using the FastX software 
(http://hannonlab.cshl.edu/fastx_toolkit) with quality cutoff 20 and reads shorter than 
30 bp were discarded. High-quality reads (92% of raw reads) were assembled into 
scaftigs using SOAPdenovo (version 1.05)23. Genes were predicted on 18.5 M 
scaftigs longer than 500 bp (35 Gbp in total) using MetaGeneMark30. Predicted genes 
from all samples (45.4 M in total) were clustered using BLAT31 by single linkage. 
Any two genes with greater than 95% identity and covering more than 90% of the 
shorter gene were clustered together. Finally, cluster representatives shorter than 100 
bp were discarded resulting in a set of 4,201,877 non-redundant genes. From this set, 
we removed genes that were considered spurious or likely originated from human, 
animals or plants were removed to yield a final set of 3,871,657 genes that formed the 
reference gene catalogue. For a comparison to our previous gene catalogue12 see 
Supplementary Data 10. 

Quantification of reference gene abundances 
High-quality reads were mapped to the reference gene catalogue using the screen 

function in MOCAT29. Briefly, reads were mapped with SOAPaligner (version 2.21)32 
with options: –M 4 (find best hits), –l 30 (seed length), –r 1 (random assignment of 
multiple hits), and –v 5 (maximum number of mismatches). Mapped reads were 
subsequently filtered using a 30 bp length and 95% identity cutoff and gene-length 
normalized base counts were calculated using the soap.coverage script (available at: 
http://soap.genomics.org.cn/down/soap.coverage.tar.gz). For samples where 11 M or 
more sequence reads were obtained (n = 393), 11 M sequence reads were drawn 
randomly (without replacement). These randomly drawn reads were mapped to the 
gene catalogue and the number of reads counted to form a downsized depth or 
abundance matrix. The 11M downsized depth matrix was used to estimate co-
abundance gene group (CAG) abundances, gene and MGS richness. Similar 
downsizings were done for the reduced sampling depths as indicated in 
Supplementary Fig. 11.  

Taxonomical annotation 
Catalogue genes were assigned taxonomical annotation by sequence similarity to a 

database of 3,048 reference genomes (ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/ 
and ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria_DRAFT/, July 2012), using 
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BLASTN33, only accepting alignments with 100 bp or longer. Sequence similarity of 
95%, 85% and 75% or better was used for species, genus and phylum level 
taxonomical annotation, respectively. MGS were assigned a species level annotation 
if more than 50% of the genes comprised in the CAG were assigned a given species 
level taxonomy (incl. genes with no match). MGS were described to have ‘clear and 
unambiguous similarity to a known species’ when 90% or more of the genes were 
annotated to the same species. Selected CAGs that appear in figures and could not be 
assigned genus or species level taxonomy by DNA similarity (MGS:11, MGS:17, 
MGS:124 and MGS:225) were in addition taxonomically annotated by similarity to 
the UniProt database (BLASTP, best hit, E < 0.001) to get an approximate 
taxonomical annotation. 

Phage definition and taxonomy annotation 
A CAG was called phage-like if it passed one of two criteria. a) If a CAG contained 

a minimum of 10 phage-taxonomy annotated genes and 80% of these were consistent 
at species, genus or family level. Here phage-taxonomy annotated genes were defined 
as genes with a top-3 blastp33 hit (E < 0.001, against the combined NCBI nr Sept. 
2013 and ACLAME24 0.4 database) to a viral organism listed in the International 
Committee on Taxonomy of Viruses (ICTV) master species list (release 2012)19. b) If 
a CAG encoded five or more distinct characteristic phage functions and " 40% of the 
CAG genes were most similar to known phage genes.  Phage-functional classes were 
defined: as proteins with a best-hit (hmmscan34, domE < 0.001, against Pfam-A35 
27.0) to one of 16 phage specific Pfam functions defined by Minot et al.10, or as 
proteins matching the corresponding set of functions identified among phage 
orthologous groups (blastp, E < 0.001, against POC VQ36). A characteristic phage 
function was only counted once per GAC. Furthermore, a gene most similar to known 
phage genes was defined as a gene with a best-hit (blastp, E < 0.001, against the 
combined NCBI nr and the ACLAME 0.4 database) to a viral organism. All phage-
like CAGs were taxonomically annotated to species, genus or family level using a 
50% consistency criteria across ICTV annotated genes (top-3 blastp hits, E < 0.001, 
against the combined NCBI nr and ACLAME24 database). Interestingly, the functions 
“tail”, “portal” “terminase” and “capsid” were each found in " 70% of all phage-like 
CAGs and on average in only 5% of other small CAGs. 

Gene annotations and enrichment analysis 
Functional annotation (incl. CRISPR associated genes) of the gene catalogue was 

obtained by aligning predicted proteins to the UniProt database using BLASTP (best 
hit with e < 0.001) and proteins from the eggNOG (v3) database27 using BLASTP 
(WU-BLAST 2.0, default parameters except E = 1x10-5 B = 10000) and were 
assigned to an orthologous group as described elsewhere37. 

Genes of MGS:11, CAG:4957, MGS:17 and MGS:124 (appearing in 
Supplementary Fig. 16C) was aligned to proteins listed by Roessner et al.38 as 
experimentally verified and strictly anaerobe corrin ring biosynthesis proteins (60 
coverage, 40% identity). CRISPR repeat-spacer segments were identified with CRT 
(ver. 1.2)28 in selected CAG assemblies. Genes were annotated as virulence or 
antibiotic resistance genes when BLASTP alignments exceeded 80% identity over 
80% of the length of protein in the VFDB26 (February 2012 version) or ResFinder39 
(version 1.2) database, respectively.  
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From 271 essential genes from the genome of Bacillus subtilis strain 16840, 252 
COGs were deduced 
(ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Bacillus_subtilis_168_uid57675/NC_000964
.ptt manually curated, see Supplementary Data 9). Genes aligning to these COGs were 
termed essential genes.  

CAGs significantly enriched for a specific annotation were identified using Fisher's 
exact test (P < 0.001 for Fig. 1B). Significant biases in eggNOG27 annotation, as a 
function of the MGS observation frequency across the samples, were identified using 
Wilcoxon rank sum test (P < 1x10-15, Supplementary Data 8). 

Co-abundance clustering  
The canopy-based clustering of the gene catalogue was performed by iteratively 

picking a seed gene among the not yet clustered genes and aggregate genes with 
abundance profiles within a fixed distance from the seed gene abundance profile 
(Pearson correlation coefficient > 0.9 and Spearman's rank correlation coefficient > 
0.6) into the seed canopy. Canopies with median abundance profiles within a distance 
of 0.97 PCC from one another were merged. Canopies with 2 or less genes (1.7 M 
genes), or for which the canopy abundance signal from any three samples constituted 
90% or more of the total signal across all samples, for which the median profile was 
detected in less than 4 samples, or for which one sample made up 90% of the total 
signal (1.1M genes), were discarded for having insufficient supporting evidence 
(based on Monte Carlo simulation, see Supplementary Fig. 17). Canopies that passed 
these criteria were called CAGs. CAGs with more than 700 genes are also referred to 
as MGS or just species. Note, that the number of clusters was not pre-defined for the 
canopy-based clustering. CAG abundance profiles were calculated as the sample-wise 
median gene depth signal (downsized). A CAG was considered observed in a sample 
when its abundance profile exceeded zero in that sample. 

