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Summary  

Ceramic multi-layered composites are being used as components in various technologies ranging 

from electronics to energy conversion devices. Thus, different architectures of multi-layers 

involving ceramic materials are often required to be produced by powder processing, followed by 

sintering (firing). However, unintended features like shape instabilities of samples, cracks or 

delamination of layers may arise during sintering of multi-layer composites. Among these defects, 

macroscopic shape distortions in the samples can cause problems in the assembly or performance 

of the final component, which could result in product rejection.   

It is generally recognized that macroscopic shape distortion is linked to the sintering kinetics 

mismatch between the layer materials making the multi-layer during the co-firing process. 

However, there is still a need for better understanding of the deformational mechanisms with the 

application of flexible modeling techniques taking into account the various factors during co-firing. 

In addition, realistic microstructures in time/temperature need to be considered while defining the 

deformational behaviors of the sintering body in order to improve the predictive capabilities of the 

existing constitutive models. 

In this context, a simulation method or framework has been developed, which involves the use of 

sintering experiments, analytical and numerical methods. In addition to the intrinsic material 

parameters (shrinkage and viscous behaviors), the effect of extrinsic factors such as gravity, friction 

and geometry of the sample on the evolution of shape of multi-layers have been investigated. 

Furthermore, a new type of modeling procedure with a potential to introduce the realistic 

microstructure of a porous body, while defining the intrinsic material parameters, has been 

developed.  

The linear version of the Skorohod Olevsky Viscous Sintering (SOVS) model has been used in the 

developed simulation models. A combination of free shrinkage rate measurements from optical 

dilatometry and analytical models has been used to determine the necessary input parameters for 

simulation of sintering of multi-layer components. Validation of the input parameters has been 

made indirectly by comparing model predictions for camber evolution during sintering of a bi-layer 

with measurements thereof. Moreover, a 'master sintering curve'-type model of bi-layer sintering 
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has been derived. This model excels in requiring a single optical dilatometry run to collect all the 

necessary input parameters for modeling of the sintering of the bi-layers.  

The determined input parameters have also been used in a finite element model, which is 

developed based on the continuum theory of sintering, to model the camber development during 

co-firing. The effect of extrinsic factors (e.g. gravity, thickness ratio and friction) on the shape 

evolution of bi-layers during co-firing has been studied using the developed model and 

experiments. Furthermore, a new analytical model describing stresses during sintering of tubular 

bi-layer structures has been developed by using the direct correspondence between elasticity and 

linear viscous problems. The finite element model developed in this study and sintering 

experiments of tubular bi-layer sample have been used to verify and validate the developed 

analytical model for tubular bi-layered structures. 

A multi-scale model of shape distortions during co-firing has also been developed by coupling a 

meso-scale model of sintering based on kinetic Monte Carlo (kMC) methods and a macro-scale 

continuum model. In this case, computational homogenization theories were used to extract the 

viscous parameters from a representative volume element (RVE) of the porous body. The RVE was 

based on the microstructure obtained from the kMC model.     

Results from the developed analytical as well as numerical models agree well with experimental 

measurements of densification and camber evolutions during co-firing of bi-layers. Optimizations of 

the co-firing process by controlling the initial geometry of the sample and structural characteristics 

are also suggested. Furthermore, the multi-scale model has also shown the expected behavior of 

shape distortions for different bi-layers systems involving layers with the same and different 

sinterabilities.  

Based on the experimental and simulation results, the following conclusions are reached: during 

sintering of planar multi-layers, understanding of the effect of gravity on the camber evolution can 

be used in optimizing the co-sintering process so as to help achieve defect free multi-layer 

components. The initial thickness ratio between the layers making the multi-layer has also 

significant effect on the extent of camber evolution depending on the material systems. During 

sintering of tubular bi-layer structures, tangential (hoop) stresses are very large compared to radial 

stresses. The maximum value of hoop stress, which can generate processing defects such as cracks 

and coating peel-offs, occurs at the beginning of the sintering cycle.  
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Unlike most of the models defining material properties based on porosity and grain size only, the 

multi-scale model proposed in this study has no limitation as to the number of internal parameters 

to define shrinkage kinetics as well as viscous properties. This feature of the model makes it to be a 

promising approach for extending the continuum theory of sintering. 

 

Key words: Sintering; Constrained sintering; Multi-layer ceramic composites; Modeling; Multi-scale 

modeling 
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Resumé  

Keramisk multi-lags kompositter er i betragtning i udviklingen af komponenter, der kan bruges i 

forskellige teknologier, lige fra elektronik til energi-generatorer. Forskellige arkitekturer af systemer 

med flere af disse keramiske lag produceres ved hjælp af en sintringsprocess. Defekter såsom 

formændringer, revner og delaminering af lag kan opstå i behandlingen af disse 

multilagskomponenter. Forarbejdningsdefekter kan resultere i problemer både ved montering eller 

omkring ydeevnen af den endelige komponent, hvilket i sidste ende kan medføre at produktet 

kasseres. Blandt disse defekter undersøges den makroskopisk forminstabilitet under sintring af 

flerlagstrukturer i dette studie. 

Det er almindeligt anerkendt, at formdefekter, altså ændring i den geometriske form af sintrede 

emner, er knyttet til et misforhold i sintringskinetik imellem de forskellige materialer i et givent 

multilagsystem, under sintringsprocessen (co-sintring). Der er stadig et behov for en bedre 

forståelse af deformationsmekanismerne ved anvendelse af fleksible modelberegninger under 

hensyntagen til de forskellige faktorer i løbet af co-sintring. Desuden er de eksisterende numeriske 

modeller begrænsede og skal forbedres yderligere at forbedre deres evne til at forudsige 

sintringsprocessen. 

I denne sammenhæng er en simuleringsmetode blevet udviklet, som indebærer en kombination af 

eksperimenter, analytiske og numeriske metoder. Ud over de intrinsiske materialeparametre 

(sammentrækningskinetik og viskositet), er indvirkningen af ydre faktorer såsom tyngdekraft, 

friktion og prøvegeometri på udviklingen af en multilagprøves form blevet undersøgt. Endvidere er 

en ny type modelleringsprocedure blevet udviklet. Denne har potentiale til at inkludere 

mikrostruktureren af et porøst legeme i sintringsmodellen og hermed inkludere 

materialeparameters som i øjeblikket ikke betragtes i de eksisterende modeller. 

Den lineære version af Skorohod Olevsky Viskøs Sintrings model (SOVS) er blevet anvendt til de 

udviklede sintringsmodeller. En kombination af målinger af sammentrækningsratens med optisk 

dilatometri og analytiske modeller er  anvendt til at bestemme de nødvendige inputparametre til 

simulering af sintring af multilagskomponenter. Validering af disse input parametre er blevet gjort 

indirekte ved at sammenligne modelforudsigelser af bi-lagssystemers krumningsudvikling under 

sintring med eksperimentielle målinger heraf. Derudover er en 'master sintring kurve' type model 
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blevet udledt til beskrivelse af bilags sintring. Denne model udmærker sig ved at blot kræve et 

enkelt dilatometri eksperiment for at fastlægge alle de nødvendige input til simulering af sintring af 

bi-laget. 

De fundne inputparametre er også blevet anvendt i en finite element model baseret på 

kontinuumsteorien for sintring til at modellere udviklingen i krumning under sintring af en 

multilagskomponent. Effekten af ydre faktorer (eksempelvis tyngdekraft, forholdet af tykkelse 

mellem de individuelle keramiske lag, samt friktion) på den tidslige udvikling af en bi-lags 

prøveform under co-sintring er blevet undersøgt ved hjælp af den udviklede model samt 

eksperimenter. Desuden er det elastiske lineære viskoelastiske korrespondensprincip blevet 

anvendt til at udvikle en analytisk model, der beskriver spændinger under sintring af rørformede 

dobbeltlagskomponenter. En finite element model udviklet i dette PhD studie samt  tilhørende 

eksperimenter med rørformede bi-lagskomponenter er blevet brugt til at verificere og validere den 

udviklede analytiske model. 

En multi-skala model af formændringer under co-sintring er også blevet udviklet ved at koble en 

meso-skala sintringsmodel baseret på kinetisk Monte Carlo (kMC) metoder og en makro-skala 

kontinuum model. Forskellige numeriske homogeniseringsteorier er blevet anvendt til at bestemme 

de viskøse parametre fra et repræsentativt volumen element (RVE) af det porøse legeme. RVE’et er 

baseret på simularede mikrostruktur  i kMC modellen. 

Resultaterne fra de udviklede analytiske såvel som numeriske modeller stemmer godt overens med 

eksperimentelle målinger af den tidslige densifikations- og krumningsudvikling under co-sintring. 

Optimering af co-sintringen ved at kontrollere prøvens oprindelige geometri og strukturelle 

karakteristika er også foreslået. Tilsvarende har multi-skala modellen også fremvist de forventede 

formændringer i forskellige bi-lagssystemer bestående af lag med enten den samme og forskellig 

sintringsevne. 

Baseret på både de eksperimentelle-og simuleringsresultater er følgende konklusioner draget: 

under sintring af plane multi-lag kan forståelsen af effekten af tyngdekraften på 

krumningsudviklingen bruges til optimering af co-sintringsproces, således at defekt-fri 

multilagskomponenter kan fremstilles. Forholdet mellem tykkelsen af de individuelle lag i en prøve 

kan også betydeligt påvirke udviklingen af   krumnings af en prøve. Under sintring af rørformede bi-

lagsstrukturer er tangentielle spændinger er meget større i forhold til radiale spændinger. Den 
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maksimale værdi af de tangentielle spændinger, som kan generere procesdefekter såsom revner og 

delaminering, opstår ved begyndelsen af sintringen. 

I modsætning til de fleste eksisterende modeller, der definerer materialeegenskaber baseret kun på 

porøsitet og kornstørrelse, så har den foreslåede multi-skala model ingen begrænsning i antallet af 

interne parametre til at definere densifikationskinetik samt viskøse egenskaber. Dette gør denne 

tilgang til en lovende mulighed for at udvide kontinuumsteorien for sintring. 

Nøgleord: Sintring; Fastholdt sintring; Flerlags keramiske kompositter; Modellering; Multi-skala 

modellering 
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1. Introduction 

 

This section includes the introduction to the thesis starting with discussions about functionally 

graded ceramic multi-layered materials. A general introduction to sintering, which is one of the 

processing techniques in the manufacturing of multi-layered ceramics, is presented in Sections 1.2. 

Problems during sintering of multi-layered structures and the need for better and flexible 

simulation methods are discussed in Section 1.3. Furthermore, the objectives of the thesis, 

methodologies used throughout the study and organization of the thesis report are summarized in 

Sections 1.4, 1.5 and 1.6, respectively.  

 

1.1. Functionally graded ceramic multi-layers 

Since the first introduction of functionally graded materials (FGMs) in 1984 as a means of preparing 

thermal barrier materials, about 200 possibilities of utilizing the concept have been proposed.1 

Functionally graded materials are characterized by changing properties across the volume of the 

component due to spatial variation of composition, morphology, or microstructure of the 

material.1, 2 The unique feature of FGMs is the ability to tailor a material for specific application. The 

design of FGMs can have a continuous or discrete variation of phases with the intention of taking 

advantage of the desirable features of each of the constituent phases.3 Multi-layers made from 

layers with different phases can be categorized as discretely graded functional materials.    

It is also the case that the performance of a ceramic component can be increased markedly if it is 

possible to vary the relevant properties (e.g. electrical, electrochemical, or magnetic) in a controlled 

manner along the extent of the component. Ceramic composites, in which layers of different 

composition and/or microstructure are combined in a certain architecture to achieve varying 

functionality across the component, are called functionally graded ceramic multi-layers. 

Functionally graded ceramic multi-layers find use in many different applications requiring materials 

with spatial variation of properties. These include, e.g. solid oxide fuel and/or electrolysis cells 

(SOFCs or SOECs), thermal barrier coatings (TBCs), piezoactuators, capacitors, gas membranes, and 
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filters.4–14 Advances in ceramic forming have enabled low cost shaping techniques such as tape 

casting and extrusion to be used in some of the most challenging technologies. These advances  

allow  the  design  of  complex  components  adapted  to  desired  specific  properties  and 

applications.  

Different types of multi-layer architectures are being considered in the development of various 

technologies. Examples of these include planar, adjacently graded and tubular architectures for 

solid oxide fuel cell, magnetic refrigeration and gas membrane technologies, respectively.9, 15, 16 

Figure 1 shows schematics of the different types of multi-layer architectures. After shaping the 

multi-layer composite with the required architecture, it is often the case to fire the materials with 

the intention of increasing the density, mechanical strength, ionic conductivity, etc of the structure. 

Hence, simultaneous firing of the materials in the multi-layer (co-firing or co-sintering) is usually 

one of the important steps in the manufacturing of functionally graded composites. 

 

 

Planar architecture 

 

 

Adjacently graded architecture  

 

 

Tubular architecture  

Figure 1: Schematics of different types of multi-layer architectures [OPTIMAC project17] 

 

1.2. Sintering of ceramics    

This section, which is an overview to sintering in general, is based on classical sintering textbook 

and handbook of advanced ceramics after Rahaman18 and Somiya et al.19  

Fabrication processes of ceramic materials often involve a heat treatment step in which a powder 

compact, formed into the required shape (often referred to as green body), is converted into a 

dense solid. This process is known as sintering (firing). There are four types of sintering depending 

on the composition of material being fired and on the extent to which second phases are involved 

during the heat treatment: 
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I. Solid state sintering: the green body involves pure polycrystalline materials and is heated to 

a temperature that is typically between 50 – 90 % of the melting point with no liquid 

present in the powder compact. Atomic diffusion in the solid state produces joining of 

particles and hence densification and coarsening.  

II. Liquid state sintering: the green body involves a small amount of liquid typically less than a 

few volume percent of the original solid mixture at the sintering temperature. The liquid 

phase is insufficient to fill the pore space but provides a high diffusivity path for the 

transport of matter into the pores improving densification.   

III. Vitrification: whenever the green body contains a relatively larger volume of liquid (more 

than 25 % of the original solid volume), which fills up the pore space, densification is driven 

by crystallization or vitrification. This type of sintering is common in clay based ceramics, 

such as porcelains.    

IV. Viscous sintering: sintering process in amorphous bodies, like consolidated glass particles, 

occur by viscous flow of materials, which involves deformation of particles at the sintering 

temperature.  

1.2.1. Driving force for sintering 

Sintering is accompanied by lowering of free energy of the system, which can be achieved by 1) 

reduction in the curvature of the particle surface (i.e. lowers the surface free energy), 2) externally 

applied pressure or 3) chemical reaction.  

In the absence of externally applied pressure and chemical reaction, the inherent tendency of 

materials to lower their free energy (by reducing the curvature of particle surfaces) drives sintering 

at elevated temperatures. To clarify this concept, let us consider a simple example involving a mole 

of powder consisting of spherical particles with a radius, a . The total number of particles can be 

given by: 

3 3

33

4 4
mVM

N
a a  

                                                                     (1) 

Here,  , is the density of the particles, which are assumed to contain no internal porosity, M , is 

the molecular weight, and mV is the molar volume. The surface area of the system of particles can 

be given by:  
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24 3A mS a N V a                                                                (2) 

If s is the specific surface energy per unit area of the particles, then the total surface energy 

associated with the system of particles is: 

3s s mE V a                                                                      (3)   

sE represents the  decrease in surface energy of the system of particles, if a fully dense body were 

to be formed from the mole of particles, and provides motivation for sintering. Of course in the 

case of polycrystalline materials, a decrease in free energy associated with surfaces of particles 

increases the energy associated with grain boundaries due to formation of grains. This effect drives 

coarsening of particles (grain growth), through which the overall free energy of the system 

continues to lower. Therefore, the process of sintering brings two major changes to the sintering 

body: 1) volumetric densification of the porous compact or elimination of pores and 2) coarsening 

of powder particles or grain growth. Both changes help reduce the total free energy of the porous 

body and occur simultaneously during sintering. Application of external compressive pressure on 

the sintering body assists the internal driving force for sintering.  

1.2.2. Mechanisms of sintering  

Sintering of polycrystalline materials occurs by transport of matter along definite paths (lattice, 

grain boundary, and surface) that define the mechanisms of sintering. As schematized in Figure 2, 

there are six typical mechanisms of matter transport during sintering of polycrystalline materials. 

All mechanisms lead to bonding and neck growth between particles. They can also be generally 

classified as densifying and nondensifying mechanisms.  

a. Nondensifying mechanisms include surface diffusion, volume (lattice) diffusion from the 

particle surfaces to the neck, and vapor transport (mechanisms 1, 2, and 3), which lead to 

neck coarsening without densification.  

b. Densifying mechanisms include grain boundary diffusion and lattice diffusion from the grain 

boundary to the pore (mechanisms 4, 5 and 6), which permits neck growth, densification 

and plastic flow by dislocation motion. 
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Figure 2: Schematic represenation of sintering mechanisms in polycrystalline materials [after 

Rahaman18] 

1.2.3. Stages of sintering  

For the sake of theoretical analysis, sintering processes are usually subdivided into three sequential 

stages referred to as: the initial, intermediate, and final stages. Figure 3 shows the schematic 

representation of the three stages of sintering with the help of three particles.   

1. The initial stage: is dominated by rapid inter-particle neck growth by diffusion, vapor 

transport, plastic flow, or viscous flow, see Figure 3. Large initial differences in surface 

curvature characterize this stage, and densification accompanies neck growth for the 

densifying mechanisms.  

2. The intermediate stage: this stage begins when pores have reached their equilibrium 

shapes as governed by the surface and interfacial tensions. Densification is assumed to 

result from pores simply shrinking to reduce their cross section. The intermediate stage 

normally covers the major part of the sintering process, and it comes to an end when the 

density of the porous body reaches close to 90 % of the fully dense body. 

3. The final stage: the final stage begins when the pores pinch off and become isolated at the 

grain corners. This stage is mainly characterized by slower densification and rapid grain 

growth or coarsening.   
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Figure 3: Schematic representation of the three stages of sintering [after Tanaka et al.20] 

1.2.4. Characterization of sintering  

Different measurements can be used to characterize densification and microstructural evolutions of 

a porous compact during sintering. Perhaps, the most widely used characterizations include 

measurements of the density (or shrinkage) and grain size. Some of the techniques used to 

measure density and/or linear shrinkage are described in Section 2. Sintering of a powder compact 

is often represented by the evolution of the relative density,  , or linear shrinkage, , as a function 

of time, t , and/or temperature, T . The relative density is defined by the bulk density of the porous 

compact divided by the theoretical density of the solid material. For isotropic densification with no 

significant mass change, the linear shrinkage of a sintering body can be defined by: 

0

L

L



                                                                                   (4) 

 where oL is the initial length, L is the length at a given time or temperature and oL L L   . True 

strain measures can also be used if the sintering body involves large deformations. The relationship 

between the evolving relative density and shrinkage for a porous body with a green density of, o , 

is given by: 

3(1 )
o

oL L


 


                                                                      (5)  

The fraction of voids or porosity, , can be determined as: 1   . It is often necessary to 

determine the volumetric shrinkage rate or densification rate, e , in terms of the time derivative of 

the relative density as: 

    where  =
d

e
dt

 



                                                                 (6) 
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1.3. Sintering of multi-layer structures   

The co-firing or co-sintering process is often challenging mainly due to the different densification 

rate between the constituent layers in the multi-layer systems. For instance, during sintering of bi-

layers consisting of tapes with different sintering behavior, transient stresses are generated that 

hinder or speed up the densification in each layer. Such kind of stress could create processing 

defects like cracks or delamination at the interface between the layers. If the bi-layer structure is 

strong enough to remain enact, it relaxes the transient stresses generated inside the structure by 

warping or developing camber.  

