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Abstract— Inductorless switch mode power supplies based on 

piezoelectric transformers are used to replace conventional 

transformers in high power density switch mode power supplies. 

Even though piezoelectric-based converters exhibit a high degree 

of nonlinearity, it is desirable to use piezoelectric transformers 

due to their smaller size, lighter weight, lower electromagnetic 

interference, higher power density, higher efficiency, and lower 

cost. Moreover, PTs allow converters to operate in high switching 

frequencies and by obtaining soft switching condition, switching 

losses will decrease. This paper discusses power supplies with the 

trend evaluation of piezoelectric transformer-based converter 

topologies and control methods. The challenges of piezoelectric 

transformers regarding soft switching capability and nonlinearity 

are addressed. This paper can be used as a guideline for choosing 

a proper topology of piezoelectric-based switch mode power 

supply and a control method for the required application. 

Keywords—Piezoelectric transformer; Half-bridge topology; 

Bi-directional control method; Zero voltage switching 

 

I.  INTRODUCTION  

Development within piezoelectric transformer (PT)-based 
switch mode power supplies (SMPS) has been increasing with 
regards to smaller size, lighter weight, lower cost, lower 
electromagnetic interference (EMI), higher power density, and 
higher efficiency. Furthermore, the manufacturing process of 
PT can be simpler than electromagnetic transformers, since any 
winding or core assembling are not required. The objective of 
this research is to summarize applied converter (specifically 
SMPS) topologies, employed control methods, reduction of 
switching losses and challenges due to the stabilization of PT’s 
operation. 

This paper explores PT-based converters and topologies 
that have been proposed for different applications. The primary 
focus of this paper is to review the topologies and control 
methods in PT-based SMPS. The study starts with a brief 
explanation of PT behavior in SMPS by its constraints and 
requirements. Thereafter, investigation has been conducted on 
the essentials of zero voltage switching (ZVS) in these type of 

converters and attempts to define ZVS regions or factors for 
gaining desired performance of PTs inside the circuit. 
Comparison has been made between converter topologies 
together with the trend of their applications. 

 Examination was done on control methods used for 
increasing performance of converters by introducing the 
necessity of closed loop control. Closed loop control is 
indispensable for compensating influence of parameters such 
as frequency and temperature, in order to have stable operation 
of PT and consequently accurate performance of the converter. 
Bi-directional converters are targeted in this paper but most 
prior art used uni-directional converters; therefore, additional 
control methods were added into the scope. The control 
methods reviewed include: phase shift control, self-oscillating, 
burst mode and double feedback loop, etc. 

The paper is organized as follows. In section II the state-of-
the-art piezoelectric transformer-based SMPS is reviewed in 
terms of principles of PTs, their soft switching ability, 
uni-directional converter topologies, and control methods. In 
Section III, new challenges in the area of PT-based SMPS will 
be introduced. These are considered to be starting points for 
further research. Finally, conclusion is presented in section IV. 

 

II. PRIOR ART 

A. PTs in SMPS 

Employment of PTs has become popular since it can 
replace magnetic and reactive components in both resonant and 
traditional magnetic transformer based converters. The 
switching frequency may be either above or below the resonant 
frequency of a PT. PTs can behave as inductors in a limited 
range above each resonant frequency. Furthermore, when PTs 
are operated slightly above resonant frequency, the series 
resonant network becomes inductive and provides sufficient 
resonating energy for charging its input capacitor. This results 
in achieving ZVS. Therefore, PTs can be replacements of 
resonant circuits in power converters. 

 The operating principle of the PT is based on 
electromechanical energy conversion. There is 
electromechanical coupling between the primary and secondary 
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Fig. 3. Most popular converter topologies for driving PT: (a) Push-pull topology, (b) Class-E, (c) Half-bridge. 

 

Fig. 1. Gain curve before and after a frequency shift from increase 

in temperature. 
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Fig. 2. Gain curve before and after an increase in loss resistance from 

an increase in temperature. 
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sides inside PTs, where the primary acts as a piezoelectric 
actuator and the secondary acts as a piezoelectric transducer. 
Transmitted energy ratio in PTs cannot exceed 95% due to 
piezoelectric material losses [1]. PTs are frequency-, load- and 
temperature- dependent [2, 3, 4, 5]. This fact influences their 
voltage gain and efficiency. Figs. 1 and 2 retrieved from [5] 
show variations of voltage gain due to temperature increment. 
Conclusively, a positive temperature change can result in both 
decrease of the PT gain and shift in its resonant frequency.  