MGS augmented assembly 
For each of the 741 MGS we performed a de novo MGS augmented assembly, 

using the subset of sequence reads that mapped to the contigs from where the MGS 
genes originated. For each MGS we perform independent and sample-specific 
augmented assemblies on the two samples from where most sequence reads mapped 
to the MGS and the sample from which most of the MGS gene containing de novo 
contigs were derived. For a given sample the reads were aligned using Burrows-
Wheeler Aligner41 (bwa-0.5.9) to the MGS specific scaffolds and the mapped reads, 
including unmapped mates, were extracted. These reads were then corrected by 
Quake42 using k = 15. The reads were then de novo assembled with Velvet (1.2.01) 
using k-mers from 21 to 45 and the parameters ‘-cov_cutoff auto’ and ’-exp_cov 
auto’. As several samples were used for assembly of each MGS, the best assembly 
was selected based on ranking of contig N50 and the number of contigs in the 
assemblies22. Contigs with read depth of less than half the average depth of all contigs 
were removed from the assemblies22,43. The contigs and scaffolds were then filtered to 
100 and 500 bp minimum lengths, respectively, and gaps in scaffolds were filled 
using SOAPdenovo GapCloser (1.10). 

Assembly statistics 
General assembly statistics were calculated using assemblathon_stats.pl44 and 

coverage was calculated by aligning reads to the contigs using bwa (0.5.9) and 
BEDtools41,45. To assess the quality of the assemblies, we adopted the six high quality 
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draft assembly criteria from the Human Microbiome Project (HMP)46. Five of these 
criteria address the contiguity of the assembly and one criterion genome 
completeness, by counting core genes contained in the assembly. The criteria are i) 
90% of the genome assembly must be included in contigs > 500 bp, ii) 90% of the 
assembled bases must be at > 5 X read coverage, iii) The contig N50 must be > 5 kb, 
iv) scaffold N50 must be > 20 kb, v) average contig length must be > 5 kb and vi) > 
90% of the core genes must be present in the assembly. The core gene ratios were 
determined using HMP standard operating procedure for both bacteria and archaea. In 
short blastx was used to identify core genes from the scaffolds and proteins with at 
least 30% identity and 30% coverage for Bacteria and 50% identity and 70% coverage 
for Archaea were considered a core gene hit33. The ratio of core genes identified was 
then calculated using get_coregroups_coverage.pl (HMP tools and protocols). In total 
360 sample-specific MGS augmented assemblies, from 247 unique MGS passed all 
six criteria (Supplementary Data 3). In addition, 139 unique assemblies passed five 
criteria. 

We determined the number of novel species by aligning all proteins to Uniprot25 
using blastp and converted taxids from strain to species level using NCBI-taxonomy. 
An assembly was considered previously un-sequenced if less than 10% of the genes 
could be aligned with a minimum of 95% identity over 33aa to genes from a species. 
181 of the 238 HQ assembled draft genomes plus 83 assemblies passing 5 criteria 
were identified as novel species. 

Screening for chimeric assemblies 
Because the HMP criteria were created for single genome assembly, we applied 

three additional metrics to account for putative chimeric assemblies arising from 
metagenomic data, i) uniformity of the contig read depth distribution, ii) identification 
of multiple copies of conserved 40 Clusters of Orthologous Genes (COGs)27 and iii) 
inter-assembly tetra nucleotide frequency (TNF) consistency.  

Because assemblies consisting of genomic regions from different organisms are 
likely to have multi-modal coverage distributions we performed peak detection on the 
contig read coverage distributions for all assemblies passing 4-6 HMP criteria and 
assemblies with more than 1 peak were manually inspected. From the presence of 
multiple copies of COGs we were able to identify three assemblies as chimeric. Of the 
247 unique high-quality draft assemblies 9 (3.6%) were identified as potentially 
chimeric and for the additional 139 assemblies that passed 5 criteria, we identified 3 
potential chimeric assemblies (2.3%) and one without any core genes (MGS:3246). 
The remaining assemblies have been deposited at the European Nucleotide Archive 
(ENA).  

Furthermore, tetranucleotide frequencies z-scores were calculated for all assemblies 
and HMP reference assemblies as described by Teeling et al.47 For each assembly the 
frequencies were calculated in windows of 5 kb to avoid biases introduced by 
different scaffold lengths. If a scaffold was shorter than the window size it was still 
included in the calculations. Within each assembly a median tetranucleotide 
frequency z-profile were created and the tetranucleotide frequency z-scores of each 5 
kb window were correlated to this median profile using PCC. The resulting high-
quality draft genomes showed comparable TNF correlations to the single organism 
HMP reference genomes indicating low rate of chimeric assemblies (Supplementary 
Fig. 9). 

103



Comparison of MGS augmented assemblies and reference genomes  
To estimate the completion level of the MGS augmented assemblies, 299 draft 

reference genomes from the human intestinal tract HMP DACC database and the 
NCBI collection of complete reference genomes (both version updated from 2012/04) 
were used as reference set for a blast comparison procedure. 44 of the assemblies that 
passed 5 or more of the 6 HMP criteria (including the bacteria/archaea core ratio 
criteria) were similar to a reference genome. The contigs and scaffolds of these 
assemblies were projected on their closest reference genomes using the GAGE 
pipeline for assembly quality evaluation48. First nucmer (default parameters) was used 
to align the contigs/scaffolds to the reference genome. Then delta-filter was used to 
remove low identity match (parameters: -I 95, -o 80). Finally dnadiff was used to 
compare the assemblies and the closest reference genome and estimate the mean 
identity and coverage of each contigs and scaffolds (Supplementary Data 4). 
Additionally, the MGS:337 assembly, which did not meet the six criteria, was 99.9% 
identical to Bifidobacterium animalis subsp. lactis CNCM I-249418 and covered 95% 
of this reference genome (Supplementary Fig. 10). 

To search for potential contaminants, unaligned scaffold fragments were blasted to 
the complete reference genome set, and the best hit (with identity and coverage 
threshold of " 95% and " 80%, respectively) were extracted. Scaffold that matched to 
a different genus were considered potential contaminants. Of the 44 MGS augmented 
assemblies, only 16 contained any scaffolds with similarity to an alternative genus. In 
general these scaffolds were small with an average size of only 2721 bp. If we 
consider unaligned scaffold with similarity to an alternative genus as potential 
contaminant, the mean contamination rate was estimated to 1.00 scaffold per HQ 
assembly. 