The buildup of stress and camber during co-firing of a bi-layer having layers with different 

densification rates is illustrated schematically in Figure 4. The relative difference in the shrinkage 

kinetics, f , between Layer-1 and 2 generates internal forces, N , and bending moments, M , 

across the thickness of the structure. These in turn causes a viscous deformation involving 

distortion of the sample with a camber, u .  In this study, macroscopic shape distortion during co-

firing refers to the camber or warpage evolution of the planar multi-layer structure. 

 

Figure 4: Schematics showing the free shrinkage, f , and constraint related, cr , strain rates with 

shape distortion, u , and stress,  , distributions across the thickness of the bi-layer structure. 
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Developing a methodology to control and optimize the internal stresses during co-firing is crucial in 

the process of producing defect free multi-layers systems. In this regard, the development of 

modeling or simulation methods for co-firing of multi-layer structures will be important for critical 

understanding of the densification and deformation mechanisms. While developing a methodology 

to predict macrostructural shape distortions and stresses during co-firing, it is important to critically 

understand:   

a. The deformational behaviors of sintering bodies (shrinkage rate and viscous mechanical 

behaviors) and  

b. The extrinsic factors affecting the evolution of shape during sintering of multi-layer samples  

The shrinkage and viscous behaviors of the porous bodies can be considered as the intrinsic 

material properties during sintering. For a given heating schedule, these parameters can be tailored 

mainly during the preparation of the green bodies. During co-firing, the differential shrinkage rate 

and relative viscosity between the layers making the multi-layer play a key role in controlling the 

extent of stress generation and hence shape distortions.  

Measurement of the shrinkage as well as viscous behaviors during free sintering and high 

temperature creep experiments respectively are often used to collect the necessary input 

parameters for simulation of stress or camber during sintering of multi-layers. Nowadays, 

measurement of free shrinkage can be performed reliably with advanced in-situ measuring 

techniques such as non-contact optical dilatometers. On the other hand, the use of experimentally 

measured effective viscosities for modeling stresses in multi-layers is based on the assumption of 

similar microstructural evolution during co-firing and creep experiments. However, this might not 

be true as the porous body in the multi-layer structure is exposed to a different state of stress 

unlike creep experiments, which are mostly performed under uniaxial loads. I.e. the state of stress 

could affect the microstructural evolution and hence the effective viscosity of the sintering body at 

a given temperature and time. To avoid such assumptions, the viscosity of the fully dense body of 

the layers making the multi-layer can be first determined using a combination of models and 

experiments. Then the effective viscosity for modeling the multi-layer sample can be estimated 

from the fully dense body viscosity and a function for the microstructural evolution (e.g. density) 

during the co-firing process.    

Extrinsic factors are those related to processing parameters like heating rate or other factors during 

processing such as geometry of the sample, gravity, friction or boundary conditions. These factors 
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can be features from the design of the multi-layer component, like the geometry, or they can be 

controlled during the co-firing process. Extrinsic factors also affect the camber evolutions of the 

multi-layers and hence they are also required to be understood in the processing of multi-layer 

composites.  

Furthermore, the simulation method to predict stresses or shape instabilities needs to be flexible 

and robust enough to model sintering of multi-layers of any geometry under different conditions. 

This can be achieved by using numerical techniques such as the finite element methods (FEM). 

Some of the advantages of developing a flexible method to predict stresses/shape distortions 

during sintering of multi-layers are, for example: 

a. It is possible to investigate the effect of the extrinsic factors such as geometry, gravity, 

friction, etc on the overall shape distortion in multi-layers  

b. It is possible to model stress developments during constrained sintering of multi-layers with 

complex geometries such as tubular multi-layer systems.  

 

1.4. Objectives of the thesis  

The purpose of this study is to develop a simulation method that can predict the densification, 

macrostructural shape distortions and stresses during sintering of multi-layer composite structures. 

The simulation method is developed with the aim of making it flexible to model sintering of multi-

layers of any geometry under different conditions. It is also intended to validate the simulation 

results with the help of sintering experiments involving planar and tubular multi-layers.   

In addition to development of a simulation method, this study aims to investigate the effect of 

extrinsic factors such as gravity, friction and geometrical parameters of planar multi-layers on the 

evolution of shape distortion during co-firing process. 

The type of sintering process, which is driven by chemical reaction, is out of the scope of the 

present study. Furthermore, the possible anisotropies of the sintering parameters and of the pore-

grain structure are not considered in the development of the simulation models.   
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1.5. Methodology    

To achieve the above goals, experiments, analytical models and numerical techniques based on 

finite element methods (FEM) are used with the following main tasks in chronological order:  

I. Using a combination of analytical models and a single dilatometry run, an alternative way 

to creep experiment is proposed to obtain material parameters defining the viscosity of 

fully dense bodies, which can be used to find the effective viscosities during co-sintering.  

II. The effective viscosities, which are updated based on the densification of each layer during 

co-sintering, are validated indirectly by comparing model predictions for camber evolution 

of a bi-layer (using the estimated effective viscosities) with experimental measurements.      

III. Development of a numerical model using finite element method followed by verifications 

and validations against analytical models and experiments.  

IV. Investigations of the effect of extrinsic factors (gravity, geometrical parameters and 

friction) on the evolution of shape distortion during co-firing    

In this work, a combination of free sintering experiments and analytical models are first used to 

estimate the viscosity of fully dense bodies for each layer making the bi-layer. Then the effective 

viscosity of each layer in a bi-layer model is estimated from the viscosity of fully dense body and a 

function accounting the effect of microstructural evolution during co-sintering. To validate the 

effective viscosities, prediction of an analytical model for camber development is compared with 

experimental measurements during sintering of a bi-layer sample. Such an approach can also 

reduce the need for separate sets of creep experiments to measure viscosity. After validation, the 

shrinkage and viscous parameters become inputs for a simulation tool that is developed using finite 

element method to predict shape distortions during sintering of multi-layers in different conditions.  

This study also presents a new methodology allowing the direct application of sintering models for 

the description of co-sintering of bi-layered structures. The methodology is based on normalized 

form of equations providing 'master sintering curve'-type solutions which are capable of describing 

the generic shrinkage and distortion kinetics for various material systems.  Such an approach 

renders the possibility of the direct assessment of the co-firing process outcomes and of the impact 

of process controlling parameters. The application of the derived 'master sintering curve'-type 
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solutions to model the kinetics of shrinkage and distortion in an experiment involving sintering a bi-

layer made from tapes of porous and dense cerium gadolinium oxide is also presented. 

In addition to planar multi-layer systems, this work presents a new analytical model to describe 

stresses and densifications during constrained sintering of tubular multi-layers. Verification and 

validation of the analytical model is also made using the finite element model and sintering 

experiment of tubular bi-layer samples.   

Finally, this study suggests an entirely different approach to extract the important input parameters 

for modeling stresses and camber development during sintering of multi-layer systems. The 

approach is based on multi-scale modeling techniques, where the continuum theory of sintering is 

combined with meso-scale model of solid state sintering based on kinetic Monte Carlo (kMC) 

methods. The kMC methods are shown to be robust in predicting the densification, grain growth as 

well as microstructural evolutions of a given powder compact during sintering.21, 22 By using the 

shrinkage rate and the microstructure predicted by a kMC model, a new approach for modeling 

stresses/camber evolutions during sintering of multi-layers is presented.  

Figure 5 shows a schematic diagram depicting the different stages in the development of a method 

for predicting stresses and/or shape distortions during sintering of multi-layers. There are four main 

stages starting with collection of input parameters to validation and study of the effect of extrinsic 

factors on shape evolutions. The four stages have been made in two separate categories as shown 

to the left and right of the schematic diagram. The approach in the left side of the diagram 

describes the procedure used to develop analytical and finite element models whereas, that on the 

right side of the diagram shows the use of multi-scale modeling approaches. 

As to the computational tools used in this study, all the analytical and multi-scale models are 

developed and implemented using Matlab scripts. The numerical models are developed using 

commercial finite element software, COMSOL and ABAQUSTM, with the help of external user 

subroutines programmed using FORTRAN.   
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Figure 5: Schematic diagram showing summary of the different stages in the development of 

simulation method for shape instabilities during sintering of multi-layers. 

 

1.6. Organization of the thesis 

The thesis report is organized in the form of reviews focusing on previous studies of constitutive 

models for sintering bodies followed by highlighting the contributions made in the present study. 

Details of the procedures used while developing the models in the present study are found in the 

papers published through the course of this project. The papers appended to the thesis report, 



 

13 
 

which include the first six publications, are found in the Appendix. Therefore, the report is 

presented in the following sequence:  

 The second chapter provides a review of various constitutive models for deformational 

behaviors (shrinkage kinetics and viscous mechanical properties) of porous bodies during 

sintering. In addition, review of the common experimental techniques for measuring the 

deformational behaviors of sintering bodies is presented. In this chapter, remarks on the 

various models are also included from the point of view of choosing the appropriate 

models for the development of a simulation tool for sintering of multi-layers.  

 The third chapter presents the continuum description or theory of sintering together with 

various material models. A brief discussion of two models that can be implemented in the 

finite element code to model sintering of realistic bodies is also presented.   

 In the fourth chapter, review of previous works on modeling densification and shape 

distortions during sintering of bi-layers is presented in comparison with what has been 

done in this study. Analytical as well as numerical models developed for co-firing of planar 

as well as tubular bi-layer structures are discussed in this section.  

 The fifth chapter highlights the progress that has been made in using multi-scale modeling 

procedures for sintering in general and co-sintering in particular. In this chapter, an entirely 

new approach for modeling shape distortions during sintering of multi-layers by combining 

a meso-scale model based on kinetic Monte Carlo (kMC) method and the continuum theory 

is presented.  

 Summaries of the papers published in the course of this study and appended to this thesis 

are presented in Chapter six.  

 Finally Chapter seven provides a summary of the overall study together with outlooks for 

future studies.  
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2. Deformational Behaviors of Sintering Bodies   

 

This section reviews the theoretical descriptions as well as experimental techniques used to 

measure the deformational behaviors of porous bodies during sintering (namely: shrinkage kinetics 

and viscous mechanical behavior). Theoretical approaches and models developed through time are 

discussed in brief. Finally remarks on the models from the point of view of modeling sintering of 

multi-layers are presented.  

 

2.1. Kinetics of shrinkage   

The free shrinkage kinetics is one of the important characteristics of a powder compact while 

studying sintering of multi-layers. This is because the development of stress during sintering of 

multi-layers is directly proportional to the difference in the shrinkage rates between the layers. The 

shrinkage kinetics of a free standing layer can be considered as the intrinsic material behavior 

during sintering. Generally the shrinkage kinetics in a porous body depends on: 

1. Temperature  

2. Material and microstructural features    

3. External load  

As described earlier, deformation in a sintering body occurs either by diffusion of matter as in the 

case of polycrystalline materials or through viscous flow as in the case of amorphous materials. 

Both types of matter transport are thermally activated. Furthermore, matter transport during 

sintering is a time dependent phenomenon and hence shrinkage kinetics is dependent on the 

temperature-time profile during the sintering process.  

Free shrinkage, as an inherent characteristic of materials for reduction in free energy (from the 

surface of pores and grain boundaries), depends on the surface energy per unit area of the specific 

material. In addition, it depends on a number of internal parameters of the sintering body such as 

shape and amount of porosity, particle size distribution, etc. Other internal parameters like dihedral 
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angle and the pore-grain orientation, in the case of polycrystalline materials, also affects the 

shrinkage behavior of a porous structure.  

Application of load on the sintering body affects the pore-grain structure of the powder compact, 

which in turn hinders or speeds up the shrinkage rate. This is because of the additional viscous or 

creep strain rate due to the load. The shrinkage kinetics with the application of external load is 

often called sinter forging, where the total shrinkage rate is the sum of the inherent free shrinkage 

and creep rate due to the load. Section 2.2 presents a review to the viscous deformation (viscous 

mechanical behaviors) of porous bodies during sintering. Directional application of loads produces 

anisotropic densification in the sintering body, which may affect final shape of the sample.  

2.1.1. Constitutive models 

Several models have been suggested by different people to describe the free shrinkage kinetics 

during sintering of a porous body. In the early 1950s, Herring described the shrinkage rate in terms 

of change in length scale, e.g. particle size, in a given powder compact.23 This model had enhanced 

the early understanding of the effect of particle size on the sintering rates. However, it requires 

comparison of systems with geometrically similar microstructural changes, which are often difficult 

to obtain in real powder systems.    

Later on, with the help of simplified or ideal geometries to represent the different stages during 

sintering of a powder compact, various analytical models have been developed.24–27 These 

analytical models commonly assume spherical particles in the initial powder compact having the 

same size, as suggested by Coble.26 The analysis is usually made on an isolated unit of powder 

system using appropriate boundary conditions and the rest of the powder compact is considered as 

a continuum structure consisting of the same microscopic properties. Most of the analytical models 

are developed to describe the shrinkage kinetics in the three stages of sintering commonly known 

as initial, intermediate and final stages.18 Table 1 show summary of the different analytical models 

for the free shrinkage kinetics of powder compacts during the three stages of sintering.  
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Table 1: Summary of analytical models defining densification kinetics 

Sintering 
stage 

Densification kinetics Constants Ref 

Mechanism H m n 

 

 

Initial 

[ 0.65]   

 

 

2 2

3
2

m m

m n

H t

G dt





 
   

 
 

Surface 

diffusion 

56 s s svD

kT

  
 

7 4 25 

Lattice 

diffusion 

20 l svD

kT

 
 

4 3 26 

Grain 
Boundary 
diffusion 

96 gb gb svD

kt

  
 

6 4 26 

 

Viscous flow 
3

2
sv


 

2 1 28 

 

 

Intermediate 

        :

[0.65 0.90]





 

3

10 l svD

G kT



 


  

Lattice 

diffusion 

- - - 27 

1 2 4

4

3 (1 )

gb gb svD

G kT

 

  

 
  

 
 

Grain 
Boundary 
diffusion 

- - - 27 

0

9 1

8
sv

G

 

  

 
   

 
 

 

Viscous flow 
- - - 29 

 

Final 

[ 0.90]   

112 l svD

kT

 




  

Lattice 

diffusion 

- - - 27 

2
04 gb svD C

kTr

 




  

Grain 
Boundary 
diffusion 

- - - 27 

Nomenclatures of variables 

 = relative density and d dt  ; xD = diffusion coefficients of the respective mechanisms (x = l, s, 

gb for lattice, surface and grain boundary respectively); s and gb = thickness of surface and grain 

boundary diffusion; sv = specific surface energy;  = atomic volume; k = Boltzmann constant; G = 

Grain size;  = the effective shear viscosity; 0 = viscosity of the dense body; 0C = initial vacancy 

concentration; r = cylindrical pore radius; T = temperature and t = time.    

 

One of the major limitations of analytical models is the microstructural simplifications made in the 

models, which makes the models inadequate quantitative representations for the sintering 

behavior of a powder compact. Furthermore, most of the analytical models do not allow 

consideration of the entire sintering process from the beginning to the end. In an effort to develop 

a unified model for the entire sintering cycle, Hansen et al.30 suggested a combined stage model 

using Herring’s concept of length scales, see Eq (7) with the same meanings of symbols as in Table 

1. Here,  , represents a dimensionless parameter relating microstructural parameter, e.g. G , with 

various geometrical features in the microstructure that can be defined in length scale. In spite of 
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their limitations, analytical models can provide good qualitative insights for understanding of the 

different sintering mechanisms and dependence of shrinkage on key process parameters.  

4 3

gb gb gbsv l l
D D

kT G G





  
  

 
                                                                  (7) 

Numerical simulations can provide better platforms to analyze sintering of powder compacts 

compared to the analytical models. In such cases, equations of matter transport are solved 

numerically. This allows for handling complex geometries. Depending on the level of interest, 

numerical models can be developed for studying sintering at atomic, particle as well as continuum 

levels as summarized by Pan.31 Examples could be of molecular dynamics simulations32 and finite 

element analysis at particle and continuum levels.33–35 In the numerical simulation of shrinkage 

kinetics, constitutive equations are used to relate the deformation rate with the stresses applied on 

the porous body. Reviews of such constitutive equations are given by Cocks36 and Olevsky.29  

Recently numerical techniques based on the kinetic Monte Carlo (kMC)21 and discrete element 

methods (DEM) 37 are gaining momentum as a tool to describe the microstructural evolutions and 

densification of powder compacts during sintering. The model based on kMC method is able to 

simulate the underlying physics of many materials based on the statistical-mechanical nature of the 

model.21, 22, 38, 39 They are shown to be robust in capturing the important features in the sintering 

process such as curvature driven grain growth, pore migration, vacancy formation and 

annihilations.22 In addition to describing the microstructural evolutions of powder compacts, kMC 

based numerical techniques are also capable of predicting the densification kinetics in terms of 

shrinkage strains.40 The limitations of such models are that, they work based on some idealized 

parameters, which makes it difficult to study changes in process parameters like temperature. 

Furthermore, they also lack application in the early stages of sintering. In this regard, DEMs are 

based on physical parameters and they can also describe the early stage sintering (which is 

dominated by grain boundary and surface diffusion) better.37, 41, 42 However, DEMs lack accuracy 

while describing the shrinkage kinetics in the later stage of the sintering cycle.     

The other approach uses phenomenological models, where empirical equations are developed 

fitting sintering data usually in the form of density versus time. This kind of approach could be 

useful in numerical models though they do not provide explicit understanding to the sintering 

process. Coble explained the theoretical descriptions to his semi-logarithmic equations, which was 

used to fit relative density data as a function of sintering time.27 The limitation of such approach are 
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that more than one equation can provide a good fit to any of the sintering data and predicting 

shrinkage for new materials and/or new processing technique require new experiments.   

A practical approach involving construction of so-called sintering maps has also been developed by 

Ashby and Swinkels.43, 44 The initial maps were constructed to show the dominant sintering 

mechanism and the rate of neck growth for the given temperature and particle size.43 Alternatively, 

Su and Johnson used the combined stage sintering model to map the densification with respect to a 

master variable (i.e. defined using the thermal history of the sintering body).45 This technique is 

usually referred to as the master sintering curve (MSC). In the construction of such curves, the 

parameters in the combined rate equations are separated, with those related to the microstructure 

and temperature terms, which are then related to each other using experimental data of 

densification. The basic assumption in the MSC is that the geometric parameters of the 

microstructure are independent of the thermal history of the sintering. Once the MSC is 

constructed for a particular powder system, it can be used to predict the sintering behavior of 

compacts with a different sintering profile. Generalized formulations for MSC are also proposed 

based on several constitutive equations including both densification and grain growth.46 The major 

drawback of the MSC approach is, its application requires powder systems processed in the same 

manner having the same green density. In addition, the microstructural evolution is assumed to be 

a function of density only with constant activation energy throughout the densification.  

The other mapping technique based on information contained in the macroscopic data similar to 

the MSC is the Kinetic field (KF) theory suggested by Palmour 47 and used extensively by Raether et 

al.48, 49 The shrinkage rate is predicted by time iterations within the field limits knowing 

temperature and temperature change (set by the user) and a starting density. The KF diagrams can 

be used to identify specific mechanisms during the densification process without the use of 

adjustable parameters. In addition, rotation of the so-called iso-strain lines in the KF diagram 

provides information about coarsening and the associated activation energies. A 3D extension of 

the KF diagram was also suggested with the integration of external stresses, which has been named 

the master sintering diagram (MSD).50  

2.1.2. Remarks on models for shrinkage kinetics  

Usually free shrinkage kinetics of layers making the multi-layer are measured by dilatometer and 

are used in continuum models together with the creep properties to describe stresses and camber 

developments during co-firing. However, it is sometimes necessary to use models to describe the 
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free shrinkage kinetics while working with the continuum models. The appropriate model to 

describe the shrinkage kinetics while analyzing problems of sintering of multi-layers depends on 

different factors. Examples of such factors include the input data available (e.g. diffusion 

coefficients) and/or information desired from the analysis. For instance, for analysis focusing on the 

mechanism of defect formations during sintering of multi-layers, numerical models that can 

describe the microstructural evolutions would be ideal. Numerical models are also highly effective 

in multi-scale modeling approaches.  