 Some relationships between key parameters of PTs have 
been shown by generic closed-form equations [2], which can 
be used as analytical trade-off for design optimization of PTs in 
a required application. However, there are several production 
related parameters, e.g. size, oven temperature, polarization 
and electrode material, which bring some challenges to PT 
design. Furthermore, utilization of finite element method 
(FEM) software, e.g. COMSOL, gives a degree of freedom in 
PT designs for more considerations regarding application and 
fabrication [6].  

PTs could be driven by either sine wave or square wave, 
while less reactive components are required for generating 
square wave [7]. PTs behave like high Q band pass filters; 
therefore they filter the input square waveform to generate sine 
wave resonant current and output voltage, which is mainly 
considered as fundamental signal of the input square wave. 
However, higher order resonant signals are also generated in 
the circuit which affects performance of the converter [8, 9]. 

 

B. Soft Switching operation and constraints 

PT-based converters could benefit from soft switching due to 

significantly diminishing switching losses and stresses. 
Otherwise, energy stored in the input capacitor of PTs would 
be dissipated in MOSFETs and would cause hard switching. 
Researches show considerable increase of efficiency by 
achieving soft switching, e.g. efficiency has been increased 
from 70% to 83% by soft switching [10]. 

 Providing adequate dead time in order to deliver sufficient 
energy for charging and discharging the input capacitance of 
PTs is required for achieving ZVS [11], besides preventing 
shoot through. This means that the design of PTs and driving 
circuits must be performed together in order to ensure ZVS. 

Several attempts have been made to analyze the inherent 
soft switching capability of PTs by estimating [12] and 
providing analytical model for calculating [13] the load and 
the frequency boundaries. The obtainable ZVS region of PTs 
is very small regarding load and frequency [13]. Moreover, 
maximum obtainable soft switching has been derived in a 
simple relation [14] in order to design PTs under the matched 
load condition. This expression relates ZVS to the input and 
output capacitors of PTs in addition to efficiency (1). The 
equation demonstrates validating functionality of ZVS, with 

the design parameter of ��
� which is known as the ZVS factor. 

��
� = (0.304	

�

��

���

���
+ 0.538)(0.585ƞ + 0.414)      (1) 

Where ��� and ��� are input and output electrode 

capacitances of PT, � =
�

�
 is effective turn ratio of PT shown 

in Fig. 5, and ƞ is PT efficiency. 

 

(a) (b) (c) 

Temperature increase Temperature increase 
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 Fig. 4. Typical topologies for driving PT. (a) Current-source resonant
inverter. (b) Voltage-source resonant inverter. 

 
 

 

 

Fig. 5. Schematic diagram of the inductorless half-bridge topology and the 
Mason’s lumped parameter model of PT. 

 

C. Uni-directional converter topologies 

As one of the initial researches on converter topologies, the 
dissertation [8] compares the performance of three different 
topologies of PT converters: half-bridge, single-ended multi-
resonant (SE-MR) and single-ended quasi-resonant (SE-QR) 
PT converters. The comparison shows that DC/AC voltage 
gain for half-bridge and SE-MR can feasibly be below unity, 
while it is naturally above unity for SE-QR. Therefore, SE-MR 
and half-bridge can be used in step-down applications. The 
SE-QR is suitable for step-up applications and cost effective by 
having one switch and one inductor. Although half-bridge 
topology has more complicated structure and components than 
other alternatives, it has the advantage of greater efficiency and 
less generated noise. 

Several standard topologies, i.e. push-pull, half-bridge and 
class-E, are investigated in [7, 15, 16, 17, 18]. Fig. 3 shows the 
most popular topologies for PT-based converters.  

Push-pull topology has been recommended for step-up 
applications compared to half-bridge for reasons of simpler 
control and higher step-up ratio [7, 9]. Resonant push-pull 
drivers have been applied for continuous energy transferring 
with amplitude modulation for the first time [15] with a rough 
efficiency of 70%. The design benefits from two additional 
inductors. Compared to half-bridge topology, push-pull 
topology has less dissipation loss generated within the PT due 
to less filtration of input voltage harmonics [15]; therefore, 
there are more spurious modes in the resonant current and 
consequently output voltage. 