MGS augmented assembly gap closure using Sanger sequence data 
To further experimentally validate the coherence of the sample specific MGS 

augmented assemblies we used Sanger sequence data from eight samples16. Faecal 
microbial DNA from those individuals was used to construct plasmid-based (pCNS) 
clone libraries of 3 kb long inserts, containing 250,000 clones each. Clone insert ends 
were sequenced using the Sanger technology (ABI3730XL). Sequences were 
subsequently subjected to vector cleaning and quality trimming, generating the on 
average 230,468 (+/- 5,145) reads per sample. The same DNA was used for 
pyrosequencing (454GSFlx-Titanium) resulting in on average 2,362,978 reads per 
sample (+/- 3,245,603). For each reference subject, Sanger and 454 reads as well as 
Velvet contigs generated from Illumina sequencing of the same DNA were combined 
for assembly using the 454-Newbler software (v2.3). CAGs detected in a given 
reference subject was compared with Sanger reads from that individual using blastn. 
High-scoring segment pair (HSPs) covering at least 90 % of the length of the smallest 
read or velvet contig with at least 90 % identity were selected, and corresponding 
reads extracted. Scaffolding of the CAG contigs with paired Sanger reads was then 
achieved using the bambus software49. Only assemblies with > 1 X coverage were 
kept, and used to assess rate of gap-closure (Supplementary Data 3). On average 64% 
of the assembly gaps were closed and in particular the MGS:710 assembly was closed 
to only 3 scaffolds from initial 32 scaffolds. 

Phylogeny of the MGS assemblies 
We used all non-chimeric assemblies passing 5 and 6 HMP criteria (139 and 247 

assemblies, respectively) and 296 HMP gut microbiome reference genomes 
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(HMPDACC) and 1506 reference genomes to construct a phylogeny based on 40 
phylogenetic marker proteins (COGs)50. For each assembly, proteins were predicted 
using Prodigal51 and aligned using blastp to the individual COG proteins and the best 
hits were selected requiring at least 50% id over 50% of the COG sequence. For each 
COG the MGS assembly and reference proteins were aligned using muscle 52 and here 
joined to a single alignment file for each COG using muscle -profile. The 40 
individual protein alignments were concatenated to a single alignment for each 
reference genome/MGS assembly and alignments with containing less than 35 COGs 
were removed from further analysis resulting in 337 MGS assemblies for the final 
tree. The phylogenetic tree was constructed with FastTree using the JTT substitution 
matrix with the parameters “-gamma -pseudo -spr 4 -mlacc 3 -slownni”53 and 
visualized using ITOL54. 

Co-assembly of E. coli and dependency-associated CAGs 
A pool of the main E. coli (MGS:4) and its nine dependency-associated CAGs 

(CAG:427, CAG:1345, CAG:2136, CAG:2318, CAG:2530, CAG:2610, CAG:3070, 
CAG:3196 and CAG:5108) were used for recruiting 1708 contigs for a pooled 
assembly, across 247 selected samples. Subsequently, de novo assembly (as described 
above) from 13 of these samples passed five or more HMP criteria (Supplementary 
Data 7). A consensus assembly was generated from the contigs of these assemblies 
using minimus2 where each assembly were joined to the consensus in separate 
steps55. The consensus assembly contained 4.3 Mb sequences in 45 contigs and with a 
contig N50 of 129 kb. Subsequently all the individual assemblies were aligned with 
blastn to the consensus assembly and contigs without a significant hit were pooled 
and clustered using cd-hit-est with the parameters “-c 0.8 -n 7”56. To further reduce 
redundancy of the extra contigs they were cut into 500 bp ‘reads’ with 250 bp overlap 
and re-assembled using Newbler 2.6. The resulting 157 contigs were then added to the 
consensus assembly obtained from minimus2 to a final assembly of 4.91 Mb in 202 
contigs. 

Dependency-associations 
A CAG was considered dependency-associated on another CAG when the sample-

wise overlapping detections of the CAG pair was statistically significantly 
overrepresented (Fisher's exact test, upper tail, Bonferroni corrected P < 1x10-10) and 
the dependency-associated CAG was not detected independently.  

Smaller CAGs (<700 genes) were considered ‘co-existence associated’ when their 
detections were significantly enriched (Fisher's exact test, Bonferroni corrected P < 
0.05) in samples where an MGS pair was co-observed, and never occurred 
independently of one of the two MGS (the host). Here an MGS pair consisted of a 
host MGS and a companion MGS. An MGS was considered a potential companion if 
it co-existed with a potential host species in samples from ten or more individuals and 
was found independently of the host species in samples from ten or more human 
individuals. For the co-existence associated relationships where the small CAG was 
not observed independently of any of the two MGS the host species were determined, 
as the MGS with the strongest abundance correlation to the small CAG, across 
samples where both were detected, and by the sample specific co-assembly. No 
inconsistency between these measures was found. 

Dependency-associated small CAGs were considered significantly absent in 
samples where a specific companion species were found when: it among host 
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containing samples, were significantly enriched in samples where the companion 
species was absent (Fisher's exact test, Bonferroni corrected P < 0.05). Furthermore, 
the small CAG could never be observed independent of the hosting species. Again, an 
MGS was considered as a potential companion species if it co-existed with a host 
species in samples from 10 or more individuals. 

For all types of dependency-associations a CAG was considered detected in a 
sample if the CAG abundance profile exceeded zero. Furthermore, only CAGs 
detected in " 10 and # 308 samples were considered. To ensure independence 
between the observations only one sample per individual was used (n = 318). 
Dependency-associated, ‘co-existence associated’ and co-existence absent’ CAGs 
showed correlation to the species richness comparable to that of all CAGs. 

Estimation of CAG persistence probabilities 
Data from 73 human individuals, which were sampled twice, were used to estimate 

the annual persistence probabilities of MGS with or without dependency-associated 
CAGs (Supplementary Data 6, Supplementary Fig. 18). All of the 2x73 stool-samples 
included in this analysis resulted in at least 11M sequence reads, and samples yielding 
more than this were downsized to 11M reads. Furthermore, all included sample pairs 
exhibited strong stability between the samplings, in that they were more similar to 
each other than to 99% of the other samples in the cohort (using the Spearman 
correlation coefficient of the MGS abundances as similarity measure). 

The main idea in this analysis was the following: for a fraction of the 73 sample 
pairs, a given MGS is present in the sample obtained at time point 1. For a subset of 
these sample pairs, the same MGS was also present at time point 2. Based on these, 
data logistic regression can be used to estimate an annual persistence probability for 
the MGS. The predictor variable (time between two consecutive samples) is 
continuous, while the outcome variable (presence or absence of an MGS) is binary. 
Logistic regression is used to estimate how the probability of an MGS still being 
present depends on the amount of time passed.  

This computation is based on the assumption that an MGS has a typical probability 
per time unit of persisting in the gut of an individual. Thus the likelihood of observing 
an MGS at time point 2 is expected to be smaller the more time has passed between 
the two samplings. Specifically, this decline is assumed to be exponential, thus if the 
probability that a given MGS will persist for a year is P(1) = 0.7, then the probability 
that it will persist for two years is P(2) = 0.7^2 = 0.49, etc. This assumption seems to 
fit well with survival curves constructed from these data (see Fig. 3A). Of course, the 
persistence of a given MGS in any individual is likely to depend on the specific 
conditions in that individual. We simply assume that there is a typical overall annual 
persistence probability associated with the MGS (on average, a given MGS has a 
typical tendency to persist in the gut of any individual), and real data will be scattered 
around this average according to unidentified covariates and stochastic effects. 