Among the other approaches, for example, the use of MSC is confined to powder compacts made 

from the same powder and by the same green body processing. In addition, it would not be direct 

forward to model stresses as it is difficult to include the effect of stress into the MSC. Some of the 

limitations of the MSC can be circumvented by the use of the kinetic field (KF) or the master 

sintering diagram (MSD) as described by Raether et al.48 However, building the KF or the three 

dimensional MSD incorporating stress fields requires detailed experimental works. Most of the 

time, analytical models are developed for a specific mechanism of matter transport and are 

applicable in a specific stage of sintering. However, analytical or empirical equations are still 

suitable models to use during the analysis of stress and macroscopic shape distortions of multi-

layers. Among these, the viscous sintering description of shrinkage kinetics is not only simple for 

implementation (requiring less number of adjustable parameters) but also it is used extensively in 

the literature. Though originally developed for materials that sinter by viscous flow, these models 

can also describe sintering of crystalline bodies with good approximation. Section 3 and 4 presents 

further discussions on the use of viscous models for problems of multi-layer sintering including 

review of previous studies.  

2.1.3. Measurement techniques  

Accurate measurement of shrinkage kinetics during the sintering cycle is critical to determine 

adjustable parameters in the proposed models and to validate them. In this section, an overview is 

presented to the most common techniques used while studying stress and shape distortion during 

sintering of multi-layer systems. In addition to measuring the material behaviors, an overview of 

techniques for characterization of sintering of multi-layer systems are also presented.   

I. Linear shrinkage  

Push rod dilatometry is usually used for measuring the linear shrinkage of samples during sintering. 

In this technique, the shrinkage of the sample is transferred via a rigid rod, which is in contact with 
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the sample surface, to a displacement transducer outside the furnace.51 To achieve accurate 

measurement during the entire sintering process using classical contact dilatometers, the 

interaction between the measuring system and the sample has to be minimized. In push rod 

dilatometry, movement of the sample can be caused by a reaction between the push rod and 

sample material. Also, the pressure on the sample during push rod dilatometry may cause a 

deformation of the sample by high temperature creep. Therefore, non-contact methods for the 

determination of sintering shrinkage are preferred.  

While studying the effect of mismatch in sintering kinetics of layers on bi-layer camber evolutions, 

Lu et al showed the use of non-contact optical scanning techniques for in-situ linear shrinkage 

measurement of sintering samples.5 This technique exploits the contrast between the reflective 

surface of the setter and the rough surface of the sample to measure the dimensional changes.  

Other non-contact dimensional measurements at high temperatures include, for example laser 

dilatometry that use interferometric methods, which can resolve length changes in nano meter 

range.52  

A non-contact optical method that relies on a simple and robust CCD (Charged Coupled Devices) 

camera applicable up to 2000 oC was first suggested by Raether et al.53 Such system exploits the 

image contrast created due to illumination of light in the furnace chamber. It is often called TOM 

(thermo-mechanical measuring device) and can be used for heating rates up to 10 K/min with a 

resolution of less than 1 µm.53 Figure 6 shows the schematics of such system, which can provide 

continuous measurement of the linear shrinkage or densification rate. Since the introduction of this 

technique, there have been a number of works reported by using TOM for measuring the shrinkage 

behavior of different materials.54–56  

Measurement of shrinkage kinetics during co-firing is often challenging. Garino and Bowen showed 

the use of laser reflectance apparatus to measure the shrinkage across the thickness of constrained 

films on rigid substrate.57 Direct observation of the fractured surfaces of samples using images from 

SEM (Scanning Electron Microscope) before and after sintering can be used to analyze the linear 

shrinkage. In such cases the sintering operation should be interrupted at different temperatures 

where the dimensional measurement is required to be taken. The procedure is experimentally 

cumbersome and it does not allow continuous measurement of shrinkages. But it is sometimes 

used to analyze linear shrinkage of the constituent layers in multi-layered samples.4    
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Figure 6: (a) Set-up of the optical dilatometer and (b) cross section through sample and sample 

support [Raether et al.53] 

II. Porosity and microstructural characterizations  

In-situ measurements of linear shrinkage during sintering can be used to estimate the density of 

the porous body as a function of time if the shrinkage is assumed to be isotropic and there is no 

significant mass change, see Eq (5). The corresponding fraction of voids or relative porosity can be 

determined as: 1   . Other techniques that can be used to measure density of a sintering body 

having interconnected pores include the Archimedes method 58 and mercury porosimetry.59  

Characterization of microstructure during co-firing is important to study grain growth, pore size 

distributions, possible anisotropies in the pore-grain structure etc. In the case of constrained 

sintering, investigations of anisotropies induced into the pore-grain structure due to the stress from 

the constraint are important to refine the available models based on parameters such as pore 

shape and orientation factors. In this regard, 2D sections of the sintering body are often used to 

analyze the different internal features of the microstructure using SEM.55, 60, 61 Recently 3D in-situ 

characterization tool such as X-ray computed micro-tomography (XCMT) has been used successfully 

to monitor the microstructural evolutions during sintering of multi-layers.62 This technique uses X-

ray radiographies of a rotating specimen from which a 3D representation of the local details is 
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computed using special computer software.63 Other advanced techniques such as focused ion beam 

(FIB) tomography could also be used for detailed and in-situ characterization of microstructure 

during sintering.64 

 

2.2. Viscous mechanical behaviors  

The viscous mechanical properties of a sintering body can be defined as the inherent resistance to 

creep or densification in response to external or internal stress. Depending on the stress state, they 

can be described either by shear and bulk viscosities or uni-axial viscosity and viscous Poisson’s 

ratio. The three main factors affecting the effective viscosity of a sintering body are: 

1. The temperature  

2. The fraction of void (porosity) in the sintering body  

3. The grain size  

The effective viscosity is often a strong function of temperature in the early stage of sintering 

whereas the grain size becomes crucial in the final stages of sintering. In addition, microstructural 

features like the grain size distribution, powder packing, the amount, shape and orientations of 

porosities, etc during the sintering cycle can also affect the effective viscosity. Various models have 

been reported to theoretically describe the evolution of the effective viscosity of a porous body 

during sintering. Below is the summery of some of the models developed through time. 

2.2.1. Constitutive models  

In the early works by Bordia and Raj 65 and Hsueh et al.66, the porous body during sintering had 

been characterized by viscoelastic materials. Hence, the mechanical properties of the sintering 

bodies were modeled using combinations of elastic springs and viscous dashpots. For example, 

Bodia and Raj proposed a model based on viscoelastic Kelvin-Voigt element to predict the 

densification response of a porous body. On the other hand, the shear relaxation of the porous 

body had been modeled by a viscoelastic Maxwell element, which consists of a series combination 

of elastic spring and viscous dashpot.65 While it is reasonable to assume that the sintering compact 

is viscoelastic, the elastic strain is very small during sintering compared to the densification strains. 

Later on, hence, Bordia and Scherer argued that a simple linear viscous formulation is sufficient to 
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model the mechanical response of the porous compact.67 Table 2 summarizes some of the models 

developed through time for the shear and bulk viscosity of the porous body during sintering.  

Table 2: Summary of various models defining the viscous behavior of porous compacts during 

sintering 

S.No 
Models for viscous mechanical behavior  

Ref Effective shear viscosity, Gp Effective bulk viscosity, Kp 

1 Viscoelastic analogy  

Maxwell element for shear viscosity  

Viscoelastic analogy  

Kelvin Voigt element for Bulk viscosity 
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Grain growth is considered with two 
adjustable parameters A and ao 

31 exp( (1 ))p oA
K G a     

Grain growth is considered with two adjustable 
parameters A and ao 
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Nomenclature of variables 

R =reference viscosity at a given density; 0 =viscosity of fully dense  body;  = relative 

density; aE =apparent activation energy; R = Universal gas constants and T=Temperature  

 

In most of the models suggested, the effect of the evolving density as well as grain size on the 

viscosity of the porous compact is often handled by adjustable parameters/functions. For example, 

the model by Hsueh et al. has two adjustable functions: p  gives the dependence of Gp on density 

for constant grain size whereas (1 )   accounts for the grain growth accompanied by 

densification.68 Such functions, which account for the changing density or grain sizes during 

sintering, can be formulated empirically or by using micro-mechanical models. For example, Scherer 
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et al.69 derived a function, which accounts for the evolving density based on microstructural models 

whereas Rahaman et al.72 relied on an empirical model. Though it does not have explicit function to 

consider the instantaneous grain size during sintering, the model suggested by Skorohod has been 

used extensively for the continuum modeling.70
   

In addition to the amount of fraction of voids or porosity, the shape and orientations of porosities 

during the sintering cycle can also affect the effective viscosity of the sintering body. Boccacini tried 

to quantify and incorporate shape and orientation factors into his model for the effective viscosity, 

which is derived based on the analogy between flow and transport properties.74  

2 2

0

1 cos cos
  where 

1 2
n

p n
F F

 
  


  


                                                  (8) 

The shape factor, F, is taken as a function of ratio of the two axis of spheroid, which is assumed to 

represent pore shapes with the orientation, α, being the angle between the flow direction and the 

rotational axis of the spheroids.   

2.2.2. Remarks on viscosity models  

Despite the number of studies, the existing models for the effective viscosity of a sintering body 

show certain drawbacks. Mohanram et al. reported comparison of the various models with 

experimental measurements depicting discrepancies between the models as well as between the 

models and measurements.75 Developing a unified model, which can explicitly consider all the 

internal variables of the evolving microstructure of a porous body, is a daunting challenge. 

However, those models suggested by Scherer et al.69, Skorohod70 and Reiterer et al.71 have been 

used frequently with the continuum models and also require less number of adjustable parameters. 

In this study, the model suggested by Reiterer et al., is used, where the viscosity of the fully dense 

body, 0 , is given by:  

s
0

Q
η = ATexp

RT

 
 
 

                                                                       (9) 

Here  and sA Q are the Arrhenius pre-exponential factor and the apparent activation energy for 

range of density in consideration respectively. The influence of porosity on the effective shear and 

bulk viscosity of the sintering body can be accounted by normalized shear,  , and bulk,  , factors. 
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To improve the prediction of this model, the phenomenological grain growth could also be included 

with more experimental works as explained by Arguello et al.76 

2.2.3. Measurement techniques  

Accurate measurement of the mechanical response of the porous bodies during sintering is 

important as it is one of the parameter while studying sintering of multi-layers. There are different 

techniques employed by various authors to measure the effective viscosity of samples during 

sintering. Some of these include cyclic loading dilatometry, sinter forging, bending creep tests, 

vertical sintering, and constrained sintering.   

Almost all the measurement techniques use a dilatometer allowing the application loading upon 

the specimen. Early studies of sintering including viscosity measurements were reported by 

Rahaman et al.72, 77, Chu et al.78 and Bordia et al.65, 79. In most of the techniques, the basic idea is to 

measure the viscous strain rate of the porous body at sintering temperatures by applying known 

values uni-axial loading or stress. For example, Rahaman et al. used loadings in the range of 8 - 80 

kPa on porous samples of ZnO and CdO and compared the viscous strain rate with the free 

shrinkage rate.77 Based on such comparisons, results for uni-axial viscosities as a function of relative 

density can be calculated. From their measurement, Rahaman et al. were also able to conclude and 

show that the creep strain rate varies linearly with the applied stress for the materials 

considered.77, 80   

Perhaps the most comprehensive experimental work was reported by Cai et al. to determine the 

mechanical response of porous samples from room to sintering temperatures.81 In this work, they 

used cyclic loading dilatometry in which an intermittent load on the sintering samples was applied 

using different heating and loading schedules. The technique is advantageous as one experiment is 

sufficient to determine the elastic as well as viscous properties of the sintering body at different 

temperatures. Interestingly, Cai et al. clearly showed the transition of porous Alumina from elastic 

at low temperatures to viscous behaviors at high temperatures. Such technique can be 

implemented using thermo mechanical analyzer (TMA) with a vertical loading rod.  The range of the 

applied stress used by Cai et al. was 0.25 - 1 MPa wherein a creep rate under load is clearly shown 

to vary linearly with the applied stress. Such technique has also been used by other authors on 

different sets of materials.55, 82 

The use of uni-axial load on the sintering specimen and measurement of the radial and axial strain 

rate components separately is called sinter-forging technique. By applying a uni-axial load, the 
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shrinkage rate difference along the loaded and unloaded directions together with the free 

shrinkage rate can be used to determine the viscous mechanical properties of the specimen.83 In 

this technique, the main challenge is to have accurate and concurrent measurements of the radial 

and axial strain rates. Furthermore, the applied load could induce directional anisotropies in the 

microstructure of the sample. With the goal of improving measurement inaccuracies that may 

occur due to anisotropies in the pore-grain structure due to uni-axial loading, Zuo et al. suggested a 

technique called discontinuous hot forging.84 This is an improved sinter forging technique, where 

the sample is first allowed to sinter freely to a prescribed density, and then the load is applied 

followed by instantaneous measurements of radial and axial shrinkage strains. The drawback in this 

approach may be, the instantaneous short measurements could only capture primary creep. 

Lee et al. suggested another technique based on creep in a bending beam test to measure the uni-

axial viscosity of a sintering body.85 They used the closed form solution of an elastic beam 

deflection under gravity and/or under the influence of external loads based on the analogy 

between the linear elastic–linear viscous problems. Tapes (beams) of porous samples can be 

allowed to deform between two sample supports during sintering while changes in the deflection 

rate, thickness and length together with density are monitored. Such technique could put the tapes 

in a stress state somehow similar to tapes in multi-layer systems and hence causing a similar 

microstructural evolution during the sintering cycle.  

Cologna et al. followed another approach by performing a vertical sintering of the porous samples 

under the influence of gravity.86 The difference in shrinkage rate between a sample sintered 

hanging vertically and free shrinkage rate is used together with gravitational load on the vertically 

oriented sample to estimate the uni-axial viscosity. In this technique, it might be difficult to achieve 

the stress levels occurring, e.g. in bending bi-layers, as the gravity has less influence in tension than 

in the bending of the co-sintering multi-layers.  

Mohanram at al. showed how the viscous Poisson’s ratio of a porous body at sintering temperature 

can be determined using a simple technique of pressure-less constrained sintering.87 By sintering 

the porous sample between two non-sintering bodies, one can achieve the entire densification to 

occur in only one direction. The difference between the shrinkage rates in unconstrained direction 

and free sintering body could be used to determine the viscous Poisson’s ratio using the 

formulations in the continuum theory of sintering. The technique is simple and does not involve any 

external loading.  
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3. Continuum Description of Sintering  

 

In this section, the continuum description of a sintering body is discussed together with material 

models that can be used to describe stresses and macroscopic shape distortions during co-firing. 

Furthermore, continuum mechanics based constitutive models that can be implemented as a 

subroutine to a finite element program to describe densification and deformations in realistic 

(macroscopic) sintering bodies are also discussed.  

     

3.1. Introduction  

The continuum theory of sintering assumes the sintering body as a two-phase material consisting of 

skeleton and voids (pores), where the voids are distributed isotropically throughout the structure.29 

Figure 7 shows the schematic representation of the continuum description of sintering body. 

According to mechanics of porous structures, porous bodies, unlike fully dense bodies, can cause 

the structure to yield even under hydrostatic stress.88  

Hence the continuum theory assumes that sintering occurs due to the response of the structure to 

the inherent hydrostatic potential, which is often called sintering stress. Whenever there are 

additional applications of load on the porous structure, the response of the body to the applied 

load can be treated either by viscoelastic or viscous models. Thus the total deformation in the 

porous structure includes deformations from the internal sintering stress and that of from the 

applied loads.29  

 

Figure 7: Schematic representation of the continuum sintering body 
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3.1.1. Viscoelastic models  

According to Bordia and Raj, if the viscoelastic properties do not vary with time, the viscoelastic 

solution of sintering problems can be made using viscoelastic/elastic (VE) analogy.65 This is based 

on the fact that the Laplace transform of viscoelastic constitutive equations is equivalent to the 

elastic constitutive equations. For instance, the constitutive equation for a porous material 

modeled by viscoelastic Maxwell element with an inherent shrinkage rate, f , can be expressed as:  

                              

1 1
[(1 ) ] [(1 ) ]

el cr f
ij ij ij ij

f
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                               (10)  

where the total strain rate, ij , is the sum of the elastic, el
ij , creep, cr

ij and the free shrinkage strain 

rates. ij is the Kroneckers symbol ( 1 if ij i j    and 0 if ij i j   ). Note that, ij , is the rate of 

change of stress, ij ; E is Young’s modulus;   is uniaxial viscosity;  and p   are the elastic and 

viscous Poison’s ratios respectively and , , ,i j x y z with Einstein’s summation convention.    

Later on, Bordia and Scherer67 invalidated the previous model of porous bodies based on 

viscoelastic analogy because of: 

1.  The elasticity as well as viscosity of a sintering body is a function time which does not allow 

the use of linear viscoelastic analogy and  

2. The observed strains during densification are so much larger compared to elastic strains 

resulting the entire deformation from viscous flow or creep.  

Instead, they formulated a less cumbersome model based on linear viscous formulations to 

describe the stresses during sintering by viscous flow.67 

3.1.2. Linear viscous models 

During sintering of a porous body, where there is a deformation dominated by viscous flow/creep, 

the total strain rate can simply be given by the sum of the free shrinkage rate and the creep rate:  

cr f
ij ij ij                                                                            (11) 

The linear viscous material is analogous to elastic material where the elastic parameters such as 

strain, ij , Young’s modulus, E , and Poisson’s ratio,  ,are replaced by the corresponding creep 
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strain rate, cr
ij , uni-axial viscosity,  , and viscous Poisson’s ratio, p . For example, the viscous or 

creep strain rate can be given by Eq (12). There also exists a direct correspondence between linear 

elastic and linear viscous models enabling the use of analogies of elastic solutions (by replacing 

viscous mechanical properties) for linear viscous materials during sintering. Detailed discussions of 

the correspondence principle for functionally graded materials can be found in Refs 89, 90.      

1
[(1 ) ]cr

ij p ij p kk ij     


                                                                  (12) 

 

3.2. Phenomenological models of sintering  

For simulation of sintering in a realistic 3D body, a continuum mechanics based constitutive 

sintering models are important. In this context, the Skorohod-Olevsky Viscous Sintering (SOVS)29 

and the Riedel-Svoboda solid state sintering (RS)91 models find use in analytical as well as finite 

element simulation of sintering for realistic components. 

3.2.1. The Skorohod-Olevsky Viscous Sintering model (SOVS) 

A general description of viscous sintering based on the continuum framework is presented by the 

Skorohod viscous sintering model commonly known as SOVS.29 According to SOVS, the constitutive 

equation for linear as well as non linear viscous materials with a total strain rate tensor, ij , is given 

by: 

( ) 1

3
ij ij ij L ij

W
e P
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where W is the equivalent strain rate and ( )W is the equivalent stress;  and   are the 

normalized shear and bulk viscosities; e  is the volumetric strain rate of the porous body or the first 

invariant of the strain rate tensor and LP is the inherent sintering stress of the material. In the SOVS 

framework, porosity, , is defined as the volume fraction of voids in the porous body. The 

equivalent strain rate, W , is a function of the invariants of the strain rate tensor as: 

2 21
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where  is the second invariant of the strain rate tensor, which represents the rate of change of 

shape in the porous body and is given by: 

1 2
1 1

3 3
ij ij ij ije e    

   
     

   
                                                     (15)  

Note that ( )W determines the constitutive behavior of the porous material and if it is given by a 

linear relationship, for example, 0( ) 2W W  , Eq (16) expresses the linear constitutive model as:  

0

1
2

3
ij ij ij L ije P      

  
     

  
                                                 (16) 

The sintering stress, LP , is the intrinsic material property which develops due to the tendency of the 

porous body for minimization of surface energy. According to SOVS, the effective sintering stress is 

given by a product of local sintering stress, 0 3LP G , and the normalized sintering stress, LP .  