Class-E and half-bridge topologies both are appropriate for 
step-down applications. Comparison of PT-based resonant 
topologies for step-down applications is performed [19], which 
result in priority for implementation of class-E compared to 
half-bridge due to better EMI suppression, lower switch current 
peaks, and larger control bandwidth. On the contrary, half-
bridge topology shows better performance in high power levels 
compared to class-E [9, 19]. 

Some topologies have been identified as using PTs in 
parallel or series resonance for high-voltage power supplies [4]. 
Current source inverters have been used for supplying PTs in 
parallel resonance. The advantages to this are having less 
switching losses and voltage spikes compared to magnetic 
transformers, while the disadvantages are having unsatisfactory 
cost and size as a result of using two inductors for input current 

filtrations. Half-bridge topology has been utilized for the 
resonating of PTs around series resonance which leads to 
simpler and cheaper drivers. In both cases, PTs have been 
supplied by square wave form. Despite input current or voltage 
driving method, PTs behave as a voltage supply for the load. 
Fig. 4 shows these two types of topologies. 

Nevertheless, there have been some prior efforts by 
utilizing one or several magnetic devices, i.e. inductors, for 
achieving ZVS in converters [8, 15, 20, 21]. The usage of one 
or more magnetic devices has been done in resonant converters 
by placing an inductor in series with a PT in the half-bridge 
topology in order to pump sufficient current into the input 
capacitor of the PT during dead time. With these approaches, 
full advantage of PTs could not be achieved and resulted in 
extra expense, size and effect of EMI in power supplies. 
Therefore, PTs should be used with inductorless converters in 
order to have effective reduction of cost and size [3, 12, 22]. 

Inductorless PT-based resonant converter topologies were 
analyzed for both AC output and DC output forms regarding 
obtaining ZVS [23]. Five different topologies were appraised 
for standard PT equivalent circuit. That research shows that in 
case of having optional dead time and frequency, achieving 
ZVS will depend on parameters, i.e. load condition, inverse of 
efficiency at the load condition and PT capacitor ratio. Finally, 
this resulted in ZVS-achievable criteria by standard equivalent 
circuit which is valid for any type of PT.  

A method based on bootstrap method has been proposed in 
[24] for summation of several PT sub-converter outputs as a 
solution for non-isolated converters. Fig. 5 shows a block 
diagram of inductorless half-bridge PT driver. 

Inductorless half-bridge topology has been employed for 
first ballast circuits with high efficiency and cost effectiveness 
for driving linear fluorescent lamp by utilization of radial 
vibration mode PTs [25]. In [14], this topology has been 
applied and a simple expression of soft switching capability 
has been revealed by empirical deriving of the ZVS factor. 
However, the shortcoming is that this factor is valid only when 
the load is matched. 

 

D. Control methods 

Temperature and load fluctuations cause changes in the 
operating point of PTs. Temperature increase is inevitable due 

(b) (a) 
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Figure 7: Topology with two feedback loops: resonant current phase and voltage control. 

 

Fig. 6 Thermo-electric model of a PT with the effect of self-heating. Fitted parameters from measurements: ��, ��: constant and ���: absolute 

thermal resistance to surroundings. �: applied frequency, �� and �� input and output voltages ��: shifted frequency, ��: temperature dependent loss 

resistor, ��:	load resistance, �(��	,��): temperature dependent gain, ��: ambient temperature, ∆�: temperature change. 

to power losses, while conversely there will be a decrease of 
mechanical quality factor in the PT, which turns into self-
heating [5, 26]. Moreover, a rise in the temperature causes a 
decrease of resonant frequency. Therefore, a driver could 
easily shift out of the ZVS region or lead to a lower output 
voltage and efficiency. A valuable thermo-electric model has 
been provided in [5] and demonstrates nonlinearities. Fig. 6 
shows a block diagram representing this thermo-electric 
model. 