Annual persistence probabilities were estimated in a probabilistic (Bayesian) 
model-based framework that explicitly accounts for time-dependence. In this 
approach we assume that the annual persistence probability for an MGS is determined 
by the inherent resilience of the MGS itself, in combination with possible additional 
effects (positive or negative) caused by a set of dependency-associated CAGs. 
Specifically, we assume that the annual persistence probability, P, for a given MGS, 
depends on the effects of a set of dependency-associated CAGs in the form of a 

106
APPENDIX A: METHODS - VARIABLE GENE MODULES PREDICT

PERSISTENCE OF MICROBES IN THE HUMAN GUT



logistic regression model: ln(P/[1-P]) = logit(P) = b0 + Sum[biXi] or, equivalently: P = 
expit(b0 + Sum[biXi]). Here, the regression coefficient b0 corresponds to the inherent 
persistence tendency of the MGS itself, bi corresponds to the effect of dependency-
associated CAG number i, and Xi is a binary variable indicating whether dependency-
associated CAG number i is present or absent for a given sample. “Expit” is the 
sigmoidal, logistic function (the inverse of the logit function). The index, i, runs over 
all the dependency-associated CAGs for a given MGS.  

The probability that a CAG will survive for t days, P(t), can be found from its 
annual persistence probability, P, in the following way: P(t) = P[t/365]. The likelihood 
for a data point where the MGS survives (i.e., where it is still present at the second 
sample, after t days have elapsed) is therefore given by the following expression: L = 
P[t/365] = [expit(b0 + Sum[biXi])] [t/365]. For data points where a CAG does not survive, 
the likelihood is simply: L = 1 - P[t/365] = 1 - [expit(b0 + Sum[biXi])] [t/365]. As 
recommended in Gelman et al.57 the priors for all b0 regression coefficients (which 
correspond to the inherent persistence of all MGS) are t-distributions with $=0, df=1, 
and rate=0.1 (corresponding to scale=10). The priors for all bi regression coefficients 
(corresponding to the effects on persistence of the dependency-associated CAGs) are 
t-distributions with $=0, df=1, and rate=0.4 (corresponding to scale=2.5). These are 
conservative priors that help keep the correlation coefficients close to zero. Given 
these expressions for priors and likelihoods, it is possible to perform a Bayesian 
analysis of the model, resulting in estimates of the above-mentioned regression 
coefficients. However, since the regression coefficients themselves can be difficult to 
interpret, we instead report the following derived measures: i) the annual persistence 
probability for each MGS. This can be computed as: P = expit(b0). ii) The annual 
persistence probability for a specific MGS when together with a given dependency-
associated CAG. This can be computed as: P = expit(b0 + bj), where j refers to the 
specific dependency-associated CAG. iii) The effect of the dependency-associated 
CAG. We have chosen to simply expres this as the absolute difference between the 
above two measures. (For instance: If the annual persistence probability of an MGS, 
together with a specific dependency-associated CAG is 0.75, and the annual 
persistence probability of the MGS alone is 0.5, then the effect of the dependency-
associated CAG is reported as 0.75 – 0.5 = 0.25).  

For the analysis of coexistence between a pair of MGS and an associated CAG, 
there was insufficient data to obtain estimates for each individual CAG. We therefore 
pooled all data points for CAGs having a positive effect on the persistence of their 
MGS host, and estimated an overall effect for these. 

Note that, in the Bayesian framework, estimates are expressed as probability 
distributions over the possible values for parameters of interest21. We therefore obtain 
both an estimate of a parameter, and quantification of how certain we are of the 
estimate. To declare an effect to be substantially different from zero, we require that 
its 95% highest posterior density interval (the “95% HDI”) should be located entirely 
outside of a “region of practical equivalence” to 0 (a “ROPE”). In this analysis the 
ROPE was defined to be [-0.02, 0.02]. The 95% HDI is the narrowest interval that 
includes 95% of the probability. By design, all parameter values inside a 95% HDI 
will be more likely than all values outside. In this work we have identified 26 
dependency-associated CAGs where we are more than 95% certain that they have a 
non-zero effect on the persistence probability of an MGS (Supplementary Data 6). 
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The model was implemented and analysed in a Bayesian framework by Markov 
chain Monte Carlo (MCMC) using the JAGS package58. Convergence of MCMC was 
checked by running two independent chains and verifying that they arrived at similar 
posterior distributions. In particular it was checked that the potential scale reduction 
factor (“R-hat”) for each estimated parameter was < 1.159. 
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SUPPLEMENTARY INFORMATION 

MGS completion compared to reference genomes  
On average the MGS with closely related reference genomes include 69% of the 

genes annotated to that species (for the MGS augmented assemblies 78% of the 
sequence is covered with an average identity of 98.4%). This discrepancy may reflect 
variation in the genetic makeup of the species across samples, limitations of the co-
abundance segregation or dissimilarity between the observed species and the 
reference genome. As a benchmark, 19 Spanish individuals consumed a defined 
fermented milk product containing Bifidobacterium animalis subsp. lactis CNCM I-
249418 (Supplementary Data 1). In this case 95% of the B. animalis reference genome 
genes were captured in MGS:337. Still the co-abundance segregation is likely to 
separate the genomic core from clone specific and mobile genetic elements; a notion 
that is supported by the very significant enrichment of essential genes (encoding 
Bacillus subtilis essential COGs40, Fishers exact test: P << 1 × 10-100) in the MGS.   

MGS vs. small CAGs 
The distinction, between the 741 MGS with more than 700 genes and the smaller 

CAGs, should roughly identify the CAGs that represent cellular microbial species. 
This division is not clear-cut and some core genomes may fall below and some clone 
specific variants and mobile elements may exceed the 700-gene threshold. The 
threshold was chosen based on a combination of expectations and observations. While 
some bacterial genomes have been reported to contain very low number of genes60 
most known bacterial genomes encode more than some 1,000 genes, whereas most 
phages and plasmids have less that 500 genes (Supplementary Fig. 4). Prior 
knowledge therefore suggests a threshold somewhere between 500 and 1000 genes61. 
In addition, three independent observations in our data suggest a threshold around 700 
genes. First, the observed bimodal size distribution of the CAGs shown in Fig. 1A 
narrows around 700 genes and therefore suggest a natural distinction around 700 
genes. Second, a significant enrichment for genes essential to bacterial life, detected 
by homology to the Bacillus subtilis essential gene set40 was found primarily in CAGs 
with more than 700 genes. Finally, if small CAGs represent genetic heterogeneity of 
biological organisms or bacteriophages they should depend on an organism to 
proliferate. The number of small CAGs with statistically determined dependency-
associations to MGS is highest at the 700-gene threshold (Supplementary Fig. 19) and 
drops for higher thresholds. With this threshold the odds ration for small CAGs to 
MGS dependency-associations is 12.7.  