0

3
L L L LP P P P
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The parameters, ,  and LP   are functions of porosity and they have to be determined based on 

the pore-grain structure evolving during the densification process.29 Summary of various functions 

proposed by different authors for ,  and LP   is found in Ref 29. Eq (16) can be reformulated in a 

way showing the components of viscous/creep strain rate, cr
ij , and free strain rate, f , by the first 

and second terms in Eq (18) respectively. Here,   ij mand  , are the deviatoric and mean stress 

components in the porous body respectively. 
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Hence, for pressure-less sintering (free sintering), the shrinkage rate can be found from Eq (18) as: 

 
06

f LP
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Often the SOVS model is implemented together with a continuity equation derived from the 

principle of conservation of mass. It relates the volumetric shrinkage rate, f
kke   , with the 

evolution of porosity, , in the porous body as:  
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3.2.2. The Riedel-Svoboda solid state sintering model (RS) 

A description of solid state sintering based on microstructure of a sintering body that can be used in 

macro-scale modeling of sintering is developed by Reidel and Svoboda.91–93 The RS model considers 

the diffusive transport of matter and grain coarsening.  It also distinguishes between open and 

closed porosity. The constitutive equation relating the total macroscopic strain rate, ij , to the 

stress tensors can be expressed as: 

2 6
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where  and G K are the shear and bulk viscosities and P is a gas pressure that can develop in 

closed pores. The shear and bulk viscosities,  and G K , contain a term for source controlled 

diffusion, which modifies the linear viscosities,  and lin linG K ,as 94:  

2 2
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lin linK K G G
R R
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where RS is an adjustable parameter, R is the mean grain radius, and  is the effective stress, 

which can be calculated considering the von Mises stress, e , as: 1 1
2 2m L eP P     

94. Details 

on the contributions of the different diffusion mechanisms to viscosity and the microstructural 

assumptions in the RS model can be found in Refs91, 94. 

Compared to the SOVS model, the RS model is very sophisticated and requires large number of 

parameters and adjustable functions, which makes it flexible for describing solid state sintering. 

However, the SOVS model, being a lean continuum mechanical approach, can predict almost with 

the same level of accuracy as the RS model. This has been demonstrated by Reiterer and Ewsuk95 

after comparing both models with each other and with data from experimental measurements. The 

SOVS model, though developed to describe viscous sintering, is also shown describing sintering of 

polycrystalline Alumina powder compact.95 In the present study, the SOVS model has been chosen 

to develop analytical as well as finite element models.        
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4. Shape Distortions and Stresses during Co-firing 

 

This section reviews previous studies on modeling shape distortions during sintering of multi-layers 

together with the contributions made in the present study. Summary of the improvements made 

through time in the analytical as well as numerical models to describe sintering of multi-layers is 

also presented. 

 

4.1. Analytical modeling   

Modeling stresses and shape distortions during sintering of multi-layers is based on the fact that 

the structure remains under mechanical equilibrium if there are no applications of external forces. 

This requires the integrals of forces, N , and bending moments, M , across the thickness axis, z , of 

the multi-layer to be zero, see Eq (23). Figure 8 shows schematics of a bi-layer structure with 

distortion, u , measured from the horizontal axis. The deformations in each layer can be formulated 

by viscoelastic, see Eq (10) or simply by viscous material models as shown in Eq (11).  

( ) 0  and  

( ) 0

x

x

N z dz

M z zdz





 

 




                                                                  (23) 

 
Figure 8: Schematic representation of a bi-layered structure with distortion,u , measured from the 

horizontal axis [PAPER-VII] 

During eighties, problems of multi-layer sintering were analyzed by formulating the response of the 

sintering body for applied loads (viscous deformations) by viscoelastic models.60, 65 While using 

viscoelastic models, solving for the time dependent stress, for example, in the case of sintering of 

porous bi-layered structures is challenging. This is because of the variation of the viscoelastic 
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parameters,  and E  , with time, which contradicts the basic assumption in the viscoelastic/elastic 

analogy. In such cases, an approximation has to be made in order to find the stress solution. Bordia 

and Raj discussed a procedure to find the time dependent stress solution and expressed the 

viscoelastic stress in terms of short and long term solutions.60, 65 The other approach is the use of a 

reduced time such that the stress relaxation function is normalized and has the same form at any 

temperature as explained by Cai et al.96  

By using viscoelastic material, for example, the solution for the time dependent stress during 

sintering of planar bi-layer with layers 1 and 2 can be derived using simplified force balance and 

geometric constraints considering the in-plane stresses and strain rates as shown by Eq (24). Here h 

represents the respective thickness of the layers. The analysis based on viscoelastic models requires 

not only knowledge of linear shrinkage and viscosity but also requires knowledge of parameters 

such as the instantaneous shear and bulk moduli as they are dependent on temperature and time.  

1 1 2 2

1 2

0

    

h h 

 

 


                                                                      (24) 

After measuring the elastic and viscous properties of the constituent layers, by cyclic loading 

dilatometry, Cai et al. reported an extensive analysis of the stress and shrinkage kinetics during 

sintering of Alumina/Zirconia laminates.96 However, their analysis is based on the assumption of 

similar densification in each layer during free sintering and co-firing, which may be true if the 

compatibility stress during co-firing is not large enough to change the microstructural evolution.  

Furthermore, thickness evolutions of the layers are not updated during the simulation of co-firing.    

An early work using the linear viscous material model to analyze stresses during sintering of porous 

glass (silicate gel) on a rigid substrate is reported by Scherer and Garino.97 By using a unit cell 

representation of the microstructure, they were able to derive the shrinkage kinetics, which is then 

used to estimate the stresses in the constrained sintering. One of the major observations in this 

study was the small effect of pore orientation on the densification kinetics during constrained 

sintering. Scherer and Garino were able to show this using tubular unit cells, which could develop 

extreme anisotropy in constrained sintering.97   

Later on Garino and Bowen57 applied the linear viscous formulation for constrained sintering to 

validate the shrinkage kinetics model developed by Scherer and Garino97. Their methodology 

includes predicting shrinkage kinetics in constrained sintering after extracting model parameters by 
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fitting their free shrinkage expression and the respective experimental data. Parameters extracted 

from viscous sintering experiments fit predictions made by their model well. However, parameters 

from densifications by solid state sintering deviate from the predicted behavior. This would show 

that their expression for free shrinkage by solid state diffusion was not as good as the one for 

viscous sintering. Since the early nineties, the use of linear viscous formulations for analysis of 

stress and densification during sintering of multi-layers has been verified and validated by a number 

of authors.5, 7, 55, 81, 98–101 

Analytical models for sintering of multi-layers are often developed assuming uniform distribution of 

strain rates across the thickness of each layer.5, 7, 100–102 This assumption makes the implementation 

of the linear viscous model simple as no spatial discretization across the thickness is needed to 

compute stresses and camber evolutions. However, the rigorous linear distribution of strains across 

the thickness can also be used as suggested by Kanters et al.6, see Eq (25). In such case, the viscous 

analogy of classical laminate theory can be used to determine the strain rate at the neutral axis, 0 , 

and curvature rate, k , based on force and moment equilibrium. Here, ( )cr z , represents the 

distributions of viscous strain rates across the thickness, z, of each layer.  

0( )cr z zk                                                                       (25)    

Using the linear strain rate distributions, Kanters et al. analyzed densification and warpage during 

co-firing of bi-layers produced from nanocrystalline Zirconia.6 Furthermore, they tried to refine 

their model incorporating coarsening and microstructural evolutions together with anisotropies in 

shrinkage kinetics. During the co-firing, the compatibility stresses in the bi-layer are found to scale 

inversely with the grain size. They were also successful in predicting the camber evolutions of bi-

layers with different thickness ratios and heating schedules.6  

In most of the studies, separate experiments for the shrinkage and effective viscosity of the porous 

layers in the bi-layer are conducted to be able to use the continuum model for prediction of camber 

evolutions during co-firing. Alternatively, parameters defining the viscosity of the fully dense body, 

for e.g.  and sA Q see Eq (9), can be determined by fitting the model for free shrinkage rate given in 

Eq (19) with measurements from optical dilatometry. In this study, the later procedure is used to 

determine the viscosity of fully dense layers making the bi-layer.103 The effective viscosity of each 

layer during co-firing is then estimated from the viscosity of fully dense body and a function 
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considering the effect of microstructural changes during co-firing. For details of the methodology 

and microstructural assumptions, please refer to Appendix A (PAPER-I).   

Validation of the effective viscosity of each layer is then made by comparing model predictions for 

camber evolution during sintering of a bi-layer based on the individual layers and experimental 

measurements. The advantage of this procedure is 1) a single dilatometry run can be conducted to 

measure the free shrinkage of each layer as well as camber evolution in the bi-layer and 2) the 

effective viscosity of each layer in the bi-layer can be updated based on the stress state and 

microstructural evolution in the bi-layer or during co-firing.   

As described in PAPER-I, the analytical model to predict camber evolutions during sintering of the 

bi-layer is developed by using the continuum theory (SOVS) taking gravity into considerations.103 

Figure 9 shows comparison of camber prediction from the analytical model and measurements 

after implementing the procedures explained above. The observed agreement between the model 

and measurements can be considered as a validation for the estimated effective viscosity of each 

layer. Furthermore, the model is shown to capture the significant effect of gravity on the camber 

evolution in the later stage of the sintering unlike the model by Cai et al.81  

 

Figure 9: Comparison of the model and measurements of distortion (u) during the entire sintering 

[PAPER-I] 

Note that the distortion, u , is the maximum deflection at the center of the bi-layer sample, which is 

calculated by integrating the rate of curvature, k  , along the horizontal, x , axis, see Figure 8, as:  
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u l kdx kl                                                               (26)     

This study (in PAPER-II) has also presented a new 'master sintering curve'-type solution derived for 

problems of sintering of bi-layers.104 The proposed solution employs the conversion between real 

and specific time of sintering, s , which is defined as: 

0
0

3
t

s dt
G





                                                                          (27)  

where 0,    and G  are the surface energy per unit area, viscosity of fully dense body and grain size 

respectively. By using the expressions proposed by Olevsky et al.29 for sintering stress i.e., 

22
3

(1 )L G
P    , and normalized bulk viscosity, 32

3
(1 )


   , together with Eqs (19) and (20), the 

equation for porosity,  , evolution during free sintering can be found as:  

0

9

8 G

 

 
                                                                       (28) 

Considering Eq (27), the solution for porosity evolution can be given by Eq (29). Hence, the specific 

time of sintering can be calculated from the porosity evolution during free sintering of one of the 

layers in the bi-layer.  

0
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3 8
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8 3
s sor


   



  
      

   
                                          (29)  

In addition, the methodology utilizes material-specific parameters such as the relative intensity of 

sintering,  ,  between the layers making the bi-layer and the ratio of fully dense body viscosities, 

02 01   . The relative intensity of sintering is a function of local sintering stress and dense body 

viscosity of each layer, 02 01

02 01

L LP P

 
  , and it can be estimated from the densification data of each 

layer during free sintering. A novel methodology is also proposed to find the ratio of fully dense 

body viscosities using a symmetric tri-layered sample in the same dilatometry experiment 

employed to measure the free shrinkage of each layer. This approach also enables the 

determination of all input parameters necessary for modeling sintering of bi-layers using optical 

dilatometry applied to each individual layer and to a symmetric tri-layered porous structure based 

on the two-layer materials utilized in the bi-layer system.104  
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Based on the material specific and dimensionless parameters defined to facilitate solution of bi-

layer sintering, Eq (30) for example, shows the solution of normalized curvature rate:  

 2 1
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3 3 3
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                                   (30)  

where the normalized thickness, 0    1  2i i ih h h for i or  , with the instantaneous thickness, h , and 

initial thickness, 0h  of each layer in the bi-layer. The factor,  , is the ratio initial thickness of the 

layers making the bi-layer, i.e 02 01h h   and all the other symbols are as defined in Section 3.4. 

Uniform as well as the more accurate assumption of linear distributions of strains across the 

thickness of the layers are considered while deriving the solutions. For detailed derivation of the 

solution and application of the methodology, please refer to Appendix B and C (PAPER-II and III). 

Validation of the derived solutions using sintering of bi-layer made from tapes of porous and dense 

cerium gadolinium oxide (CGO_P and CGO_D) is also made, wherein the model results are found to 

agree well with experimental measurements, see Figure 10.105     

 

Figure 10: Comparison of the model results for (a) densification and (b) shape distortions together 

with measurements during the entire sintering [PAPER-III] 
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4.2. Numerical modeling   

Previous studies of stress developments during sintering using finite element (FE) models mainly 

focus on powder compaction processes.88, 106–109 In most of the studies, mechanism based 

constitutive models, e.g. those developed based on a single dominant diffusion mechanism, often 

limit the predictive capabilities of the finite element simulations. With the aim of addressing the 

limitations in the constitutive models, Kiani et al. showed an alternative approach using empirical 

models in their finite element code. Their approach is based on the use of experimental data, for 

e.g. shrinkage as a function of time, instead of constitutive models to predict deformations during 

sintering.109  

Finite element implementation procedures using the linear viscous model to simulate densifications 

and shape distortions during sintering of layered structures is also discussed by Olevsky et al.110 The 

procedure requires writing a finite element program, e.g. using Matlab or other programming 

software, to solve problems of bi-layer sintering. Manual programming of boundary conditions 

including geometry of the samples makes the approach tedious to simulate complex 3D geometries 

with different boundary conditions. Similarly Arguello et al. discussed the use of self developed 

non-linear 3D finite element (FE) code to simulate sintering using the linear viscous material 

model.76 In addition to FE implementation of the linear viscous model, verification (with analytical 

model) and validation (with sintering experiment) were discussed in detail. Arguello et al. also 

suggested modifications to parameters defining the effective viscosity in the SOVS considering the 

phenomenological grain growth.76 The proposed modifications require further experimental works 

such as measuring the instantaneous grain growth so as to improve the simulation results. 

In this study (PAPER-IV), we have developed a finite element model in the commercial software, 

ABAQUSTM, based on the continuum theory of sintering in order to predict the curvature evolution 

during sintering of multi-layered structures. This was made possible by implementing the linear-

viscous form of the continuum theory of sintering (SOVS) in ABAQUSTM with the help of a user 

subroutine. Figure 11 shows the comparison of evolution of the bi-layer shape during sintering 

experiment and finite element simulation depicting stress in XX direction.  
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Figure 11: Comparison of the shape evolution during sintering of bi-layer experiment (left) and 

finite element model (right) [PAPER-IV] 

 

4.3. Extrinsic factors affecting shape distortion  

In addition to the inherent properties of the sintering body (shrinkage kinetics and viscous 

behaviors), the extent of shape distortions during co-firing is also affected by extrinsic factors. 

These factors include geometry of the sample, gravity and friction as well as processing parameters 

like heating rates and temperature distribution. Therefore, it is equally important to establish the 

necessary understanding of the relative effects of the above factors in the process of developing 

defect free multi-layer systems using co-firing. 

Chiang et al. showed the effect of heating rate on camber evolution during sintering of asymmetric 

bi-layers consisting layers with different initial density.100 At a given temperature, lower camber 
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with higher rate of change is observed for bi-layer sintered with higher heating rate. Generally 

higher temperatures are required to attain the maximum curvature for bi-layers sintered with high 

heating rates.100 Kanters et al. also noticed a minor dependence of camber evolution of bi-layer 

samples on the heating rate during co-firing.6 However, difference in camber evolutions from 

experiments with different heating rates may also occur due to errors in the measurement of 

temperature if high heating rates are used.6, 11  

The possible effect of gravity on the development of camber during co-firing of multi-layers is 

discussed in Refs 10, 11, 111. Mucke et al. argued about the effect of gravity on the distortion of 

samples after experimental investigation on sintering bi-layers in horizontal and vertical 

orientations.10 The impact of own weight of the sample or gravity on camber evolution is also 

observed during the experimental studies of bi-layered samples reported by Atkinson et al.111  

In this study, Frandsen et al. introduced the bending moment due to own weight of the sample into 

the continuum model to simulate camber during sintering of bi-layer.112 Interesting comparisons 

have been reported showing the significance of the effect of gravity during sintering of bi-layer 

structures.112 Figure 12 shows comparison of curvatures during sintering of bi-layers from various 

models together with experimental measurements.113 The deviation of FE results from the model 

by Frandsen et al., which considers gravity, could be due to simplifications in the analytical 

implementations of the effect of gravity.  

 

Figure 12: Comparison of experiment and different model simulations for camber evolutions in 

time showing the effect of gravity during sintering of bi-layers [PAPER-IV] 
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In addition, the initial thickness ratio between the layers making the bi-layer is one of the 

geometrical parameter that has significant effect on the evolution of curvature during co-firing. 

Kanters et al. showed the difference between the curvature evolutions of bi-layers made from 

undoped Zirconia and 3-mole%-yttria-stabilized zirconia tapes with different thickness ratio.6 

Similarly Lee et al. investigated the effect of the ratio of thickness evolution on the camber 

evolution.114 They showed an increase in the distortion with the reduction of thickness ratio.114  

In this study, systematic investigation of the effect of the initial thickness ratio on the overall 

curvature of a bi-layer sample has been studied using experiments and the most advanced model 

(which includes effect of gravity). The bi-layer in this study consists of layers with different initial 

porosities and different sinterabilities.113 Figure 13 shows the variation of curvature with respect to 

the thickness ratio of a bi-layer after sintering for 8 hrs.113  Extreme variation of curvature is shown 

for bi-layers with an initial thickness ratio less than 2.    

 

Figure 13: Variation of final curvatures after sintering for 8 hrs as a function of initial thickness ratio 

[PAPER-IV]  

Furthermore, the friction between the edges of the bi-layer and the sample support surface inside 

the sintering furnace could also alter the camber evolution. As soon as the camber grows, if the 

edges of the planar multi-layer are in contact with the surface of the sample support, there would 

be a force opposing the movement of sample. Such forces could reduce the overall development of 

curvature in the bi-layer.  
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In this study, the effect of friction during sintering of bi-layers (made from cerium gadolinium oxide, 

CGO and lanthanum strontium manganite, LSM) is studied experimentally after co-sintering of two 

similar samples in different orientations, see Figure 14.113 The bi-layer in Orientation-1 is observed 

to have larger curvature at the end of the sintering cycle compared to the other sample placed in 

reverse orientation. 

 

Figure 14: Two similar bi-layer samples in different orientations (left) and curvature evolution 

showing the effect of friction [PAPER-IV] (right) 

 

4.4. Stresses during sintering of tubular bi-layers  

As discussed in Section 1, functionally graded multi-layer composites are being developed in various 

architectures, see Figure 1. Among these, tubular multi-layer structures are used for membrane and 

solid oxide fuel cell technologies.16, 115–117 Processing defect such as delamination and coating peel-

offs can occur due to the transient stresses during sintering of tubular multi-layer structures. In 

contrary to reports on planar multi-layer structures, there was no prior study to analytically 

describe the densification and stress evolutions during sintering of tubular multi-layer systems.  

In this study, a new analytical model has been developed to describe densification and stress 

developments during sintering of tubular bi-layered samples.118 The developed analytical model has 

been verified using the finite element model developed in Ref113. Furthermore, the analytical model 

is validated using densification results from sintering of bi-layered tubular supported ceramic 

http://scholar.google.com/scholar?q=CGO+cerium+gadolinium+oxide&hl=en&as_sdt=0&as_vis=1&oi=scholart&sa=X&ei=dFOIU47MKayQ4gSuioDgCg&ved=0CCMQgQMwAA
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oxygen membrane based on porous MgO (support) and Ce0.9Gd0.1O1.95-d (membrane) layers. Figure 

15 shows the schematic representation the tubular bi-layer system.  

 

Figure 15: Schematic cross section of porous bi-layered tubular structure [PAPER-V]  

Model results for the evolution of hoop (tangential) stresses in the support as well as membrane 

during the sintering cycle are shown in Figure 16. The hoop stress, which is the main factor for 

processing defects like coating (membrane) peel-offs, is found to be maximum at the beginning of 

the sintering cycle.  