Several attempts have been made to apply control methods 
for PT-based converters. PTs exhibit a considerably narrow 
operating frequency range regarding their high quality factor, 
which brings challenges for obtaining soft switching and 
appreciable efficiency. However, keeping operating frequency 
in a proper point which is slightly above resonant frequency is 
hard to achieve by open loop. As a consequence, closed loop 
control is vital for maintaining PT operation at optimum point 
and desirable efficiency of drivers. 

Presently, closed loop controls are being performed by 
measuring phase difference between resonant current and 
switching signal for the purpose of adjusting the switching 
frequency to the optimum value to ensure ZVS and achieve 
maximum possible efficiency of PTs [4, 27]. Closed loop 
control strategies allowing ZVS operation of converter have 
been suggested in [27, 28, 29]. Self-oscillating controls have 
been used in PT-based converters [30, 31] besides extensively 
using them in class-D amplifiers [32, 33, 34] as well as in 
DC-DC converters [35]. Self-oscillating control loops are used 
for the first time in inductorless topology on top of soft 
switching PTs in [36]; this shows the concept of beneficial 
utilization of self-oscillating loops in burst-mode controls, 
which are also known as quantum-mode controls since they 
have fast response in tracking resonant frequency at startup.  

PT-based half-bridge drivers were used in [37] by utilizing 
burst mode control technology which has brought a 14% 
efficiency increase compared to the magnetic transformer-
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Fig. 8. Function block diagram of the bi-directional control method. 

based counterparts. Additionally, it has been demonstrated that 
41% loss reduction has been achieved plus considerable 
improvement in EMI in the frequency range of above 1MHz. 

Double feedback loops have been implemented in PT-based 
DC/DC drivers [21]. One loop using the phase control method 
for frequency adjusting to obtain ZVS and maximum gain / 
efficiency, and the other loop for output regulation. With this 
proposed method, output voltage can be reached quickly. The 
block diagram of the driver is shown in Fig.7. The topology 
applied uses an inductor. 

 An inductorless driver has been implemented in [38] by 
taking advantage of previous double-closed loops with the 
combination of burst mode control technology. 

 

E. Bi-directional control method 

Bi-directional PT-based power converters have been 
implemented for dielectric electro active polymers 
(DEAP) actuator as load [11, 39]. Phase shift controls were 
employed in order to avoid the use of two different PTs for 
achieving ZVS in both forward and reverse energy flow. 
Experiments substantiate the claim of bi-directional power 
converters with active phase shift controls and utilization of 
just one PT. Fig.8 shows a block diagram of bi-directional 
control method for the inductorless half-bridge topology [9, 
36, 39]. 

 

F. Comparison and examples 

Table I shows some examples of investigated topologies 
with claims of efficiency and output power level and Table II 
shows an overview comparison of the most popular PT-based 
converter topologies from prior art study. 

 

III. NEW CHALLANGES 

PTs use electromechanical coupling between the primary 
and secondary sides compared to conventional transformers 
that use electromagnetic coupling. This introduces PTs as 
applicable candidates for applications which have a high 
sensitivity to electromagnetic interference, e.g. magnetic 
resonance imaging (MRI) scanners. Therefore, PTs with non-
magnetic drivers may be able to work in high electromagnetic 
fields, e.g. 7 Tesla.  

This section proposes challenges for PT-based power 
drivers and possible solutions based on the state-of-the-art 
technology for addressing these challenges. 

 

A. Challenges for PT 

Challenges for the design of PTs are: 

• To increase power density: results in higher power 
transmission into the output of converter. It is limited by 
design and production factors. 

• To raise power transmission capability: leads to have 
simpler converters and control techniques by utilizing 
as few PT as possible.  

• To combine PTs, creating new techniques for increased 
power through output: e.g. a method of connecting PT-
based converters for the output voltage summation is 
proposed in [24]. Suggestion for combination methods 
depends on the application and it is important to avoid 
complexity in circuit design.   