The majority of ‘reference species gene sets’ demonstrates incoherent 
gene abundance profiles 

32% of the 3.9 M gene catalogue could be assigned taxonomy at phylum level by 
similarity to known microbial organisms (best hit with over 75% identity over 100 
bp). The majority of these resemble Firmicutes and Bacteroidetes genes (57% and 
28%, respectively). However, only 10% of the catalogue genes could be assigned 
taxonomy at species level (best hit with over 95% identity over 100 bp). Using this 
criterion, 161 ‘reference species gene sets’, with more than 700 genes assigned to the 
same species, were defined. Here, these gene sets serve as representatives of a 
reference genome based structuring of the metagenomics data. Correlation analysis of 
the abundance profiles of the genes within the 161 ‘reference species gene sets’, show 
that many of these gene sets do not behave as a coherent entity (Supplementary Fig. 
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15). Hence, 88 of the ‘reference species gene sets’ have significant sub-populations of 
genes that do not correlate with the bulk of the genes, i.e. 25% or more of the genes 
have a Pearson correlation coefficient (PCC) < 0.5. The genes within 56 of these sets 
could be identified as members of multiple distinct MGS, which in turn include 
additional genes without similarity to these reference genomes. For 12 ‘reference 
species gene sets’ almost no internal gene correlations could be found (less than 25% 
of the genes have PCC of 0.5 or more). The highly inconsistent ‘reference species 
gene sets’ are found across the major phyla: Firmicutes, Bacteroidetes, Proteobacteria 
and Actinobacteria, but the Bacteroidetes gene sets stand out as particularly 
incoherent with an average within gene set PPC of 0.5. At genus level Bacteroides, 
Faecalibacterium and Prevotella are the most incoherent groups, all with an internal 
PCC average below 0.5. This level of inconsistency is problematic both because the 
annotation does not reflect the biological organization of the system and because 
association between inconsistent ‘reference species gene sets’ and clinical data, may 
be misleading or fail to identify an underlying organism. Further work will be 
required to clarify the reasons for the inconsistency, but we suggest that CAGs may 
be more suitable than the homology-based gene sets both for understanding the gut 
microbial communities and their association to health and disease.  

MGS profiles are coherent in an independent sample series 
To demonstrate that the MGS behave as general biological entities the coherence of 

abundance profiles for the MGS genes was investigated in 115 independent human 
stool samples that were not used for the clustering17. In this independent sample set 
the median gene-wise Pearson correlation coefficient for intra MGS gene profiles was 
as high as 0.98. Hence, the MGS indeed appear to be general descriptors of coherent 
genetic entities across similar microbial systems. 

The MGS profiles are distinct and robust 
Individual gene abundance profiles of a typical MGS are highly coherent and 

distinct from the profiles of the genes not included in that particular MGS. 
Consequently, relaxing the gene inclusion criterion from PCC > 0.9 to PCC > 0.8 
relative to the median profile of the MGS only extends the MGS gene set on average 
by 5%. Similarly, raising the inclusion criterion to PCC > 0.95 reduces the number of 
genes included by 17 % on average. Hence, the co-abundance based clustering is 
robust to changes in parameters that determine the cluster boundary and importantly 
the MGS are separated from other genes. This feature is so strong that more than 30 
MGS stand out as distinct and dense gene clouds in a two-dimensional Pearson 
scatter-plot (Supplementary Fig. 3), even when the plan/dimensions of the plot is not 
targeting the separation of these specific MGS. In addition, even the dependency-
associated CAGs are clearly distinct from their hosts, thus on average the PCC 
between the host and the dependency-associated CAGs is 0.46 (+/- 0.2). 

21% of the abundance-uncorrelated genes can be linked to the MGS 
1.2M catalogue genes, with abundance profiles exceeding the filtering criteria 

(more than 3 samples must constitute 90% of the total abundance signal) did not 
segregate with any CAG. The detection rate of these abundance uncorrelated genes 
was however comparable to that of the correlated genes, as their sequence coverage 
and re-detection rate in paired samples from the same individual, were similar to that 
of the correlated genes. Although, the abundance-uncorrelated genes on average were 
detected in significantly fewer samples than the correlated genes (mean: 50 and 93 
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samples, respectively) the bulk of these were detected in a sufficient number of 
samples to allow these to be segregated, if they were correlated to other genes.  

These abundance-uncorrelated genes are in contrast to the clustered genes 
significantly underrepresented in essential genes. Interestingly, we found that, genes 
involved in antibiotic resistance, with the exception of vancomycin resistance, had 
distinct single gene abundance profiles. This is in line with the fact that most 
antibiotic genes, except vancomycin resistance genes, are known to single-handedly 
provide antibiotic resistance and suggests that some genes may be highly dynamic 
and perhaps are best understood non-contextually, at the single gene level. 

21 % of these abundance-uncorrelated genes, however, can be linked to an MGS by 
shared sequence contigs in at least one sample, indicating that some of these genes 
may be clone or strain specific genes of the species. In support of this, these contig-
extended genes are likewise significantly underrepresented in essential genes 
(encoding Bacillus subtilis COGs40, Fisher’s exact test P = 0.002). 

For instance the very common Bacteroides vulgatus (MGS:6) comprises 2,271 
genes but can be contig extended to include additional 326 genes, across all samples. 
The average sample however, only comprises 161 of these genes, and the abundance 
profiles of these genes show little correlation to the B. vulgatus (MGS:6) profile 
(mean PCC = 0.3). This abundance profile inconsistency of the contig extended genes 
may to some extend resemble the inconsistencies observed for ‘reference species gene 
sets’ and as such illustrate the difference between example based gene sets and CAGs.  

Common species comprise genes for protection against ROS and 
Vitamin B12 metabolism 

Comparisons of MGS between any pair of individuals show an average overlap of 
50% (±12%). A substantial part of the shared MGS belongs to a core set of 31 MGS 
that were detected in at least 90% of the samples (Supplementary Data 11) and 
together they account for 25% of the abundance signal. Of these, 18 have clear 
similarity to taxonomically known species, and, hence, there is an overrepresentation 
of taxonomically known species among the core MGS (odds ratio 3.0). The most 
common MGS across the sample series are the Blautia wexlerae (MGS:9) and 
Bacteroides vulgatus (MGS:6) which were found in 395 and 392 of the 396 samples, 
respectively. B. vulgatus (MGS:6) is in addition the most abundant species across the 
samples, matched by on average 6% of the mapped reads and is the dominating 
species in 58 samples.  

A number of orthologous groups (eggNOG)27 are found significantly more 
frequently among common species than in less common species (Wilcoxon rank sum 
test, P < 1x10-15, Supplementary Data 8) and suggests a set of functions important for 
bacterial existence in the human gut. These include enzymes for protection against 
reactive oxygen and vitamin B12 biosynthesis. 