 

Figure 16: The evolution of hoop stress in the support and membrane during the sintering cycle 

[PAPER -V]  
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In addition, the developed model was able to predict the significant retardation of densification in 

the CGO membrane during co-firing. This has been observed by comparing model predictions for 

shrinkage in the constrained CGO membrane with experiment as well as free shrinkage of the CGO 

tape, see Figure 17.118  Model results for the evolution of geometrical parameters of the tubular 

sample (radii and thickness of each layer) are also found to agree well with experimental 

measurements.118 The densification and stress analysis during constrained sintering of tubular bi-

layer structures would help to optimize stresses, for example, as a function of thickness of the 

support or membrane. 

 

Figure 17: Comparison of linear shrinkage in free and constrained sintering together with 

experimental measurements for constrained sintering [PAPER-V] 

 

4.5. Improvements in multi-layer sintering models  

There have been studies depicting the limitations of the linear viscous model while describing 

densification, stresses and/or shape distortions during sintering of multi-layers. For instance, Kim et 

al. showed a wide discrepancy between their experimental results and predictions by the linear 

viscous model for densifications in constrained sintering.13 Anisotropy in the pore grain structure 

especially of heterogeneous microstructure is explained to be the main reason for discrepancy 

between the model and experiments.13  
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Similarly Ollagnier et al. made studies of camber development during sintering of asymmetric 

porous laminates with an emphasis on microstructure of the shrinking layer.11 They showed that 

both models by Cai et al. and Kanters et al. deviate significantly from their experimental 

measurements for camber evolution. Here also anisotropy in the microstructure is one of the 

reasons explained to be the possible cause for the observed discrepancies in addition to gravity. In 

the same study, a significant discrepancy between model and experiments were also shown for 

camber evolution during sintering of viscous layer on rigid substrate. According to Ollagnier et al., 

such phenomenon could occur because of loss of stiffness in the rigid substrate due to formation of 

micro-cracks and interfacial slip during co-firing.11  

These and other limitations become motivations to include further enrichments to the linear 

viscous model so as to enable it describe various effects during sintering of multi-layers. With 

regards to microstructural anisotropy, Bordia et al. quantified the effect during constrained 

sintering and proposed a framework for the modeling of anisotropic sintering of films constrained 

by rigid substrate.119 The framework proposed by Bordia and Bowen requires determination of 

anisotropic viscosities and Poisson’s ratio’s together with the free strain rates in the principal 

directions of the sintering body.119 In an effort to consider the effect of different pore sizes on the 

constitutive parameters, Lu et al. also tried to incorporate bi-modal pore distribution factors into 

the linear viscous models while analyzing camber developments during co-firing of bi-layers.102 

Similarly Darcovich et al. used the continuum model with a field variable, which accounts for the 

effect of particle size distributions on the material properties of the sintering body, in their FE 

analysis of deformations during sintering of heterogeneous samples.120 In the present study, the 

effect of gravity was included in the analytical implementation of the continuum model and it was 

found that gravity actually affects camber evolution during co-firing of planar bi-layers.103, 112 This is 

also found to be consistent with the arguments made by Mucke et al.10 and Ollagnier et al.11   

Furthermore, a two dimensional implementation of the linear viscous material model for sintering 

of thin films on rigid substrates with interfacial shear traction is reported by Jagota and Hu.121 The 

possible interfacial slip is considered by a shear traction, which varies with the average in-plane 

velocity and enters the theory through the body forces. Jagota and Hu were able to investigate the 

limiting cases of very low and high friction on the rate of deformation and stresses during sintering 

of thin films.121 Such kinds of analysis will be useful to enrich the continuum model of sintering as it 

provides the methodology to account for stress relaxations because of interfacial slips. 
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Through time, various improvements to the continuum model have been made in order to 

successfully describe the densification and/or shape distortions during sintering of multi-layers. 

Table 3 summarizes various implementations of the linear viscous models for simulating sintering of 

multi-layers based on their unique features.  

Table-3: Comparison of bi-layer models based on their unique features 

S.N Author Microstructural 

refinements in the 

models 

Strain distributions 
across the thickness 

(for analytical models)  

Effect of 

gravity   

Ref 

1 Cai et al. - Uniform  x 81, 96 

2 Lu et al. Bi-modal pore 
distributions 

Uniform x 102 

3 Kanters et al. Anisotropies in 
shrinkage kinetics, 
Coarsening  

Linear  x 6 

4 Li et al. Anisotropic 
constitutive law 

- - 122 

5 Olevksy et al. Damage 
development 

- - 123 

6 Jagota and Hu Interfacial slip 
between layers 

- x 121 

7 Darcovich et al. Particle size 
distributions  

- x 120 

8 Frandsen et al. - Linear ✓ 
112 

9 Molla et al. 
(This study) 

Grain growth   Linear ✓ 
103 
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5. Multi-scale Modeling of Sintering  

 

In this section, the use of multi-scale modeling approaches to describe sintering in general and 

sintering of multi-layers in particular are briefly reviewed. With this regard, the contribution made 

in this study is also discussed. 

   

5.1. Introduction 

Macroscopic deformations during sintering process are highly sensitive to changes in the 

microstructure of the sintering body. Theoretically, the microstructure of a porous body at a given 

time is a function of a number of internal variables in addition to porosity and grain size. The ability 

of existing continuum sintering models is highly limited due to the challenge of defining constitutive 

parameters that can explicitly consider every internal variable in the microstructure. These 

challenges have provided a platform for integrating the different modeling techniques, for instance 

at the atomistic, particle and continuum levels. Integration of these models in a multi-scale manner 

will be the natural extension to the continuum models so as to improve their predictive capabilities 

of densification as well as stresses during sintering. 

Recently the need for multi-scale approaches for modeling sintering in general and multi-layer 

sintering in particular is growing. Pan and Huang reported an overview to the sintering models at 

different length scales and stressed the need for coupling the existing models from the atomic scale 

to the continuum level.124 Similarly a review of multi-scale modeling is reported by Olevsky et al. 

wherein the possibility of extracting some of the constitutive parameters for the continuum models 

from a meso-scale model is discussed.125 In their study, constitutive parameters for the continuum 

model such as sintering stress and normalized bulk viscosity of a porous compact during sintering 

were determined using the meso-scale model based on kinetic Monte Carlo method.125 However, 

the procedures for coupling of the meso- and macro-scale models has not been shown.  
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5.2. Multi-scale modeling of sintering of multi-layers  

Maximenko et al. suggested a multi-scale approach for modeling sintering of macroscopically 

inhomogeneous materials by specifying material properties through the definition of microscopic 

unit cells.126 They were able to show the application of the so-called Direct Multi-scale Modeling 

(DMM) for solid state as well as viscous sintering of inhomogeneous porous bodies. While this 

study is useful to study the relative effects of shape and orientation of pores on the overall shape 

or camber evolution during sintering of inhomogeneous structures, it does not consider coarsening 

or grain growth during sintering.  

On the other hand, Aizawa et al. presented a coupled micro-macro scale models to describe hot 

deformation and sintering behaviors of materials.127 Using computational homogenization on unit 

cell models of idealized geometries as well as SEM images of microstructures, they were able to 

extract the elastic constitutive parameters of the continuum body to model hot pressing 

processes.127 However, Aizawa et al. did not show how the sintering constitutive parameters could 

be extracted from the unit cells and be used in the macro-scale models.  

With regards to modeling stresses in multi-layer systems, Kuzmov at al. presented an approach for 

modeling viscous sintering based on parallel monitoring of micro- and macro-scale models.128 

Interestingly, they were able to show microstructural anisotropies during constrained sintering of 

bi-layers using unit cells based on spherical pores. A numerical study on the effect of pore shape 

distributions on the overall shape of porous bi-layer samples after co-firing has also been shown.128   

Matrin and Bordia used models developed using discrete element methods (DEMs) to show the 

effect of rigid substrate on sintering of constrained films with regards to microstructural 

anisotropy.129 Similarly Rasp et al. presented particle based simulations using DEMs to analyze 

shape distortion and delamination during constrained sintering of thick films.130  

In the present study, a new multi-scale modeling procedure for predicting shape distortions during 

sintering of bi-layer porous structures has been suggested.131 The approach couples meso- and 

macro-scale models enabling direct exchange of the constitutive parameters between the two at 

each time step.131 The meso-scale model is developed based on kMC method whereas the 

continuum theory implemented by using finite element methods is used for the macro-scale model. 

The shrinkage rate of the porous compact is calculated from the densification of the microstructure 

predicted by the kMC model. Simultaneously, the microstructure is used to homogenize the 
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effective viscosity of the porous compact. Figure 18 shows the schematics of information flow in 

the multi-scale model suggested in this study. Here, ijklD , represents the homogenized effective 

viscosity tensor. 

Computational homogenization is used to extract the effective viscosity of the porous compact 

assuming the microstructure at each time step as the representative volume element (RVE) of the 

continuum body. Figure 19 shows the schematic representation of the boundary value problems 

(BVPs) set up using the RVE at each time step during the computational homogenization.     

 

Figure 18: Schematics of organization of the multi-scale model [PAPER-VI] 
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Figure 19: Schematics of the procedure used to model the effective viscosity of the porous body 

using boundary value problems (BVP) [PAPER-VI]  

To illustrate the methodology, application of the model has been discussed using different types of 

bi-layers systems (e.g. Bilayer A and B consisting layers with the same and different sinterabilities 

and initial porosities). Interestingly the expected behaviors of camber evolution in time for both 

types of bi-layers were observed, see Figure 20. 

 

Figure 20: Distortion in the bi-layer system: a) contour plot of stress b) distortions in bi-layer types 

A and B [PAPER-VI] 
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6. Summary of Appended Papers  

In this chapter a short summary of the papers appended in the thesis report are provided. 

 

6.1. Paper-I 

T.T. Molla, H.L. Frandsen, R. Bjørk, D.W. Ni, E. Olevsky and N. Pryds, “Modeling kinetics of 

distortions in porous bi-layered structures,” J Eur Ceram Soc, 33 1297-1305 (2013) 

 

Shape distortions during constrained sintering experiment of bi-layer porous and dense cerium 

gadolinium oxide (CGO) structures have been modeled. Technologies like solid oxide fuel cells 

require co-firing thin layers with different green densities, which often exhibit differential shrinkage 

because of different sintering rates of the materials resulting in undesired distortions of the 

component. An analytical model based on the continuum theory of sintering has been developed to 

describe the kinetics of densification and distortion in the sintering processes. A new approach is 

used to extract the material parameters controlling shape distortion through optimizing the model 

to experimental data of free shrinkage strains. The significant influence of weight of the sample 

(gravity) on the kinetics of distortion is taken in to consideration. The modeling predictions indicate 

good agreement with the results of sintering of a bi-layered CGO system in terms of evolutions of 

bow, porosities and also layer thickness.  

 

6.2. Paper-II 

E. Olevsky, T.T. Molla, H.L. Frandsen, R. Bjørk, V. Esposito, D.W. Ni, A. Ilyna and N Pryds, “Sintering 

of multi-layered porous structures: Part I-Constitutive models,” J Am Ceram Soc, 96 [8] 2657–2665 

(2013) 
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Theoretical analyses of shrinkage and distortion kinetics during sintering of bi-layered porous 

structures are carried out. The developed modeling framework is based on the continuum theory of 

sintering; it enables the direct assessment of the co-firing process outcomes and of the impact of 

process controlling parameters. The derived 'master sintering curve'-type solutions are capable of 

describing and optimizing the generic sintering shrinkage and distortion kinetics for various 

material systems. The approach utilizes the material-specific parameters, which define the relative 

kinetics of layer shrinkages such as the relative intensity of sintering, and employs the conversion 

between real and specific times of sintering.  A novel methodology is also developed for the 

determination of the ratio of the shear viscosities of the layer’s fully-dense materials. This new 

technique enables the determination of all input parameters necessary for modeling sintering of bi-

layers using experimental techniques like optical dilatometry of the individual layers and a 

symmetric tri-layered porous structure based on the two layer materials utilized in the bi-layered 

system. Examples of sintering different porous bi-layered systems are presented to justify the 

capability of the model in predicting and optimizing sintering kinetics. 

 

6.3. Paper-III 

D.W. Ni, E. Olevsky, V. Esposito, T.T. Molla, S. P. Foghmoes, R. Bjørk, H.L. Frandsen, E. Alexandrova 

and N Pryds, “Sintering of multi-layered porous structures: Part II-Experiments and model 

applications,” J Am Ceram Soc, 96 [8] 2666–2673 (2013) 

 

Experimental analyses of shrinkage and distortion kinetics during sintering of bi-layered porous and 

dense gadolinium-doped ceria Ce0.9Gd0.1O1.95-d structures are carried out, and compared with the 

theoretical models developed in Part I of this work. A novel approach is developed for the 

determination of the shear viscosities ratio of the layer fully dense materials. This original 

technique enables the derivation of all the input parameters for the bi-layer sintering modeling 

from one set of optical dilatometry measurements, including the conversion between real and 

specific times of sintering, the layers’ relative sintering intensity, and the shear viscosities ratio of 

the layer fully dense materials. These optical dilatometry measurements are conducted 

simultaneously for each individual layer and for a symmetric tri-layered porous structure based on 

the two layers utilized in the bi-layered system. The obtained modeling predictions indicate 
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satisfactory agreement with the results of sintering of a bi-layered cerium–gadolinium oxide system 

in terms of distortion and shrinkage kinetics. 

 

6.4. Paper-IV 

T.T. Molla, D.W. Ni, R. Bulatova, R. Bjørk, C. Bahl, N. Pryds and H.L. Frandsen, “Finite element 

modeling of camber evolutions during sintering of bi-layer structures,” J Am Ceram Soc, in press 

(2014) 

 

The need for understanding the mechanisms and optimization of shape distortions during sintering 

of bi-layers is necessary while producing structures with functionally graded architectures. A finite 

element model based on the continuum theory of sintering was developed to understand the 

camber developments during sintering of bi-layers composed of La0.85Sr0.15MnO3 and Ce0.9Gd0.1O1.95 

tapes. Free shrinkage kinetics of both tapes were used to estimate the parameters necessary for 

the finite element models. Systematic investigations of the factors affecting the kinetics of 

distortions such as gravity and friction as well as the initial geometric parameters of the bi-layers 

were made using optical dilatometry experiments and the model. The developed models were able 

to capture the observed behaviors of the bi-layers’ distortions during sintering. Finally, we present 

the importance of understanding and hence making use of the effect of gravity and friction to 

minimize the shape distortions during sintering of bi-layers.           

 

6.5. Paper-V 

T.T. Molla, D. K. Ramachandran, D.W. Ni, V. Esposito, F. Teocoli, E. Olevsky, R. Bjørk, N. Pryds, A. 

Kaiser and H.L. Frandsen, “Constrained sintering of bi-layered tubular structures,” J Am Ceram Soc, 

under review (2014) 

 

Constrained sintering of tubular bi-layered structures is being used in the development of various 

technologies. Due to mismatch in the densification rate between the layers in the tubular 

geometry, stresses develop and sometimes create various processing defects. An analytical model 
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is developed to describe the densification and stress developments during constrained sintering of 

tubular bi-layered samples. The direct correspondence between linear elastic and linear viscous 

theories is used as a basis for the model development. The developed analytical model is first 

verified by finite element simulation for the constrained sintering of tubular bi-layer system. 

Furthermore, the analytical model is validated using densification results from sintering of bi-

layered tubular supported ceramic oxygen membrane based on porous MgO and Ce0.9Gd0.1O1.95-d 

layers. Model input parameters, such as the shrinkage kinetics and viscous parameters are obtained 

experimentally using optical dilatometry and thermo-mechanical analysis. Results from the 

analytical model are found to agree well with finite element simulations as well as measurements 

from sintering experiment. 

 

6.6. Paper-VI 

T.T. Molla, R. Bjørk, E. Olevsky, N. Pryds and H.L. Frandsen, “Multi-scale modeling of shape 

distortions during sintering of bi-layers,” J Comp Mat Sci, 88 28–36 (2014) 

 

Models for deformational behaviors of porous bodies during sintering often rely on limited number 

of internal variables as they are formulated based on simplified or ideal microstructures. 

Considering realistic microstructures can improve the predictive capabilities of the already 

established theories like the continuum theory of sintering. A new multi-scale numerical approach 

for modeling of shape distortions during sintering of macroscopically inhomogeneous structures 

combined with a microstructure model is developed. The microstructures of the porous body are 

described by unit cells based on kinetic Monte Carlo (kMC) model of sintering. During the sintering 

process the shrinkage rate is calculated from the kMC model. With the help of computational 

homogenization, the effective viscosity of the powder compact is also estimated from a boundary 

value problem defined on the microstructures of unit cells simulated by the kMC model. Examples 

of simulation of sintering of bi-layers based on different material systems are presented to illustrate 

the multi-scale model. The approach can be considered as an extension to the continuum theory of 

sintering combined with the meso-scale kinetic Monte Carlo model.  
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7. Summary and Outlooks   

 

This section summarizes the works performed in the present study with respect to analytical, 

numerical and multi-scale modeling. In addition, outlooks for further studies are suggested.  

   

7.1. Summary  

7.1.1. Analytical model      

Experimentally observed behaviors of shrinkage and camber development during sintering of bi-

layer samples of porous and dense cerium gadolinium oxide (CGO) layers were studied. With the 

help of the new method proposed, data collected from a single optical dilatometry experiment 

conducted simultaneously for individual layers and an asymmetric bi-layer porous sample was 

sufficient to model the kinetics of densification and shape distortion. The viscous parameters, i.e. 

the pre-exponential factor and the apparent activation energies in the Arrhenius-type viscosity 

function were first determined as those providing the least deviation between the free shrinkage 

strains recorded in the experiment and those obtained by the model.  

By using the determined viscous parameters, the effective viscosities of each layer are updated 

based on the densification in the bi-layer model developed to describe shape distortion during 

sintering of an asymmetric bi-layer sample. A good agreement between model predictions and 

experimental measurements of distortions was found, which is also considered as a validation for 

the estimated material parameters. This is also supported by subsequent comparisons with 

literature values.  

The model is able to capture all the important phenomenon of shape changes observed during the 

experiment. These include the significant effect of gravity on the evolution of shape of the bi-layer 

sample at the later stages of the sintering.  

In addition, a new model framework enabling engineering level solutions for problems of sintering 

of bi-and tri-layered porous systems has been developed. The applications and capabilities of the 

modeling framework are explained by considering different types of bi-layer systems as well as 
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comparing model results with experimental measurements. The elaborated solutions allow not only 

the predictions but also optimizations of the sintering outcomes by controlling the system’s initial 

geometry and structural characteristics together with adjustment of the sintering regime.   

Furthermore, a new closed form analytical model based on the analogy between linear elastic and 

linear viscous theories has been developed to describe densification and stress development during 

sintering of tubular bi-layered samples. Stresses during constrained sintering of tubular bi-layered 

structures develop not only due to mismatch in the shrinkage rate of the layers but also because of 

the radial gradients in the internal shrinkage rate of each layer.  

The developed analytical model was first verified by finite element simulation for the constrained 

sintering of tubular bi-layer systems. Furthermore, it was validated using densification results from 

sintering of bi-layered tubular supported ceramic oxygen membranes based on porous MgO and 

Ce0.9Gd0.1O1.95-d layers. Results from the analytical model agree well with finite element simulations 

as well as measurements from the experiment.  

In general, the radial stresses in the bi-layered tubular structures are very small throughout the 

sintering cycle as compared to the tangential (hoop) stresses. Processing defects like axial cracks 

and coating peel-offs mainly occur due to the hoop stress, which is maximum at the beginning of 

the sintering cycle. Hence, the model provided in this study could be used to minimize the transient 

stress generations during constrained sintering of tubular bi-layered structures.     