 
TABLE I. Efficiency and power level examples 

 

Topology Push Pull Class E 
Half-bridge 

Inductorless 

Efficiency(%) 70 82.4 70.5 58.5 90 90 

Power[W] 2 3.6 3.6 3.6 32 6.5 

Reference [15] [19] [19] [37] [25] [28] 
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TABLE II. Comparison of most popular PT-based SMPS topologies 

 
Topology Application Control Efficiency Power level EMI 

Push-Pull 
Step-up 

Higher ratio than half-bridge [7] 

Simple 

Output current 
control [16] 

86% [16] Low 
Yes 

(Inductor) 

Class E 
Step-down 

Power application [7] 
PLL 

82.4% 

[19] 
High [17] 

Yes 

(Inductor) 

Class D/ 

 Half-bridge 

Step-down 

Power application [7] 

Phase shift 
Forward conduction 

mode [28] 

Burst mode [37] 

90% [28] 
Very high  

 [9, 19]  

No 

(Inductorless) 

 
 
 

B. Challenges in power stages 

Energy recovery through bi-directional current flow is 
critical for achieving high driver efficiency. As energy is 
directed back from the output side, the properties of the PT 
change dramatically, e.g. soft switching ability. Therefore 
achievable ZVS is required for both forward and reverse power 
flow directions. This imposes strict requirements on the driver 
design. The driver should allow for suitable control of the PT, 
and techniques for obtaining high efficiency and compact 
converter which these call for new solutions. If the load is 
capacitive piezoelectric actuator, bi-directional current flow 
requires advanced control schemes to allow precise control of 
the capacitive load. According to the prior art, half-bridge 
topology and the self-oscillating control loop based on the 
phase shift control method can be selected for resolving this 
challenge. Furthermore, in case of using several PTs for 
increasing the demanded output power, more complex control 
loops is required to combine converters together. 

 

IV. CONCLUSION 

In this paper, the principle of state-of-the-art PT-based SMPS 
has been studied with the aim of appraising important 
considerations in the design of converters. In the prior art 
section, major factors in PT design have been reviewed, as 
well as the soft switching capability of PTs which allows 
obtaining ZVS in the converter and a decrease of switching 
losses. The main focus of this paper has been researching 
power stage topologies and control methods used in prior art 
and their applications. Research in this paper shows inevitable 
implementation of one or more control loops for better 
performance of PTs and converters, and the correlation 
between efficiency, losses, temperature and frequency. 

Furthermore, new challenges for future research are 
introduced both in PT design and in power stages, with a 
guide to topology and control method selection.  

 

 

 

REFERENCES 

[1] V. Loyau, Y. Liu, F. Costa, “Analysis of the heat dissipated by losses in 
a piezoelectric transformer,” IEEE Transactions on Ultrasonics, 
Ferroelectrics, and Frequency Control, vol. 56, no. 8, 2009, pp. 1745-52. 

[2] G. Ivensky, I. Zafrany, and S. B. Yaakov, “Generic operational 
characteristics of piezoelectric transformers,” IEEE Transaction on 
Power Electronics, vol. 17, no. 6, 2002, pp. 1049-1057. 

[3] E. L. Horsley, M. P. Foster, and D. A. Stone. “State-of-the-art 
piezoelectric transformer technology.” In Power Electronics and 
Applications, 2007 European Conference on, IEEE, pp. 1-10, 2007. 

[4] J. M. Alonso, C. Ordiz, M. A. D. Costa, J. Ribas, and J. Cardesin, 
“High-voltage power supply for Ozone generation based on 
piezoelectric transformer”, IEEE Transaction On Industry Applications, 
vol. 45, no. 4, 2009, pp. 1513-1523. 

[5] T. Andersen, M. A. E. Andersen, O. C. Thomsen, M. P. Foster, and D. 
A. Stone, “Nonlinear effects in piezoelectric transformers explained by 
thermal-electric model based on a hypothesis of self-heating,” IECON , 
38th Annual Conference on IEEE Industrial Electronics Society, 2012, 
pp. 596-601.  

[6] T. Andersen, M. A. E. Andersen, and O.C. Thomsen, ”Simulation of 
piezoelectric transformers with COMSOL”, COMSOL conference, 
2012. 

[7] A. Carazo, “50 years of piezoelectric transformers. Trends In the 
technology,” Materials research society, 2004. 

[8] C. Lin, “Design and analysis of piezoelectric transformer converters,” 
Ph.D. dissetation, Virginia Polytechnic Institute and State University, 
1997. 

[9] M. S. Rødaard, “Piezoelectric transformer based power converters; 
design and control,” Ph.D. thesis, Technical University of Denmark, 
2012. 