Only very few contigs may be the result of chimeric assemblies 
For the assembly of the data we used the MOCAT pipeline29 which performs a 

revision of the initial assembly that specifically tries to identify and break chimeric 
contigs (see Methods). However, to assess the rate of potential chimeric contigs we 
re-mapped all reads to the assemblies using bwa (bwa-0.7.5)41 and calculated the 
number of bases per contig that was not bridged by properly paired read pairs. The 
properly paired read-pairs are read-pairs that map in the expected orientations and 
with the expected insert length. Absence of these in regions of an assembly indicates a 
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point of miss-assembly and a potential chimera in metagenomic assemblies. Across 
all contigs we found that only a small fraction (0.0058) had one or more bases that 
were not covered by properly paired reads, pointing to a very low contig chimera rate. 
Among the cross dependency-associated CAG contigs we only found 31 of 7,966 
(0.0039) without proper paired read coverage. 

The MGS richness is in concordance with gene richness and indicative 
of Crohn’s disease 

The number of different species, commonly known as the species richness, is an 
important measure of an ecological system, partially because it is believed to reflect 
the general health and stability of a system17. Obviously, this measure depends on 
proper detection of species in the ecological system, and we propose the MGS count 
as an estimate. Across our cohort of stool samples this number ranges from 33 to 307 
with a mean of 155. The number of MGS with species level annotation (shown as 
coloured bars in Supplementary Fig. 20) is more constant across the cohort than the 
number of unknown species (shown with black bars). Importantly, sample-wise gene-
richness correlates significantly better to the MGS richness estimate (PCC = 0.97), 
than to the taxonomically known species richness (PCC = 0.55) or to richness 
estimates based on reference genome detection (see Methods, PCC = 0.52). In 
addition, MGS richness significantly associates the occurrence of Crohn’s disease (t-
test, P = 4x10-15), much stronger than does species richness derived by sequence 
similarity to known reference genomes (Crohn’s disease: P = 0.09). While association 
between species richness and Crohn’s disease has been reported before62, the MGS 
richness measure clearly enhances the correlation. 

Co-existence associated CAGs 
For the microbial species the presence of other companion species in the 

community may be a major factor to which they may adapt. Such adaptations may be 
indicated by significantly increased occurrence of specific dependency-associated 
CAGs in samples where a companion species is also found. A subset of 66 
dependency-associated CAGs does exactly that (Supplementary Fig. 16A shows an 
example) and these are therefore candidates for adaptations to co-existence. In 18 of 
these relationships the dependency-associated CAGs coincide with significantly 
enhanced persistence probabilities of the hosting MGS when found jointly with a 
companion species (Supplementary Fig. 16B, Supplementary Data 12). The 
companion species on the other hand appear to be only marginally affected by the 
presence of the dependency-associated CAG, with only a slight but insignificant 
increased persistence. 

This set of co-existence associated CAGs is very significantly enriched in genes 
encoding parts of the TonB complex that is important for extracellular sensing and 
that in Pseudomonas aeruginosa has been associated with biofilm formation and 
quorum sensing63. As an example, the Odoribacter splanchnicus (MGS:225) 
dependency-associated CAG:3500 contains genes that encode a ‘TonB-dependent 
receptor plug protein’, a ‘two-component sensor histidine kinase’ and a 
‘transcriptional response regulator rprY’, proteins that have been reported in signal 
transduction, chemotaxis and quorum sensing63,64. Furthermore, the set of co-
existence associated CAGs are enriched in the broad-spectra acriflavin resistance 
proteins and conjugation-coupling factor proteins. 
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In contrast, to the co-existence associated CAGs, another set of dependency-
associated CAGs were significantly absent in samples where specific companion 
species were found (Supplementary Fig. 16C and Supplementary Data 12). The 
MGS:11 (Oscillibacter) has several such associated CAGs. In particular, CAG:4957 
encodes 16 proteins that are orthologous to proteins in two companion species 
(MGS:17, Ruminococcus like and MGS:124, Pseudoflavonifractor like), but not to 
any proteins in the hosting MGS:11. Seven of these proteins are in the anaerobic 
corrin ring biosynthesis part of the Vitamin B12 pathway (Supplementary Fig. 16C 
lower panel). Hence a possible role for CAG:4957 is to compensate for the 
biosynthetic potential of the companion species when they are absent. 
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SUPPLEMENTARY FIGURES 

 
 
Supplementary Figure 1. Accumulation curves. A) The five curves show the count 
of genes for the different types. The last sample, on average, discovers only 584 new 
genes or 0.02%. Reordering the samples resulted in almost identical cumulative 
curves (not shown). B) The number of small CAGs (semitransparent black) or MGS 
(semitransparent blue) found three or more times in random subset of samples of the 
indicated sample sizes (x-axis). C) The number of significantly dependency 
associations identified in a random set of samples (from independent individuals) of 
the indicated sample sizes (1 – 318). In B) and C) 10 independent random drawings 
were made for each sample size. 
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Supplementary Figure 2. Gene profiles of MGS:4. A) The abundance profile of a 
single gene from MGS:4 (E. coli) across 396 samples. B) The abundance profile for 
all of the 3,523 genes of MGS:4 (shown as 3,523 semi-transparent lines). The median 
Pearson correlation coefficient between the abundance profiles of the MGS:4 genes 
was 0.98. 
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Supplementary Figure 3. Scatter plot showing the Pearson correlation coefficients 
between the abundance profile of the 3.9M catalogue genes (points) and the 
abundance profile of MGS:20 (x-axis) and MGS:34 (y-axis). Genes belonging to 
MGS:20 (n = 2119) and MGS:34 (n = 1799) are defined as genes with correlation 
coefficients exceeding 0.9 (Pearson) on the x and y axis, respectively (see Methods). 
In addition to the axis defining MGS, several other MGS are visible as distinct gene 
clouds at the periphery of the main gene cloud. The IDs of the most visible MGS are 
indicated. 
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Supplementary Figure 4. Number of genes encoded by complete prokaryote 
genomes. The vertical red line indicates the 700 genes threshold between MGS and 
small CAGs. Gene numbers from all complete prokaryotes in the NCBI genome 
browser (http://www.ncbi.nlm.nih.gov/genome/browse/) are shown. 
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Supplementary Figure 5. Bar plot showing the taxonomical consistency of the MGS. 
The percentage of genes with the most common gene-wise taxonomical annotation for 
the given MGS is indicated in red, green and blue for species, genus and phylum level 
annotation, respectively. The percentage of genes annotated to an alternative species, 
genus or phylum is indicated in light-red, light-green and light-blue, respectively. The 
area above the bars indicates the percentage of genes without  taxonomy annotation. 
On average, only 1.8% of the genes in an MGS are more similar to alternative species 
and 518 MGS have no species level similarity to any previously sequenced genome. 
For the remaining genes, no taxonomical assignment at the indicated level was found. 
Species, genus and phylum level taxonomical annotation was defined as best 
sequence match with 95%, 85% and 75% identity over ≥ 100 bp (for details see 
Methods and Supplementary Data 2).  
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Supplementary Figure 6. Bar plot showing the number of known and previously 
unsequenced MGS for the indicated phylum. The MGS were assigned to a phylum if 
90% of the genes annotated (best hit >75% identity over ≥ 100 bp) indicated the same 
phylum and more than 100 genes were annotated (for details see Supplementary Data 
2).  
 