7.1.2. Numerical model  

Finite element models based on the continuum theory of sintering were developed to describe the 

distortions during sintering experiments of bi-layers composed of La0.85Sr0.15MnO3 (LSM) and 

Ce0.9Gd0.1O1.95 (CGO) tapes. Free shrinkage kinetics of both tapes were used to estimate the input 

parameters necessary for the finite element models.  

Systematic studies on the effect of extrinsic factors such as gravity and friction together with the 

initial geometries on the kinetics of distortions of bi-layers during sintering were presented. The 

finite element model simulations were able to capture the observed behaviors of distortions during 

different sets of experiments involving different bi-layers. Some discrepancies are still observed, 

and it was speculated that these were due to stress relaxation near the interfaces of the bi-layers 

due to micro-crack growth. In addition, the possible causes for the observed discrepancies between 

the model and experiments have been discussed. Some of these are:  
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1. Explicit consideration of grain growth while defining the effective viscosity of the porous 

compact during sintering  

2. The linear viscous model, originally developed for bodies that sinter by viscous flow, has 

limitations when it is used for bodies that sinter by solid state diffusion  

3. Activation energy of crystalline bodies could vary as a function of density during sintering, 

as observed by Raether et al.49, which may have contributed to the observed discrepancy as 

constant activation energy throughout the sintering are considered in this study. 

Generally, understanding the effect of factors such as gravity and friction during sintering of multi-

layered porous structures could be helpful to reduce the shape distortion problems usually 

observed during co-firing.      

7.1.3. Multi-scale model  

A new multi-scale modeling procedure using unit cells simulated by the kinetic Monte Carlo (kMC) 

method is developed to be able to model shape distortion during sintering of bi-layer systems. The 

kMC model is able to predict the shrinkage rate as well as the microstructure of the powder 

compact, which is then used to calculate the effective viscosities through homogenization. The 

approach presented here has no limitation on the number of internal parameters considered for 

modeling the densification as well as viscous behaviors of powder compacts.  

Comparison of the normalized shear viscosities calculated using the approach developed in this 

study is found to be in good agreement with other theories from the literature, see Appendix F 

(Paper-VI). Using the new procedures, it was possible to model curvature evolution of bi-layers that 

consist of layers of the same, as well as different materials. The expected behavior of the distortion 

of the bi-layer is observed. The developed multi-scale algorithm can be considered as an extension 

to the continuum theory of sintering in which the kinetic Monte Carlo model is included.  

 

7.2. Outlooks for future works  

Shape distortions during co-firing of multi-layer samples occur not only during the sintering cycle, 

but also throughout the heating and cooling stages. For instance, significant distortions of bi-layer 

samples were observed during de-binding cycle of the heat treatment. In addition, accumulation of 

residual stress also occurs during the cooling cycle, which enhances the need for including the de-



 

58 
 

binding and cooling cycles in the already developed models. Therefore, it is necessary to develop a 

unified model to describe stresses and shape distortions during the entire heating including the 

effect of differential de-binding between the layers and residual stresses during the cooling cycle.  

In addition, enrichment of the developed model could be made so as to capture various three 

dimensional as well as other effects during co-firing process. Some of these could be:  

 Edge curl during sintering of solid oxide fuel cells (SOFCs) 

 Collapse of horizontally sintered tubes because of gravity  

 Friction between the sample and sample support 

 Model variation of curvature inside a production furnace due to gradient in temperature   

Furthermore, modeling of other processing defects, for example crack growth in one of the layers 

and delamination between the layers during sintering of multi-layers could be performed.      

In order to explicitly address the drawbacks of existing models while defining the deformational 

behaviors of sintering bodies, the natural way forward is to extend the existing models with the 

help of multi-scale modeling approaches. An initial work has been reported in this study, which is 

found to be a motivation for further developments. A fully coupled meso-macro scale 3D model 

would be promising to successfully describe the experimental observations during sintering in 

general and co-sintering in particular. In addition to the kMC methods for modeling microstructural 

evolution of the porous body, 3D-models based on DEMs can also be considered together with 

computational homogenization. This approach could be useful for modeling slip between layers and 

crack opening during sintering.      
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Abstract

Shape distortions during constrained sintering experiment of bi-layer porous and dense cerium gadolinium oxide (CGO) structures have been
modeled. Technologies like solid oxide fuel cells require co-firing thin layers with different green densities, which often exhibit differential
shrinkage because of different sintering rates of the materials resulting in undesired distortions of the component. An analytical model based on the
continuum theory of sintering has been developed to describe the kinetics of densification and distortion in the sintering processes. A new approach
is used to extract the material parameters controlling shape distortion through optimizing the model to experimental data of free shrinkage strains.
The significant influence of weight of the sample (gravity) on the kinetics of distortion is taken in to consideration. The modeling predictions
indicate good agreement with the results of sintering of a bi-layered CGO system in terms of evolutions of bow, porosities and also layer thickness.
© 2013 Elsevier Ltd. All rights reserved.

Keywords: Modeling; Sintering; Bi-layer; Distortion

1.  Introduction

Discretely graded ceramic multi-layers are considered to
be promising material structures due to their performances in
the development of various energy efficient electromechanical
systems.1,2 These structures are often produced by laminat-
ing different porous layers and then sintering them together
(co-firing). During co-firing of multi-layers, different densifica-
tion rates can cause development of stresses leading to defects
like cracks and macrostructural distortions.3–11 Asymmetric
arrangement of layers usually relaxes the mismatched stress evo-
lutions by warping and hence creating instabilities in the shape
of the component. For example in the case of planar solid oxide
fuel cell (SOFC) technologies, the deformations in the shape
of the components/cells reduce successful stack assembly, and
thus it is not desired. Therefore there is a growing interest for
understanding how the intrinsic material properties can affect the
evolution of distortion in order to reduce the stress development
and to allow components to be produced with the desired shape

∗ Corresponding author. Tel.: +45 2074 5931; fax: +45 4677 5858.
E-mail address: ttmo@dtu.dk (T.T. Molla).

after co-firing. In this study, this is studied through a combination
of sintering experiments and mechanical modeling.

The introduction of continuum mechanics with linear viscous
material model for porous structures can be seen as an impor-
tant development in addressing the problem of shape distortions
during co-firing of ceramic layers.12,13 Since then there have
been a number of reported works that deal with distortions in
bi-layer ceramic systems. One of these is the work by Lu et al.14

in which the continuum model of sintering is used to describe
the kinetics of densification and curvature evolution, taking the
effect of particle coarsening and grain growth into consideration.
Lu et al. also considered the impact of pore size on the densifica-
tion behavior of each layer into account. From beam theory, the
stress and strain distributions along the section of the layers are
known to be linear, but in the model by Lu et al. a uniform strain
distributions are assumed over each layer, which may affect the
accuracy of the model.

Detailed work on experimental observation of processing
defects and the corresponding viscoelastic stress computation
for constrained densification of alumina/zirconia hybrid lami-
nates has been published by Cai et al.3–15 After measuring the
viscous properties of the constituent layers using cyclic loading
dilatometry, Cai et al. were able to model the bow evolution of

0955-2219/$ – see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.jeurceramsoc.2012.12.019
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bi-layers in good agreement with experimental results. Cai et al.
however did not consider the evolution of thickness of each layer
during densification, which is significant in the case of highly
porous layers.8,16

The linear distribution of strains with the corresponding evo-
lution of thicknesses in each layer has been considered in the
model suggested by Kanters et al.1 Kanters et al. reported a
good agreement of the model prediction of curvature evolution
for two types of bi-layer samples made from nanocrystalline
yttria-stabilized zirconia with different thicknesses.

Kang et al.4 used the models proposed by Cai et al. and Kan-
ters et al. to study a bi-layered system of gadolinium-doped ceria
and a cermet of nickel oxide in a backbone structure of yttria
stabilized zirconia. In both cases, they found a good agreement
of distortion evolutions with the measurements during the sin-
tering. In a similar way, Ollagnier et al.8 compared the models
of Cai et al. and Kanters et al. on bi-layers of porous and dense
low-temperature co-fired ceramics (LTCC) with different initial
thickness ratios. Unlike Kang et al., they found a significant dis-
crepancy between the model predictions and the measurements
of camber for which anisotropy of sintering parameters, effects
of gravity and heating rates were suggested as a cause. Ollagnier
et al. also showed the influence of ratio of initial thicknesses of
the bi-layered system on the amount of camber after the sin-
tering. The importance of gravity is also suggested by Mücke
et al.2 after their experimental observations on SOFC samples
prepared from 8YSZ. Mücke et al. compared curvature evolu-
tions of two samples sintered in vertical and horizontal positions.
They observed reduction in the camber development in the case
of horizontally sintered sample in which the effect of gravity is
significant.2

Modeling the mismatch stresses and curvature of bi-layered
structures with the help of experimental characterization of the
viscous properties of each layer using cyclic load dilatometry
has also been reported by Chiang et al.5 and Ravi and Green.9

Often experimental characterizations of the viscous behavior
of each layer are used to model the curvature evolution during the
sintering process. This requires another set of creep experiments
to independently measure the viscous behaviors of individ-
ual layers.3–10 In most of the works reported, techniques like
cyclic loading5,9 and sinter forging4 are usually used. Cologna
et al.17 also proposed another technique, called vertical sinter-
ing, in which the sample is allowed to sinter vertically under the
influence of its own gravity. A similar way of determining the
viscosity of each layer by measuring the maximum deflection
rate for beams of porous materials that are allowed to deform
under their own weight or under applied loads was also suggested
by Atkinson et al. and Lee et al.18,19 Alternative to these experi-
ments, the capabilities of proven modeling approaches, like the
Skorohod Olevsky Viscous Sintering (SOVS) model,12,13 could
also be used together with one sintering experiment conducted
simultaneously for individual layers and asymmetric bi-layer so
as to study the kinetics of densification in the free layers and
shape distortions in the bi-layer system.

The effect of differential shrinkage is explained very well
to be the factor controlling distortion. But as the studies by
Mücke et al. and Ollagnier et al. showed the weight of the

sample (gravity) also affects the rate of distortion by being an
additional factor generating creep in the porous layers. Thus
with all the important contributions from the works cited, it
is still necessary to modify the modeling approaches so as to
improve the accuracy of the predictions while maintaining them
simple. The work by Frandsen et al.16 from which the basis
for the modeling approach adopted in this study, is built on a
viscous analogy of classical laminate theory, where the effect of
weight of the sample (gravity) on the distortion is considered.

The objective of this study is to present an alternative way
of obtaining material parameters that control shape distortion
from a single dilatometry experiment so as to model kinetics
of densification and distortion in the bi-layer system. Improved
modeling approaches are used in such a way that the effect of
weight of the sample on the distortion evolution is considered to
be another stress generating factor in addition to the differential
shrinkage. Also the thickness evolutions in each layer are con-
sidered through the effective densification of each layer in the
thickness directions. The approach is applied to obtain the kinet-
ics of shrinkage and bow development during the sintering of
porous and dense cerium gadolinium oxide, Ce0.9Gd0.1O1.95−d
(CGO) layers with the help of analytical methods implemented
in Matlab.

2. Cosintering  model

The analysis is made based on continuum theory of sintering,
which describes the macrostructural behavior of a porous body
during sintering. It relates the external load to the strain rate by
nonlinear viscous constitutive relationship.12,13 The continuum
model for linear relationship between the equivalent stress and
strain rates is given by:

σij =  2η0

[
ϕε̇ij +

(
ψ  − 1

3
ϕ

)
ėδij

]
+ PLδij (1)

where η0 is the shear viscosity of the fully dense materials, ϕ

and ψ  are the normalized shear and bulk viscosities, PL is the
effective driving potential for sintering or sintering stress, δij
the Kronecker delta and ε̇ij and ė are the total and bulk strain
rates respectively related to the stress tensor σij .12,13 The nor-
malized shear and bulk viscosities are considered to be functions
of porosity or volume fractions of voids in the porous body, θ,
see Eq. (2). The effective sintering stress is the product of nor-
malized sintering stress and local sintering stress, which is a
function of surface energy per unit area, α, and grain size, G, in
the form shown by Eq. (3).

ϕ =  (1 −  θ)2; ψ  = 2

3

(1 −  θ)3

θ
(2)

PL = 3α

2G
(1 −  θ)2 (3)

The porosity evolution is related to the volumetric densifica-
tion strain using the principle of mass conservation as12:

ė = θ̇

1 −  θ
(4)
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The axial shrinkage rate for freely sintering sample can be
found from the general model in Eq. (1) using the effective
sintering stress, PL as:

ε̇f =  − PL

6η0ψ
(5)

The relationship between the stress tensor, σij , and the viscous
(creep-related) strain rate tensor, ε̇′ij , can be deduced from Eq.

(1) as12:

σij =  2η0

[
ϕε̇′ij +

(
ψ  − 1

3
ϕ

)
ė′δij

]
(6)

For a detailed description of the continuum theory of sinter-
ing, especially of its microstructural assumptions, please refer
the work by Olevsky.12 Note that possible anisotropies of the sin-
tering parameters and of the pore-grain structure are not included
in this analysis.

The shear viscosities of the fully dense bodies are assumed to
vary with temperature, T, in each layer according to the Arrhe-
nius type of viscosity function, see Eq. (7), as suggested by
Reiterer et al.20 to be suitable for the SOVS model.

η0 =  AT  exp

(
Qs

RT

)
(7)

Here A  is the pre-exponential constant, Qs the apparent activa-
tion energy for the range of density in consideration irrespective
of the specific transport mechanism associated with the material
and R  is the universal gas constant.

The simultaneous grain growth during the sintering process
can be considered using a function of time, t, limited by the
activation energy for grain growth, Qg, as shown in Eq. (8).21,28

Here n  is the grain growth exponent depending on the creep or
diffusion mechanism (e.g. n = 2 for Nabarro–Herring creep and
n = 3 for Coble creep) and ko is the pre-exponential constant.21

Gn =  Gn0 +  k0 exp

(−Qg

RT

)
t  (8)

2.1. Stresses  in  bi-layer  system

Consider a bi-layer geometry consisting of thin dense layer
over thick porous layer. The stresses developed in the bi-layer
system that lead to bending of the sample are assumed to be
because of two phenomena occurring simultaneously during
co-firing. These are (1) creep due to stresses from differen-
tial shrinkage and (2) creep induced by the sample own weight
(gravity).

As shown by the schematics of a sectioned bi-layer system in
Fig. 1a, the relative difference in the rate of shrinkage between a
porous thick layer and dense thin layer creates the densification
mismatch, which leads to an internal in-plane force, Nf, and the
bending moment, Mf. For the sample geometry the stress normal
to the interface is very small compared to the in-plane stresses
(σz =  0). So the relative difference in shrinkage generates a biax-
ial state of sintering stress (σ  =  σx =  σy) and a bending moment
that bends the sample towards the porous layer. Considering the

Fig. 1. Schematics showing stress in sintering of bi-layer structure (a) due to
relative difference in shrinkage and (b) due to creep induced by sample own
weight.

above assumptions in Eq. (6), the viscous or creep strain rates,
ε̇′, can be described using the biaxial stress:

ε̇′ = ε̇′x = ε̇′y = 3ψ  +  2ϕ

18η0ϕψ
σ; ε̇′z =  −6ψ  −  2ϕ

18η0ϕψ
σ  (9)

σ =  E′
bε̇

′ =>  E′
b =  η0

18ϕψ

3ψ  +  2ϕ
(10)

This phenomenon can be considered as a creep process due
to the internal sintering stress where the biaxial stress is linearly
related to the viscosity of the porous body, E′

b, which is the prod-
uct of viscosity of the fully dense material and a time dependent
function of porosity, see Eq. (10).16 Note that in this work, pos-
itive curvature is defined when the sample bows towards the
porous layer.

Creep induced by the sample own weight, W, while it sinters
is also another phenomena generating stresses in the bi-layer
structure. Unlike creep due to the internal sintering stress, which
deforms the structure towards the porous layer, creep due to the
weight of the body will oppose the deformation (e.g. negative
curvature) of a flat sintering tape. The reason for this is explained
schematically in Fig. 1b. Since the width of the sample is small
compared to its length, the structure can be considered as a beam
with evenly distributed weight over its length. Therefore, the
creep generates only a uniaxial state of stress (σ  =  σx) due to
the equivalent bending moment, Meq, which opposes the bending
due to mismatch of the sample. Consideration of these assump-
tions into Eq. (6) gives the corresponding viscous or creep strain
rates as:

ε̇′ = ε̇′x = 6ψ +  ϕ

18η0ϕψ
σ; ε̇′y = ε̇′z =  − 3ψ  −  ϕ

18η0ϕψ
σ (11)

σ =  E′
uε̇

′ =>  E′
u =  η0

18ϕψ

6ψ  +  ϕ
(12)

Here also the uniaxial stress is considered to be linearly pro-
portional to other viscosity of the porous body, E′

u, which is
again the product of viscosity of the fully dense material and
another function of porosity, see Eq. (12).16
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2.2.  Kinetics  of  shrinkage  and  distortion  in  the  bi-layer

In the present work, linear distribution of the constrained
strain rate across the section of each layer is assumed. This will
represent the reality better than the uniform strain rate. The vis-
cous analogy of classical laminate theory has been used with
the evolving curvature rate, κ̇, and longitudinal strain rate, ε̇0,
to describe the linear strain rate distribution, ε̇, across the thick-
ness. This is shown in Eq. (13) with z  representing the vertical
coordinate of a point in the layer.

ε̇ = ε̇0 +  κ̇z  (13)

The corresponding distribution of stress is also linear with the
generalized material viscosity, E′, which depends on the evolv-
ing viscosity of the porous body, see Eqs. (10) and (12), and the
difference between the constrained, ε̇, and free or unconstrained
shrinkage rates, ε̇f .16

σ  =  E′ε̇′ =  E′(ε̇− ε̇f ) =  E′(ε̇0 +  κ̇z  − ε̇f ) (14)

E′ =
{
E′
b for biaxial stress

E′
u for uniaxial stress

(15)

The free shrinkage rates are calculated using Eq. (5) and
the longitudinal strain rates, ε̇0, and the curvature rate, κ̇, can
be evaluated applying the equilibrium condition with the vis-
cous analogy of classical laminate theory corresponding to the
stresses and the bending moments in both layers as16:∫

both layers
σdz  =  0 (16)

∫
both layers

σzdz  =  0 (17)

Therefore the constrained strain rate, ε̇, can be obtained with
the help of Eq. (13) for the coordinate point defined by z.  The
evolving porosity, θ, and the thickness, h, of each layer in the bi-
layer are also updated through time considering the total stress
states in each layer during the co-firing.

The lateral contraction ratios, ν′, can be derived considering
the viscous strains for each of the layers as shown in Eqs. (9)
and (11). These parameters are related to porosity using the
normalized shear and bulk viscosities for each stress conditions
as shown by Eq. (18).

ν′ =  − ε̇
′
z

ε̇′x
=

⎧⎪⎪⎨
⎪⎪⎩

6ψ  −  2ϕ

3ψ  +  2ϕ
for biaxial stress

3ψ −  ϕ

6ψ  +  ϕ
for uniaxial stress

(18)

Thus in the SOVS model the lateral contraction ratios are
independent of the material and only depend on the porosity
of the body. This is an assumption built into the SOVS frame-
work, and in general these parameters are difficult to measure
as the lateral strain rate is small compared to other strain rate
components, i.e. the longitudinal strain rate and sintering strain
rates.

The above approaches can be used to solve two parallel prob-
lems simultaneously accounting for the biaxial stresses due to

differential shrinkage and the uniaxial stresses induced by sam-
ple’s own weight (gravity). The curvature evolution due to the
weight of the sample could be approximated by assuming a con-
stant equivalent bending moment, Meq.16 The total curvature rate
is then calculated simulating the simultaneous effects in the same
co-ordinate system. Further theoretical details and derivations of
the model described above can be found in Frandsen et al.16

All the information for shrinkages and curvature development
can be integrated through time according to the sintering profile
used in the experiment if the viscosities of both layers at fully
dense state, i.e. η01 and  η02, and the grain growth kinetics in
each layer, G1 and  G2, are known.