[10] Anita M. Flynn, Seth R. Sandres, “Fundamental limits on energy 
transfer and circuit considerations for piezoelectric transformers”, IEEE 
Transactions on Power Electronics, vol. 17, no.1, 2002, pp. 8-14. 

[11]  T. Andersen, “Piezoelectric transformer based power supply for 
dielectric electro active polymers,” PhD Thesis, 2012, Technical 
Univesity of Denmark. 

[12] S. Bronstein, S. Ben-Yaakov, “Design considerations for achieving ZVS 
in a half bridge inverter that drives a piezoelectric transformer with no 
series inductor,” Power Electronics Specialists Conference, PESC 02, 
vol. 2, 2002, pp. 585-590. 

[13] E. Horsley, N. Nguyen-Quang, M. P. Foster, and D. A. Stone, 
“Achieving ZVS in inductor-less half-bridge piezoelectric transformer 
based resonant converters,” 2009 International Conference on Power 
Electronics and Drive Systems, PEDS 2009, pp. 446-451. 

[14] M. S. Rødgaard, T. Andersen, and M. A. E. Andersen, “Empiric analysis 
of zero voltage switching in piezoelectric transformer based resonant 
converters,” Power Electronics Machines and Drivers Conference, 
PEMD 2012, pp. 1-6. 

 

5077



 
 

 

[15] H. Schwarzmann, T. Erlbacher, A. J. Bauer, H. Ryssel, and L. Frey, 
“Amplitude modulated resonant push-pull driver for piezoelectric 
transformers in switching power applications,” 7th International 
Conference on Integrated Power Electronics Systems, CIPS, 2012, pp. 1-
5. 

[16] M. Shoyama, K. Horikoshi, T. Ninomiya, T. Zaitsu, “Sready-state 
characteristics of the push-pull piezoelectric inverter,” Power Electrnics 
Specialists Conference, PESC, 28th Annual IEEE, vol. 1, 1997, pp.715-
721. 

[17] F. E. Bisogno, S. Nittayarumphong, M. Radecker, A. V. Carazo, and R. 
N. do Prado, “A line power-supply for LED lighting using piezoelectric 
transformers in class-E topology,” proceeding of: Power Electronics and 
Motion Control Conference, IPEMC 2006, vol. 2, 2006. 

[18] C. H. Lin, and Y. C. Chen, “Design of class-E backlight module 
incorporating piezoelectric transformer,” IEEE International Symposium 
on Circuits and Systems, ISCAS, vol. 4, 2005, pp. 3655-3659. 

[19] F. E. Bisogno, M. Radecker, A. Knoll, A.V. Carazo, A. 
Riedlhammer, G. Deboy, N. Norvez, and J.M. Pacas, “Comparison of 
resonant topologies for step-down applications using piezoelectric 
transformers,” Power Electronics Specialists Conference, PESC 04, 
IEEE 35th Annual, vol. 4, 2004, pp. 2662-2667.  

[20] Choi, Sungjin, Taeil Kim, and Bo H. Cho. "Design of half-bridge piezo-
transformer converters in the AC adapter applications." In Twentieth 
Annual IEEE Applied Power Electronics Conference and Exposition, 
2005, pp. 244-248. 

[21] J. Diaz, J. A. Martin-Ramos, M. J. Prieto, and F. Nuno, “A double-
closed loop DC/DC converter based on a piezoelectric transformer,”, 
Applied Power Electronics Conference and Exposition, APEC '04. 
Nineteenth Annual IEEE, vol. 3, 2004, pp. 1423-1428. 

[22] M. Sanz, P. Alou, R. Prieto, J. Cobos, and J. Uceda, “Comparison of 
different alternatives to drive piezoelectric transformers,” in Applied 
Power Electronics Conference and Exposition, APEC 2002. Seventeenth 
Annual IEEE, vol. 1, 2002, pp. 358-364. 

[23] E. L. Horsley, A. V. Carazo, N. N. Quang, M. P. Foster, and D. A. 
Stone, “Analysis of inductorless zero-voltage-switching piezoelectric 
transformer-based converters,” IEEE Transactions on Power Electronics, 
vol. 27, no. 5, 2012, pp. 2471-2483. 

[24] Y. Yuanmao, K. W. Eric Cheng, and Kai Ding, “A novel method for 
connecting multiple piezoelectric transformer converters and its circuit 
application,” IEEE Transaction on Power Electronics, vol. 27, no.4, 
2012, pp. 1926-1935. 