Firmicutes Bacteroidetes Proteobacteria Actinobacteria Verrucomicrobia Fusobacteria Spirochaetes Lentisphaerae Euryarchaeota

0
50

10
0

15
0

20
0

25
0

30
0

Firmicutes Bacteroidetes Proteobacteria Actinobacteria Verrucomicrobia Fusobacteria Euryarchaeota

0
50

10
0

15
0

20
0

25
0

30
0

unknown species
known species

known genomes
new genomes

0
10
0

20
0

30
0

Fir
mi
cu
tes

Ba
cte
ro
ide
tes

Pr
ote
ob
ac
ter
ia

Ac
tin
ob
ac
ter
ia

Fu
so
ba
cte
ria

Sp
iro
ch
ae
tes

Le
nti
sp
ha
er
ae

Ve
rru
co
mi
cro
bia

Eu
rya
rch
eo
ta

un
kn
ow
n

124

APPENDIX B: SUPPLEMENTARY INFORMATION - VARIABLE
GENE MODULES PREDICT PERSISTENCE OF MICROBES IN THE

HUMAN GUT



 
Supplementary Figure 7. Phylogenetic analysis of MGS augmented assemblies. A) 
Phylogeny of 337 assemblies (passing 5 or more HMP criteria) plus 1,637 reference 
genomes including 296 HMP microbiome gastrointestinal tract reference genomes65. 
The coloured ring shows the taxonomy of the reference genomes: green: 
Bacteroidetes, orange: Firmicutes, light pink: Actinobacteria, light orange: 
Chlamydia, red: Crenarchaeota, dark blue: Cyanobacteria, yellow: Euryarchaeota, 
light purple: Fusobacteria, light blue: Proteobacteria, light green: Spirochaetes, 
purple: Tenericutes and in black: CAG assemblies. The phylogenetic tree was created 
using the approximate maximum likelihood method implemented in FastTree on an 
alignment of 40 marker proteins, and visualized using ITOL54. The clade marked by 
the red ellipsoid is shown in B. B) Sub-tree of A, containing the Tenericutes, some 
Firmicutes and a clade of 27 CAGs (indicated with a red bar). The branches are 
coloured by bootstrap support values, where red shows values of 0.95 or higher and 
blue below 0.95. The MGS clade only consists of MGS augmented assemblies and 
forms a sister group to the family Acholeplasmataceae (class: Mollicutes). The 
assembly quality of the species in this clade is comparable to other MGS augmented 
assemblies (Supplementary Data 3). C) Box-plot of the distribution of gene-wise GC 
content of MGS. CAGs belonging to the clade shown in B are indicated in red and 
demonstrate low CG content. D) Box-plot of the gene content of CAG assemblies for 
the indicated groups. E) Box-plot showing the ratio between the number of cell wall 
and other essential genes40 for the assemblies as indicated (Wilcoxon rank sum test, P 
= 6 × 10-16). 
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Supplementary Figure 8. Statistics of the 741 MGS augmented assemblies and 
visualization of HMP high quality draft genome criteria. The assemblies are divided 
by how many HMP criteria they pass (x-axis) where passing six criteria equals a high 
quality assembly. The horizontal dashed lines represent the HMP thresholds for the 
particular criteria. The lower and upper hinges correspond to the 25th and 75th 
percentiles, the whiskers represents the 1.5 * Inter-Quartile Range (IQR) extending 
from the hinges and the dots represents outliers from these. The two assemblies in the 
“Core gene ratio” panel that pass six criteria but only identified 60% of the core genes 
are archaeal organisms and they pass the archaea core gene ratios criteria. 
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Supplementary Figure 9. Intra-assembly correlation of Tetra Nucleotide Frequency 
z-scores (TNF-z) to assembly-specific TNF-z median profiles. The TNF-z profile of 
all scaffolds within an assembly was correlated using the Pearson Correlation 
Coefficient (PCC) to the median TNF-z profile of the particular assembly. The figure 
shows the distribution of assembly mean PCC binned by the number of HMP criteria 
that the particular assemblies passed (0-6, 6 equals high quality draft) and the 296 
HMP gastrointestinal tract reference genomes. The high quality assemblies show 
similar average PCCs to their median profile as the HMP reference genomes, 
indicating a similar coherency of the MGS high quality assemblies as the HMP 
reference genomes created using standard growth, sequencing and assembly 
techniques.  
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Supplementary Figure 10. Blast dot-plot of MGS:337 assembly (y-axis) vs. the 
Bifidobacterium animalis subsp. lactis CNCM I-2494 reference genome (x-axis), 
showing very high consistency between the MGS assembly and the reference 
genome. 19 human subjects consumed a defined fermented milk product containing 
Bifidobacterium animalis subsp. lactis CNCM I-2494; MGS:337 was assembled from 
one of them (sample O2.UC47-2). 
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Supplementary Figure 11. Sensitivity and specificity of the co-abundance clustering 
at reduced sequencing depths. A series of co-abundance clusterings based on data 
downsized to the sequencing depths indicated at the x-axis was performed. From 
these the size (number of genes captured) and specificity in terms of Bifidobacterium 
animalis subsp. lactis CNCM I-2494 matching genes (> 95% identity) of the 
MGS:337, are shown as bars and line, respectively. At a sequence depth of 700K 
reads 97% of the B. animalis subsp. lactis CNCM I-2494 genes were captured and at a 
depth of 200K read 98.6% of the genes matched the reference genome. Here 393 stool 
samples (with 11M or more reads, before downsizing), including 19 samples from 
individuals who had consumed a defined fermented milk product contain B. animalis 
subsp. lactis CNCM I-2494, were used. Across these 19 samples on average 0.3% of 
the reads mapped unambiguously to MGS:334 genes and at a sequencing depth of 
700k this corresponded to on average 1,962 reads per sample. 
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Supplementary Figure 12. Co-abundance clustering of the Bifidobacterium animalis 
subsp. lactis CNCM I-2494 (MGS:337) in subsets of samples. The size (left axis) and 
specificity (right axis) of the B. animalis MGS from a series of co-abundance 
clusterings on random sample subsets are shown. All samples were downsized to 11M 
sequence reads. The bars indicate the mean number of genes captured in the MGS and 
the line indicates the mean percentage of the captured genes with strong similarity to 
B. animalis subsp. lactis CNCM I-2494 (95% identity over 100 bp or better). 
Whiskers indicate +/- one standard deviation from the mean (n = 5). In A) the results 
of co-abundance clusterings of 375 stool samples, including the indicated number of 
samples (x-axis) from individuals, who had consumed a defined fermented milk 
product (DFMP), containing B. animalis subsp. lactis CNCM I-2494, are shown. B) 
Shows the results of co-abundance clusterings on a series of random sample subsets 
of the indicated size (x-axis). These subsets contained the maximal number of 
individuals possible who had consumed the DFMP (19-8 DFMP consuming 
individuals). 
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Supplementary Figure 13. Heatmap showing CRISPR-associated (Cas) genes 
annotated for MGS and CAGs that were found enriched for CRISPR related genes. 
The rows show the occurrence of Cas genes in 83 Cas enriched MGS and CAGs 
(columns). The colour coding at the left corresponds to the subtypes of Cas genes and 
the colours on top indicate the CAG type. The CAGs cluster according to subtypes of 
Cas genes they contain.  