2.3.  Obtaining  the  constitutive  parameters

In this work, an alternative approach to experimentations has
been employed to find the viscous material parameters required
for modeling the shrinkage and curvature development observed
during the entire sintering process. This is achieved through
first modeling the free shrinkage behaviors of individual layers
during the sintering process. The free densification strain rate,
ε̇f , can be described explicitly by combining Eqs. (2), (3) and
(5) with the fully dense body viscosity given by Eq. (7).

ε̇f =  −3

8

α

AGT
exp

(−Qs

RT

)  (
θ

1 −  θ

)
(19)

The surface energy per unit area in each layer can be estimated
which is often in order of 1 J/m2 for most ceramic oxides.1,28

Consider a co-firing process with a temperature profile that con-
stitutes an iso-rate followed by isothermal stages. The grain sizes
at the onset of the iso-rate sintering, i.e. G01 and  G02, and those
at the onset of isothermal temperature, e.g. G′

1 and G′
2, could

be used to estimate the grain growth pre-exponential factors,
k01 and k02, see Eq. (8), if the activation energies for grain growth
are known. This would help to approximate the grain growth
kinetics in the two layers during the entire sintering process as
per the sintering temperature profile.

The model predictions for free shrinkage strain rate, ε̇f , in
each layer can be optimized with the respective experimental
data. This can be done by starting the model simulations with
realistic guesses of the four unknown parameters of the two lay-
ers, i.e. A1,  A2 and Qs1,  Qs2. The unknown parameters can then
be identified as those providing the minimum deviation as per
Eq. (20) between the experimental data and model simulation.

Δ =
⎧⎨
⎩

N∑
i=1

⎡
⎣
(
ε
f,Sim
1 −  ε

f,Exp
1

mean(εf,Exp1 )

)2

+
(
ε
f,Sim
2 −  ε

f,Exp
2

mean(εf,Exp2 )

)2
⎤
⎦
⎫⎬
⎭

1/2

(20)

where εf is free shrinkage strain in the individual layers and
the sum is taken over all N data points in time. A similar
methodology has been used by Garino and Bowen22 to esti-
mate the constrained shrinkage of glass powders using free
shrinkage measurement data and the viscous flow sintering
model suggested by Scherer.23 Therefore the approach adopted
here could be used to approximate the temperature dependent
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Fig. 2. Comparison of the model to the experimental data for free shrinkage
strains.

viscous behaviors of fully dense bodies as per the Arrhenius type
of viscosity function given in Eq. (7) without the need for other
creep experiments.

3. Model  verification  and  discussion

In this study, the experimental data reported by De et al.24

on tapes made from CGO (Rhodia S.A., France) with a specific
surface area of 6.6 m2/g (d50 particle size 0.2 �m) are used for
validating the presented modeling approach. De et al. fabricated
samples that consisted of two layers of CGO tape-casted on top
of each other. One of the layers contained a significant amount of
pre-calcined powder and graphite powder (V-UF1 99.9, Graphit
Kropfmühl, Germany) as a pore former and will be referred to
as CGO P. The other layer has a higher relative density and will
be referred to as CGO D. At the beginning of the sintering, the
relative density and initial thickness of the porous layer was
23 vol.% and 380 �m, respectively. The corresponding dense
layer was 56 vol.% dense and 27 �m thick initially. The dense
and porous tapes of length 24.5 mm and width 5.1 mm were lam-
inated. The samples were subsequently co-fired in a furnace with
a temperature–time profile, which consists of iso-rate firing with
0.83 ◦C/min from 400 ◦C to 1100 ◦C followed by an isothermal
sintering at 1100 ◦C for 4 h. Individual samples of each layer
were also sintered in the same furnace in order to observe the
free shrinkage of each layer. The evolutions of curvature in the
bi-layer sample and shrinkage of the free samples were recorded
in situ using a high temperature furnace equipped with an optical
dilatometer (Fraunhofer-Institute Silicateforschung, Germany).
SEM micrographs taken by De et al. are also used in this study.

From the sintering experiment considered in this study, the
optimization procedure is applied on the two freely sintered sam-
ples to estimate the viscous behaviors of the layers based on the
pre-exponential factors, i.e. A1 and A2, and the apparent acti-
vation energies, Qs1 and Qs2. The free shrinkage strains as a
function of time for CGO P and CGO D layers are shown in
Fig. 2. The porous layer, CGO P shows a faster and larger den-
sification (close to 40%) than the dense layer, CGO D, which
shows less than 20% of shrinkage.

Table 1
Parameters defining the viscous behaviors of the layers.

A (Pa s) Qs (kJ/mol)

CGO P 0.71 ± 0.153 196 ± 4
CGO D 0.03 ± 0.005 208 ±  3

Based on the optimization procedure applied on the free sam-
ples, Fig. 2 again shows comparison between results of the model
and experimental data for free shrinkage strains. Shrinkage in the
dense layer is also observed to bypass the shrinkage in the porous
layer for a short time range in the sintering process. The model
results are in good agreement with experimental free sintering
strain data both for the CGO P and CGO D layers.

The parameters defining the viscous behaviors of each layer
extracted from the optimization approach followed in this study
are shown in Table 1. Theoretically, the porous as well as dense
layers should have equal values of apparent activation energy,
as they are same materials (CGO). But practically there might
be differences due to the fact that both layers were prepared
with different additions. The other reason for higher apparent
activation energy in the case of CGO D can be due to larger
contribution of coarsening to microstructural changes at higher
sintered densities.21 The influence of grain growth on the vis-
cosity of the fully dense body is not explicitly considered in this
work instead both parameters, A  andQs, are made free in the
fitting for each layer. This is made to lump the influence of grain
growth into the viscosity function, η0(T  ). The above assump-
tion of the viscosity function is also consistent with the work
reported by Reiterer et al. Note that no attempt has been made to
link the Qs in Table 1 to a specific material diffusion mechanism
in CGO as suggested by Reiterer et al. Instead they are referred
to be the apparent activation energy for the entire densification
ranges observed in each layer.

The evolutions of uniaxial viscosities of the porous CGO P
and CGO D as a function of temperature estimated after the
respective viscous parameters were found are shown in Fig. 3.
The porous layer is shown to have lower uniaxial viscosity

Fig. 3. Evolution of viscosity of the porous body of each layer, E′
u, during the

iso-rate sintering.
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Fig. 4. Evolution of the lateral contraction ratios as a function of porosity.

compared to the dense one at low temperatures and evolves to
be higher than the dense layer at higher temperatures. This is
consistent with the high rate of densification observed in the
porous layer towards higher temperatures. In addition, the trend
in the evolution of the viscosities are also consistent with the
results reported by Reiterer et al. for ZnO showing the influence
of temperature at the beginning and the evolving density at
higher temperatures. Note that although the two layers are
prepared from the same material (CGO), it is believed that
the different additives to the CGO P affected the pore-grain
interaction and hence the viscous behavior.

The contraction ratios are calculated using the porosity evolu-
tions of each layer in the bilayer system and are shown in Fig. 4
for uniaxial as well as biaxial stress conditions. Note that the
contraction ratio in the biaxial stress condition has nothing to do
with Poisson’s ratio as the later is defined for particular case in
viscous problems i.e. for uniaxial relaxation experiments.25 The
CGO P layer is very porous in the beginning of the sintering,
and the lateral contraction ratios in Eq. (18) attain unrealistic
low values. Therefore minimum value of 0.1 has been imposed.
This has no significant influence on the results.

As mentioned earlier, creep experiments of single layered
specimens could also have been used to obtain these material
parameters. This approach would lead to greater certainty on
the viscosity of the individual layer. It would however also
require more extensive experimental work, as initial sintering
of each layer must be done separately before performing the
creep experiments. In a continuous development of new ceramic
multi-layers the approach used here might be advantageous due
to its simplicity.

While modeling the kinetics of shrinkage and distortion in
the bi-layer system, the linear strain distributions across each
layer are implemented through the viscous analogy of classical
laminate theory which requires a perfect bonding between the
bi-layers. This is confirmed by the SEM image observations of
a section of the bi-layer at the end of isothermal sintering, see
Fig. 5a. There were no sintering defects such as cracks or de-
lamination in the interface of the CGO P and CGO D layers and
this was found to be consistent with the studies by Jean et al.26

Fig. 5. Cross sectional SEM images of the microstructures: (a) CGO D and
CGO P with no defects, (b) CGO D at 875 ◦C after 2 h and (c) CGO P at 875 ◦C
after 2 h.

Cross sectional images of the dense and porous layers at 875 ◦C
after 2 h of holding followed by quenching are also shown in
Fig. 5b and c. The difference in the porosity can clearly be seen.

Using the estimated evolutions of viscosity and grain size
throughout the entire (iso – rate and isothermal) sintering, den-
sifications and the distortion development in the bi-layer system
are modeled for the prescribed temperature profile used in the
experiment. The initial porosities in the bi-layer at the onset
of the sintering process are assumed to be comparable to the
free samples as there were no prior sintering activities. Table 2
shows the different parameters used in the modeling of the entire
sintering process.

The experimental measurements of shape distortion of the
CGO P/CGO D bi-layer is shown in Fig. 6 in terms of bow,
u, which is related to curvature, κ, through the length of the
sample. It is observed that initially the bow bends towards the
dense layer before turning to the porous layer. The effect of
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Table 2
Material parameters used to model densification and distortion in the bi-layer
system.

Parameter CGO P CGO D Source

Surface energy per unit area
(J/m2)

1 1 Estimated

Activation energy for grain
growth (kJ/mol)

413 430 27

Initial mean grain size, G0

(�m)
0.3 0.25 24

Mean grain size at the
holding temperature (�m)

1.0 1.25 Estimated

Initial mean porosity level
(%)

77 44 24

Initial thickness (�m) 380 27 24

Grain growth
pre-exponential factors
(m3/s)

1.0 × 10−7 1.1 × 10−6 Fitted

gravity is also observed to be significant during the last hours of
sintering mainly in the isothermal regime where a decrease in
the bow is clearly observed. This observation is also consistent
with those seen by Ollagnier et al.8

The free sintering samples, especially the porous layer, are
however shrinking throughout the experiment as seen in Fig. 2.
Thus, if not for the gravity, the bow should increase throughout
the experiment as well. The reason for the reduction of the bow
in the final hours is that the sintering rate of the layers decreases,
see Fig. 2, but the effect of gravity remains constant. Thus, at the
same point the bow rate due to sintering decreases to be below
the oppositely directed bow rate of gravity and hence the overall
bow decreases.

The model prediction for the distortion evolution shows a
good agreement with experimental observation as shown in
Fig. 6. The model captured the development of the bow towards
the dense layer due to the initial faster shrinkage observed in
the CGO D before it is reversed to the porous layer. The avail-
ability of pre-calcined powders in the porous layer can make
the average initial grain size in the CGO P larger than CGO D

Fig. 6. Comparison of the model to the experimental data for distortion (u)
during the entire sintering.

Fig. 7. Model predictions for porosity evolutions throughout the sintering pro-
cess and experimental measurements at the end of the sintering.

slowing densification in the porous layer initially. This is fol-
lowed by an initial curvature increase towards the dense layer.
Shortly after, however, the high amount of porosity and slower
grain growth in the porous layer allows faster densification in
the CGO P followed by curvature increase towards the porous
layer.

The model is also able to indicate the decreasing trend of the
evolution of bow in the final hours of the sintering due to gravity.
For the sake of comparison, the modeling approach reported by
Cai et al. is also implemented parallel to the approach followed in
this study, see Fig. 6. It is clear to see the significance of consid-
ering weight of the sample or gravity especially in the last hours
of the sintering experiment which is mainly in the isothermal
regime. The influence of gravity in the iso-rate sintering is very
small as the comparison reflects a similar evolution of bow due
to higher sintering activities in both layers. The observed dis-
crepancies between the model and experimental results in Fig. 6
are believed to be caused by friction between the sample sup-
port surface and of the sample edges while it deforms. Possible
anisotropies of densifications from the tape casting might also
be an explanation.

Apart from predicting the shape distortion, the model pre-
dictions of the final porosities are also in good agreement with
the results measured from the SEM studies, see Fig. 7. As is
expected, the porosity of the CGO P layer shows a fast and
large reduction compared with the reduction of the dense layer,
CGO D. Note that the model predicts only the average value as
a function of time in each layer as the porosity variation across
the thickness of the layer is beyond the scope of this study. The
impact of constraint stress on the evolution of porosity in each
layer has also been studied. Fig. 8 shows the ratio of porosity
evolutions in the constrained and free samples as a function of
time. The effect of constraint related stress on the CGO P is
shown to be minor and the porosity evolution in the CGO P is
almost unaffected. This is due to the magnitude of the constraint
stress which is not large enough to affect the porosity evolution.
These results are consistent with the observations reported by
Frandsen et al.16 However, there is a significant retardation of
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Fig. 8. Ratio of porosities in the constrained and free samples during the entire
sintering cycle.

Fig. 9. Model predictions for thickness evolutions throughout the sintering pro-
cess and experimental measurements at the end of the sintering.

porosity evolution in the thin CGO D layer due to the constraint
from the highly shrinking thick CGO P layer as observed in the
final hours of the sintering cycle.

The large reduction of thickness for CGO P layer and almost
no reduction in thickness for the CGO D layer are also predicted
by the model. The final thickness results predicted by the model
agree with the experimental data as shown in Fig. 9. In the case
of CGO D a reduction of the thickness followed by thickening
of the layer is predicted by the model in the final stage of the
sintering. The thickening of the layer is found to be difficult to
verify using the SEM images due to the small thickness changes
(in order of 1 �m). However, this can be because of the compres-
sive stress on the already dense CGO D layer due to the bending
moment induced by the weight of the sample in the final stage
of the sintering.

4. Conclusions

Experimentally observed behaviors of shrinkage and bow
development during sintering of bi-layer sample of porous and

dense cerium gadolinium oxide (CGO) layers were studied. With
the help of the new method proposed, data collected from one
optical dilatometry experiment conducted simultaneously for
individual layers and asymmetric bi-layer porous structure was
sufficient to model kinetics of densification and shape distortion.

The viscous parameters, i.e. the pre-exponential factors and
the apparent activation energies in the Arrhenius-type viscos-
ity function were first determined as those providing the least
deviation between the free shrinkage strains recorded in the
experiment and those obtained by the model.

During the experiment, the bi-layer system is observed to
have a reversal of the shape around half of the sintering time
and reduction in the bow mainly in the isothermal sintering. The
first one is believed to be because of an initial faster shrinkage in
the dense layer due to the various additives. The reason for the
later reduction in the camber growth was deducted to be due to
weight of the sample or gravity, because the free sintering sam-
ples are observed to sinter throughout the experiment. However
the influence of gravity is shown to be minimal in the iso-rate
sintering stage as there are high amount of sintering activity in
the porous thick layer.

The model is able to capture all the important phenomenon
of shape changes observed during the experiment. The signifi-
cant evolution of layer thickness in the porous thick layer could
also justify the need to consider it in the modeling of curva-
ture together with the corresponding linear distribution of strain
across the thickness.
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Theoretical analyses of shrinkage and distortion kinetics during

sintering of bilayered porous structures are carried out. The

developed modeling framework is based on the continuum theory
of sintering; it enables the direct assessment of the cofiring

process outcomes and of the impact of process controlling

parameters. The derived “master sintering curve”-type solu-

tions are capable of describing and optimizing the generic
sintering shrinkage and distortion kinetics for various material

systems. The approach utilizes the material-specific parame-

ters, which define the relative kinetics of layer shrinkages such

as the relative intensity of sintering, and employs the conver-
sion between real and specific times of sintering. A novel meth-

odology is also developed for the determination of the ratio of

the shear viscosities of the layer’s fully dense materials. This
new technique enables the determination of all input parame-

ters necessary for modeling sintering of bilayers using experi-

mental techniques similar to optical dilatometry applied to

each individual layer and to a symmetric trilayered porous
structure based on the two-layer materials utilized in the bilay-

ered system. Examples of sintering different porous bilayered

systems are presented to justify the capability of the model in

predicting and optimizing sintering kinetics.

I. Introduction

I N accordance with the ISI Web of ScienceTM, the total
number of refereed publications related directly or indi-

rectly to sintering of multilayered composite structures
exceeded 1,500 in 2012. The interest toward this area is driven
in particular by the growing demands of understanding of the
cofiring process outcomes when sintering laminated ceramic
tapes employed in fuel cell components1–5 and in multilayered
elements of electronic circuitry fabricated by LTCC technol-
ogy (Low-Temperature Co-Fired Ceramics).6–14

Apparently, the first theoretical analysis of the stress devel-
opment during sintering of laminated composites has been con-
ducted by Cheng and Raj15 in the end of 1980s. One of the first
studies of the constrained shrinkage kinetics in cofired LTCC
films has been carried out by Lu et al.16 This work assumed
that the in-plane strain rates are negligible compared with the
strain rates of free sintering, which allowed a significant simpli-
fication of model equations. The analysis of sintering-enabled
distortions of bilayered laminated component shapes as well as

of stress distribution within the individual layers has been intro-
duced in the end of 1990s by Cai et al.,6–8 who pioneered the
cyclic dilatometry approach for the determination of the con-
stitutive properties (viscosity and sintering stress) of layer mate-
rials. The modeling framework developed by Cai et al.,6–8

however, did not take into account the impact of the differen-
tial shrinkage on the sintering kinetics in the individual layers.
Similar approach has been utilized by Jean and Chang.17–19 In
the course of 2000s, Olevsky et al.,20–22 R€odel et al.,2,9,23–25

and Molla et al.,26 developed models of cosintering of bilayered
structures which enabled coupled analysis of densification and
of stress buildup in two-layer porous systems. These studies
were based on the conceptual framework of the constrained
linear-viscous sintering constitutive behavior described in the
publications of Bordia and Scherer,27 Olevsky and Skorohod,28

and others. This modeling approach allows the direct applica-
tion of the solutions obtained in the context of linear elastic
behavior of laminated composites to the analysis of the cosin-
tering process in multilayered structures.

The respective problems of the deformation of multilay-
ered laminated composites have been considered by many
authors starting from the fundamental work of Stoney30 pub-
lished in the beginning of 20th century. Stoney’s famous
equation describes residual stresses developed in a bilayer
structure, i.e., of a thin film deposited on a substrate. It is
suitable only for small deposit-to-substrate thickness ratios.
More general relationships describing curvature and stresses
of a distorted bilayered structure have been introduced by
Timoshenko in 1925.31 Timoshenko’s approach assumes
small aspect ratios of the bilayered objects, therefore, in case
of composites with comparable length/width-to-thickness
ratios, the respective equations have to be modified.27 Timo-
shenko’s equations have been utilized in a number of publi-
cations directly or in adjusted forms for the derivation of the
bending curvature rate and stresses developed during sinter-
ing of bilayered composites.1,2,7,10–12

The solutions of the thermoelastic problems of the defor-
mation of bi- and multilayered structures have been further
developed toward various applications in the area of sensors
and actuators.27–29 Many of the publications in this field
include useful relationships that can be employed for the
analysis of linear-viscous sintering problems.

Schoenberg et al.12 introduced a finite-element solution of
the problem of sintering of bilayered powder specimens, and
Olevsky et al.13 developed a multiscale sintering modeling
framework in which the evolution of the pore-grain structure
was simulated at the mesoscale using a kinetic Monte Carlo
model32–34 and provided the values of the sintering constitu-
tive parameters utilized in the finite-element solutions of the
problems of bilayered porous structure sintering.