[25] R. L. Lin, F. C. Lee, E. M. Baker, and D. Y. Chen, “Inductor-less 
piezoelectric transformer electronic ballast for linear fluorescent lamp,” 
Applied Power Electronics Conference, APEC 2001, Sixteenth Annual 
IEEE, vol. 2, 2001, pp. 664-669. 

[26] X. Chu, J. Wu, Z. Xu, and L. Li, “Experiment research on multilayer 
piezoelectric transformer,” Symposium on Piezoelectricity, Acoustic 
Waves, and Device Applications,SPAWDA, 2008, pp. 524-527. 

[27] J. M. Alonso, C. Ordiz, M. A. Dalla, “A novel control method for 
piezoelectric-transformer based power supplies assuring zero-voltage-
switching Operation,” IEEE Transaction on Industrial Electronics, vol. 

55, no. 3, 2008, pp. 1085-1089. 

[28] M. S. Rødgaard, M. Weirich, M. A. E. Andersen, “Forward conduction 
mode controlled piezoelectric transformer-based PFC LED drive,” IEEE 

Transactions on Power Electronics, vol. 28, no. 10, 2013, pp. 4841-
4849.  

[29] S. Nakashima, T. Ninomiya, H. Ogasawara, H. Kakehashi, 
“Piezoelectric-transformer inverter with maximum-efficiency tracking 
and dimming control,” Applied Power electronics Conference and 

Exposition, APEC 2002, Seveteenth Annual IEEE, vol.2, pp. 918-923, 

2002. 

[30] J. Díaz, F. Nuño, M. J. prieto, J. A. Martin-Ramos, “Closing a second 
feedback loop in a DC-DC converter based on a piezoelectric 
transformer,” IEEE Transaction on Power Electronics, vol. 22, no. 6, 
2007, pp. 2195-2201. 

[31] J. Díaz, F. Nuño, M. prieto,, “Achieving ZVS in inductor-less half-
bridge piezoelectric transformer based resonant converters,” 2009 
International Conference on Power Electronics and Drive Systems, 
PEDS 2009, pp. 446-451. 

[32] M. A. E. Andersen, “Efficient audio power amplification-challenges,” 
International Conference Audio Engineering Society, AES 2005, pp. 1-
10. 

[33] M. Høyerby and M. A. E. Andersen, “Carrier distortion in hysteretic 
self-oscillating class-D audio power amplifers: Analysis and 
optimization,” IEEE Transactions on Power Electronics, vol. 24, no. 3, 
2009, pp. 714-729. 

[34] B. Putzeys, “Simple self-oscillating class-D amplifier with full output 
filter control," in 118th AES Convention, Barcelona, Spain, 2005. 

[35] Y. Wen, O. Trescases, “Analysis and comparision of frequency 
stabilization loops in self-oscillating current mode DC-DC converters,” 
IEEE Transaction on Power Electronics, vol. 28, no. 10, 2013, pp. 4753-
4766. 

[36]  M. S. Rødgaard, M. A. E. Andersen, T. Andersen, and K. Meyer, “Self-
oscillating loop based piezoelectric power converter,” 2011, US Patent 
61/638,883 and 2013, WIPO, WO2013083678-A2. 

[37] T. Andersen, M. S. Rødgaard, M. A. E. Andersen, O. C. Thomsen, K. P. 
Lorenzent, C. Mangeot, and A. R. Steenstrup, “Integrated high voltage 
power supply utilizing burst mode control and its performance impact on 
dielectric electro active ploymer actuators,” 13th International 
Conference on New Actuators, 2012. 

[38] T. Andersen, M. S. Rødgaard, O. C. Thomsen, and M. A. E. Andersen, 
“Low voltage driven electro active polymer actuator with integrated 
piezoelectric transformer based driver,”, Electroactive Polymer 
Actuators and Devices (EAPAD), vol. 7976, 2011, pp. 7976-95. 

[39] M. A. E. Andersen, K. Meyer, M. Rødgaard, and T. Andersen, 
“Piezoelectric power converter with bi-directional power transfer,” 
2011, US Patent 61/567,924 and 2013, WIPO, WO2013083679-A1. 

5078

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