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Supplementary Figure 14. E. coli dependency-associated CAGs. A) The 
dependency-association sub-network centred around E. coli (MGS:4). Arrows show 
directional dependency-associations. The green background colouring indicates 
CAGs dominated by genes with species level similarity to E. coli. The proportion of 
virulence genes is indicated by pie charts for CAG:427, CAG:3070 and CAG:2530. 
Together, these three CAGs contain 15% of all the virulence genes found in the entire 
gene catalogue. CAG:5108, CAG:2136 and CAG:1345 are significantly enriched for 
plasmid genes. B) Identification of the nine MGS:4 dependency-associated CAGs 
across 25 HMP reference genomes of E .coli isolated from the human intestinal 
tract65. Red rectangles indicate a sequence match with >90% identity over >90% of 
the gene length between the indicated CAG and HMP reference genome. C) The 
cumulative persistence of (MGS:4) with or without the dependency-associated 
CAG:427 as observed between longitudinal samplings of 34 individuals. Points 
indicate sampling time of the second sample (in days) relative to the first sampling 
from the same individual.
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Supplementary Figure 15. Violin plots showing the densities of the internal gene 
abundance Pearson correlation coefficients for gene sets defined by A) MGS and B) 
‘reference species gene sets’. The thickness of the horizontal blue ‘violins’ (lines) 
indicates the densities of the distribution of Pearson correlation coefficients between 
the genes within a given gene set. The ‘reference species gene sets are defined as sets, 
that share species level taxonomical assignment by sequence match to a reference 
genome (best hit, 95% identity over 100 bp or better). The horizontal scale is the same 
in the two plots. The ‘reference species gene sets’ and MGS are ordered vertically by 
the median PCC. 
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Supplementary Figure 16. Adaptations to the co-existence or absence of a 
companion species. A) Sample-wise detections of Bacteroides intestinalis (MGS:315) 
and CAG:3721 shown in blue bars and the occasional companion species 
Bifidobacterium longum (MGS:69) in red bars. CAG:3721 is significantly associated 
to the co-existence of the two species (P = 2 × 10-9). B) The cumulative persistence of 
species that live in co-existence with a companion species is shown as a function of 
dependency-associated CAGs. Points indicate sampling time (in days) of the second 
of two longitudinal samples relative to the first sampling. The curves show the joint 
observation of 18 inter-species relationships across 73 individuals, where a CAG 
coincide with substantially increased persistence of the hosting MGS. The average 
annual effect of carrying a positive CAG was 29% as estimated by Bayesian 
modelling (95% credible interval: 17 to 41 percentage points). C) Top panel shows 
the sample-wise detections of the host (MGS:11, Oscillibacter), the dependency-
associated CAG:4957 and the two companion species (MGS:17, Ruminococcus like 
and MGS:124, Pseudoflavonifractor like) as indicated. The detection of CAG:4957 is 
significantly anti-correlated to the detections of the companion species (MGS:17: p = 
0.0007 and CAG124: p = 0.002). Lower panel show the genetic potential for the 
anaerobic corrin ring part of the Vitamin B12 biosynthesis pathway38 for the indicated 
CAGs as filled boxes. The precorrin 2 to cobalt-precorrin 2 step (marked with *) may 
be catalysed by both CysG and CbiK. Enzymes catalyzing steps between cobalt-
precorrin 6 and 7 lagging experimentally verification are not shown38. A possible role 
for CAG:4957 is to compensate for the biosynthetic potential of the companion 
species in their absence.  
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Supplementary Figure 17. Canopy clustering on permuted abundance profiles. The 
result of an exhaustive co-abundance binning of a gene-wise shuffled abundance 
matrix is shown. The size (number of genes) and minimal number of samples that 
constitute 90% of the total abundance signal from the resulting 1,840,781 random 
CAGs are shown. Only 18 CAGs escape the QC filter indicated with red dashed lines. 
All of these contained 3 or 4 genes and were observed in a few samples. 1,539,760 of 
the random CAGs contained 1 gene and 799 contained more than 12 genes. For all of 
the latter 90% or more of the abundance signal originated from only one sample. The 
estimated number of randomly occurring CAGs in the non-permuted canopy 
clustering (i.e. the real data) was very low and only expected among the rare and very 
small CAGs (FDR ~10% for CAGs with 3 or 4 genes). 
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Supplementary Figure 18. Persistence probabilities of MGS. A) Persistence 
probabilities (estimated from the 2 ⨉ 73 re-sampled individuals) as a function of the 
observation frequency across 318 independent human samples. B) Persistence 
probabilities as a function of the average abundance across the samples where the 
MGS was detected. C) Box-plot showing the persistence probabilities for MGS 
assigned to the four main phyla. D) The MGS persistence probabilities across the 
patient groups: Healthy, Crohn’s disease (CD) and ulcerative colitis (UC). Persistence 
probabilities were estimated for MGS observed in 5 or more individuals.  
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Supplementary Figure 19. The number of statistically significant small CAG to 
MGS dependency-associations as a function of the gene-number boundary between 
these CAG classes. The vertical red line indicates the 700-gene definition. The odds 
ratio for small CAGs to MGS is 12.7 with a boundary at 700 genes. 
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Supplementary Figure 20. MGS richness across the 396 samples. The height of the 
bars indicates the number of MGS found in each sample (left axis) and the bar colour 
shows the phylum level taxonomy of the MGS that represents known species (range: 
25 to 81, mean: 50). Black indicates the number of MGS without species level 
taxonomical annotation. The blue line indicates the sample-wise gene richness (right 
axis). The PCC between the MGS richness and the gene richness is 0.96 and only 
0.55 for the taxonomically known species. Rectangles below the bar plot indicate 
samples from individuals with Crohn’s disease.  
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SUPPLEMENTARY DATA 
Supplementary Data 1, sample description 
Supplementary Data 2, MGS taxonomical statistics 
Supplementary Data 3, MGS augmented assembly statistics 
Supplementary Data 4, MGS augmented assemblies comparison to reference genomes 
Supplementary Data 5, summary information on the 6640 small CAGs 
Supplementary Data 6, dependency-association network 
Supplementary Data 7, MGS:4 + dependency-associated CAG assembly statistics 
Supplementary Data 8, eggNOG prevalent in frequently observed MGS 
Supplementary Data 9, Bacillus subtilis essential COG list 
Supplementary Data 10, gene catalogue comparison  
Supplementary Data 11, MGS frequencies and abundance statistics 
Supplementary Data 12, dependency-associations with or without companion species  
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