Most of the published to date works on the sintering of
multilayered structures have been concentrated on the
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analysis of the overall structure distortion (curvature radius)
and on the assessment of the stresses developed in cosintered
composites. However, the current industrial practice (in par-
ticular, in the areas of fuel cell components, gas purification
devices, etc.) demands the development of cofired multilay-
ered structures with controlled levels of porosity in the indi-
vidual layers. In this connection, the present work is focused
on the explicit description of the shrinkage kinetics of the
individual layers fully coupled with their distortions and stress
evolution. Along with this, we describe a detailed methodol-
ogy allowing the direct application of sintering models for the
description of cofiring of bilayered structures. This methodol-
ogy enables semianalytical engineering level solutions which
do not require the usage of comprehensive finite-element
codes.† Such approach renders the possibility of the direct
assessment of the cofiring process outcomes and of the impact
of process controlling parameters. Due to the normalized
form of the derived equations, the developed modeling frame-
work provides “master sintering curve” type of solutions
which are capable of describing the generic shrinkage and dis-
tortion kinetics for various material systems. Part 2 of this
work35 presents the application of the method to model the
kinetics of shrinkage and distortion in an experiment on
sintering a bilayer cerium gadolinium oxide.

II. General Model Basis

The linear-viscous version of the continuum (in general,
nonlinear) theory of sintering28 is provided by the following
constitutive relationship:

rij ¼ 2g0 u _eij þ w� 1

3
u

� �
_edij

� �
þ PLdij (1)

where rij is a stress tensor’s component, _eij is a strain rate
tensor’s component, g0 is the shear viscosity of a fully dense
material, u and w are the normalized shear and bulk
viscosities, dij is the Kronecker symbol (dij = 1 if i = j and
dij = 0 if i 6¼ j), _e is the first invariant of the strain rate
tensor, i.e., sum of tensor diagonal components:
_e ¼ _eii ¼ _e11 þ _e22 þ _e33. Physically, _e represents the volume
change rate of a porous body. The porosity h is defined as
the volume fraction of voids in a porous body.

Effective sintering stress PL is the product of the local sin-
tering stress PL0 ¼ 3a

G (a is the surface tension, G is the aver-
age particle radius) and of the normalized effective sintering
stress �PL ¼ 1

2 1� hð Þ2:

PL ¼ PL0
�PL ¼ 3a

G
�PL ¼ 3a

2G
1� hð Þ2 (2)

The normalized shear and bulk viscosities φ and w are
defined as:

u ¼ 1� hð Þ2;w ¼ 2

3

ð1� hÞ3
h

(3)

Free sintering is characterized by the absence of externally
applied stresses (rij = 0, _ef ¼ 3 _ef), hence Eq. (1) renders:

�PL ¼ 2g0w _ef ¼ 6g0w _ef (4)

where _ef is the free sintering volume shrinkage rate and _ef is
the free sintering linear strain rate:

_ef ¼ � PL

6g0w
(5)

Based on the conservation of mass, one can derive an
important continuity equation, which interrelates the volume
shrinkage and porosity rates _e and _h:

_e ¼
_h

1� h
(6)

Substituting (2), (3), and (4) in (6), one obtains:

_h
h
¼ � 9a

8g0G
(7)

Integrating Eq. (7) provides the porosity kinetics during free
sintering:

h ¼ h0e
�3

8ss (8)

where h0 is the initial porosity and τs is the specific dimen-
sionless time of sintering, defined as:

ss ¼ 3

Z t

0

a
g0G

dt (9)

where t is the physical time of sintering. Thus, the porosity
kinetics for free sintering is characterized by an exponential
porosity decrease with an asymptotic approaching a fully
dense state, when porosity becomes negligible.

If isothermal sintering conditions and negligible grain
growth are assumed, all the parameters in Eq. (9) become
time invariant and the integral converts into a dimensionless
product: ss ¼ 3a

g0G
t. Using Eq. (8) the specific time of sinter-

ing can be determined based on the dilatometry data for a
given porous material.

III. Sintering of Bilayered Porous Laminates:
Model Framework

Let us consider a porous bilayered body distorted in the pro-
cess of sintering due to the differential shrinkage of the layers
(Fig. 1).

Fig. 1. Schematics of the bilayered porous composite.

†When utilizing a finite-element solution, it is a common practice to assess the
obtained FE results by averaging the spatially distributed parameter values over a cer-
tain part of the considered system’s volume (e.g., to calculate the average porosity of a
given layer). This information, however, is directly available from the semi-analytical
solution.
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Each of the two layers’ evolving porosity is assumed to be
h1 and h2, respectively; the layers’ evolving thicknesses are h1
and h2, respectively; initial thicknesses are h01 and h02,
respectively; the layers are assumed quadratic with length
and width equal to l. Possible intrinsic anisotropy of the
pore-grain structure is not included in the analysis.

For each layer, the portions of the axial strain rates
imposed by the constraining stress caused by the other layer
can be represented in the rectangular system of coordinates
as:

_e0x ¼ _ex � _ef ; _e0y ¼ _ey � _ef ; _e0z ¼ _ez � _ef (10)

where “ ′ ” denotes the distortion (constraint-related) strain
rate components, obtained after subtracting the free sintering
rates _ef from the total strain rate components. The con-
straint-related volume shrinkage rate is as follows:

_e0 ¼ _e0x þ _e0y þ _e0z (11)

based on Eqs. (1), (4), (10), and (11), the normal stress
components for each layer are as follows:

rx ¼ 2g0 u_e0x þ w� 1

3
u

� �
_e0

� �
;

ry ¼ 2g0 u _e0y þ w� 1

3
u

� �
_e0

� �
;

rz ¼ 2g0 u _e0z þ w� 1

3
u

� �
_e0

� �
(12)

due to the absence of constraints in the direction perpendicu-
lar to the layers’ interface (in z direction): rz = 0.

Based on Eqs. (10)–(12), one can obtain

_e0x ¼
2wþ u

3

6g0uw
rx � ry

w� u
3

2wþ u
3

� �
;

_e0y ¼
2wþ u

3

6g0uw
ry � rx

w� u
3

2wþ u
3

� �
;

_e0z ¼
2wþ u

3

6g0uw
� rx þ ry

� � w� u
3

2wþ u
3

� �
(13)

for an in-plane symmetrical bi-layered system (a bi-layered
plate‡):

r ¼ rx ¼ ry; _e0 ¼ _e0x ¼ _e0y (14)

Substituting Eq. (14) into Eq. (13), the normal stresses
within each layer can be calculated:

ri ¼ 6 _e0ig0iui for i ¼ 1 to 2 (15)

where indices “1” and “2” refer to the first and the second
layer, respectively.

(1) Kinetics of Shrinkage and Distortion Based on the
Assumption of Linear Strain Rate Within Individual Layers
Assuming the linear distribution of the longitudinal strain
rates in the direction perpendicular to the interface of the
i-th layer, and taking into account the shrinkage of the
layers’ thicknesses:

_ei ¼ _e0 þ _jzþ sgnðzÞj
_hi
hi
z (16)

where j is the curvature.
Then normal stresses within each layer, based on Eqs. (15)

and (16):

ri ¼ 6g0iuið _e0 þ _jzþ sgnðzÞj
_hi
hi
z� _efiÞ (17)

In the spirit of classical laminate theory, parameters _e0
and _j (rate of curvature change) can be determined based on
the force (N) and moment of force (M) equilibrium:

or:

N ¼ A _e0 þ B _jþ j
Pn
i¼1
�1ð Þ1þn _hi

hi

� �
�Nf

M ¼ B_e0 þD _jþ j
Pn
i¼1
�1ð Þ1þn _hi

hi

� �
�Mf

8>><
>>: (19)

where:

A¼Pn
i¼1

6g0iui zi�zi�1ð Þ; B¼Pn
i¼1

6g0iui
z2i �z2i�1

2 ;D¼Pn
i¼1

6g0iui
z3i �z3i�1

3

Nf¼
Pn
i¼1

R zi
zi�1

6g0iui _efidz;Mf¼
Pn
i¼1

R zi
zi�1

6g0iui _efizdz

8>>>><
>>>>:

(20)

Hence:

_e0 ¼ D NþNfð Þ�BðMf þMÞ
AD�B2

_j ¼ �B NþNfð ÞþAðMf þMÞ
AD�B2 � j

Pn
i¼1
�1ð Þ1þn _hi

hi

8><
>: (21)

To obtain simple expressions the coordinate system can be
located so that parameter B is equal to zero. This condition
means no coupling between the curvature change rate and
the cross-sectional normal force, as well as no coupling
between the strain rates at that axis and the bending
moment. The coordinates of the layer external boundaries
and the interface coordinate can then be written as:

N ¼
Z z1

z0

rdzþ . . .þ
Z zi

zi�1
rdz. . .þ

Z zn

zn�1
rdz ¼

Xn
i¼1

Z zi

zi�1
rdz ¼

Xn
i¼1

Z zi

zi�1
6g0iuið _e0 þ _jzþ sgnðzÞj

_hi
hi
z� _efiÞdz

M ¼
Z z1

z0

rzdzþ . . .þ
Z zi

zi�1
rzdz. . .þ

Z zn

zn�1
rzdz ¼

Xn
i¼1

Z zi

zi�1
rzdz ¼

Xn
i¼1

Z zi

zi�1
6g0iuið _e0 þ _jzþ sgnðzÞj

_hi
hi
z� _efiÞzdz

8>>><
>>>:

(18)

‡For a bi-layered beam, Eq. (15) would have a form: r ¼ 18g0uw
3wþ2u _e0
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z ¼ ½z0 � h1; z0; z0 þ h2� (22)

where z0 is the distance between the bilayer interface and the
desired coordinate system. Calculating B with the assumption
in Eq. (22) provides,

B ¼ 3g01u1ðz20 � ðz0 � h1Þ2Þ þ 3g02u2ððz0 þ h2Þ2 � z20Þ
(23)

which, if solved for z0 for B = 0, leads to:

z0 ¼ 1

2

g01u1h
2
1 � g02u2h

2
2

g01u1h1 þ g02u2h2
(24)

parameters A, D, Nf, and Mf then become

A¼6g01u1h1þ6g02u2h2

D¼3
2

4 g2
01
u2
1
h4
1
þg2

02
u2
2
h4
2½ �þ5 g

01
u
1
g02u2 h3

1
h2þh1h32ð Þ½ �þ2g01

u
1
g02u2h

2
1
h2
2

g01u1h1þg02u2h2

Nf¼ 6g01u1h1 _ef1þ6g02u2h2 _ef2
� 	

Mf¼3g01u1h1g02u2h2 h1þh2ð Þ _ef1�_ef2ð Þ
g01u1h1þg02u2h2

8>>>><
>>>>:

(25)

In free sintering conditions, N = 0 and M = 0. Then
parameters _e0 and _j are determined as:

The average strain rate in each of the layers equals that in
the center of the layer as the strain rate distribution is linear.
These will be denoted as �_e1 and �_e2:

�_e1 ¼ _e0 þ _jþ j
_h2
h2
� _h1

h1

h in o
z0 � h1

2

� �
�_e2 ¼ _e0 þ _jþ j

_h2
h2
� _h1

h1

h in o
z0 þ h2

2

� �
8<
: (27)

For thin layers, 1
hi
� j, therefore, one can neglect the term

j
_h2
h2
� _h1

h1

h i
in Eq. (27). Hence, Eq. (27) can be rewritten as:

�_e1 ¼ _e0 þ _j z0 � h1
2

� �
�_e2 ¼ _e0 þ _j z0 þ h2

2

� �
(

(28)

where the curvature rate or the second equation in Eq. (26)
is simplified as:

_j ¼ _ef1 � _ef2

2
g01u1h

3
1
þg02u2h

3
2

h1þh2ð Þ
1

g01u1h1
þ 1

g02u2h2

h i
þ h1þh2

2

(29)

Equation (29) is the viscous analogy of the known Timo-
shenko’s equation31 for the bending of bimetal strips. In
Eq. (29), both free sintering strain rates _ef1 and _ef2 [see
Eq. (5)] and the normalized viscous shear moduli u1 and
u2 [see Eq. (3)] are functions of porosity evolving during
sintering. Layer thicknesses h1 and h2 also change during
the sintering process. Therefore, to find the kinetics of
the bending curvature, Eq. (29) should be coupled with
the evolution equations for both layer porosities and
thicknesses.

Let us consider the procedure of the derivation of such
evolution equations. Eq. (1) can be rewritten for the 1st and
the 2nd layer as (for stress z-axis component):

�PLi ¼ 2g0i ui _ezi þ wi �
1

3
ui

� �
_ezi þ 2 _exið Þ

� �
; i ¼ 1; 2

(30)

Based on Eqs. (5), (10), (26), (28), and (29), the average
strain rates in each layer in the direction parallel to the layer
interface are as follows:

�_ex1 ¼ �
u1h1

PL1
6w1
þu2h2

PL2
6w2

g01u1h1þg02u2h2
þ

1
12

PL2
g02w2

� PL1
g01w1


 �
g02u2h2 ðh1þh2 Þ

g01u1h1þg02u2h2

2
g01u1h

3
1
þg02u2h32

h1þh2ð Þ
1

g01u1h1
þ 1

g02u2h2

h i
þh1þh2

2

�_ex2 ¼ �
u1h1

PL1
6w1
þu2h2

PL2
6w2

g01u1h1þg02u2h2
þ

1
12

PL1
g01w1

� PL2
g02w2


 �
g01u1h1 ðh1þh2 Þ

g01u1h1þg02u2h2

2
g01u1h

3
1
þg02u2h32

ðh1þh2Þ
1

g01u1h1
þ 1

g02u2h2

h i
þh1þh2

2

8>>>>>><
>>>>>>:

(31)

based on Eqs (30) and (31), the evolution of the layer
thicknesses and the respective strain rate components are
related as:

_ezi ¼
_hi
hi
¼ �

PLi

2g0i
þ 2 wi � 1

3ui

� �
�_exi

wi þ 2
3ui

; i ¼ 1; 2 (32)

Equation (6) for each layer can be approximated by:

_hi
1� hi

¼ _ei ¼ _ezi þ 2�_exi ¼
� PLi

2g0i
þ 2ui

�_exi

wi þ 2
3ui

; i ¼ 1; 2 (33)

Expressions (31)–(33) define a set of ordinary differential
equations with respect to the four functions of time: h1, h2,
h1, and h2. Equation (29) can be coupled with the above-
mentioned equations to determine the evolution of the bend-
ing curvature.

The kinetic equations allow normalization, which enables
the generalization of the obtained solution. The dimension-
less form of the equations makes the solution applicable to
various materials systems (similar to “master sintering curve”
analyses).

Introducing the normalized form of the geometrical
parameters (index “0” refers to the initial parameter value)
and also utilizing dimensionless parameters (ξ and k):

�h1 ¼ h1
h01

; �h2 ¼ h2
h02

; �j ¼ j
1= h01 þ h02ð Þ ;

v ¼ h02
h01

; n¼g02

g01

; k ¼ PL02=g02
PL01=g01

(34)

and taking into account the modified dimensionless specific
time of sintering [see Eq. (9)], Eqs. (29) and (31)–(33) can be
rearranged in the normalized form:

_e0 ¼ Nf

A ¼
g01u1h1 _ef1þg02u2h2 _ef2

g01u1h1þg02u2h2

_j ¼ Mf

D � j
Pn
i¼1
�1ð Þ1þn _hi

hi
¼ 2g01u1h1g02u2h2 h1þh2ð Þ _ef1� _ef2ð Þ

4 g2
01
u2
1
h4
1
þg2

02
u2
2
h4
2½ �þ5 g

01
u
1
g02u2 h3

1
h2þh1h32ð Þ½ �þ2g01

u
1
g02u2h

2
1
h2
2

þ j
_h2
h2
� _h1

h1


 �
8><
>: (26)
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d�h1
dss
¼ ��h1

�PL1
2 þ2 w1�1

3u1ð Þ��_ex1
w1þ2

3u1
; d�h2

dss
¼ ��h2

k
�PL2
2 þ2 w2�1

3u2ð Þ��_ex2
w2þ2

3u2

dh1
dss
¼ 1� h1ð Þ �

�PL1
2 þ2u1

��_ex1
w1þ2

3u1
; dh2

dss
¼ 1� h2ð Þ �k

�PL2
2 þ2u2

��_ex2
w2þ2

3u2

d�j
dss
¼

1
6

k �PL2
w2
� �PL1

w1

h i
1þvð Þ

2
u1

�h3
1
þnv3u2 �h32
�h1þv�h2

1
u1

�h1
þ 1

nvu2
�h2

h i
þ�h1þv�h2

2

8>>>>>>><
>>>>>>>:

(35)

where

��_ex1 ¼ �
u1

�h1
�PL1
6w1
þknvu2

�h2
�PL2
6w2

u1
�h1þnvu2

�h2
þ

1
12

k �PL2
w2
� �PL1

w1


 �
vnu2

�h2
�h1þv�h2ð Þ

u1
�h1þnvu2 �h2

2
u1

�h3
1
þnv3u2 �h32
�h1þv�h2ð Þ

1
u1

�h1
þ 1

nvu2
�h2

h i
þ�h1þv�h2

2

��_ex2 ¼ �
u1

�h1
�PL1
6w1
þknvu2

�h2
�PL2
6w2

u1
�h1þnvu2

�h2
þ

1
12

�PL1
w1
�k �PL2

w2


 �
u1

�h1
�h1þv�h2ð Þ

u1
�h1þnvu2 �h2

2
u1

�h3
1
þnv3u2 �h32
�h1þv�h2ð Þ

1
u1

�h1
þ 1

nvu2
�h2

h i
þ�h1þv�h2

2

8>>>>>><
>>>>>>:

(36)

the normal stresses in the layers can be determined from
Eqs. (5), (15), and (31):

r1 ¼ 6g01u1ð �_ex1 � _ef1Þ;r2 ¼ 6g02u2ð �_ex2 � _ef2Þ (37)

The normal stresses in the normalized form
(�ri ¼ 2ri= PL1 þ PL2ð Þ; i ¼ 1; 2) are given by:

�r1 ¼ u1
��_ex1 �

�PL1

6w1

� �
; �r2 ¼ u2

��_ex2 � k
�PL2

6w2

� �
(38)

(2) Kinetics of Shrinkage and Distortion Based on the
Assumption of Strain Rate Uniformity Within Individual
Layers
Expressions (35)–(38) can be significantly simplified if one
assumes that longitudinal strain rates are uniformly
distributed along the thickness of each layer. This assump-
tion can be accepted for thin layer structures. In such
a case, the force equilibrium in a bilayered system is
given by:

r1h1 ¼ �r2h2 (39)

from Eqs. (15) and (39):

_e01g01u1h1 ¼ � _e02g02u2h2 (40)

the strain rate compatibility is given by:

_e1 ¼ _e01 þ _ef1; _e2 ¼ _e02 þ _ef2; _e1 ¼ _e2 (41)

Hence,

_e02 � _e01 ¼ _ef1 � _ef2 (42)

from Eqs. (40) and (42) we obtain the expression for the con-
straint-related strain rate components within individual layers:

_e01 ¼
_ef2 � _ef1

� �
g02u2h2

g01u1h1 þ g02u2h2
; _e02 ¼

_ef1 � _ef2
� �

g01u1h1

g01u1h1 þ g02u2h2
(43)

based on Eqs. (5), (41), and (43), the radial strain rates in
each layer are as follows:

_ex1 ¼ _e01 � _ef1; _ex2 ¼ _e02 � _ef2 (44)

from Eqs. (32), (33), and (44), one can obtain:

Similarly to expressions (31)–(33), Eq. (45) defines a set of
ordinary differential equations with respect to the four func-
tions of time: h1, h2, h1, and h2.

Equation (45) can be rewritten in a normalized form:

The normal stresses in the normalized form can be deter-
mined from Eqs. (5), (15), and (43) considering the parame-
ters in Eq. (34)

�r1 ¼ 2
u1

w1

u2

w2

nv w2 � w1k
�PL2
�PL1


 �
�h2

1þ knð Þ u1
�h1 þ nvu2

�h2
� 	 ;

�r2 ¼ 2
u1

w1

u2

w2

n w1k
�PL2
�PL1
� w2


 �
�h1

1þ knð Þ u1
�h1 þ nvu2

�h2
� 	

(47)

Three-dimensionless parameters: v, ξ, and k defined in
Eq. (34) have to be known for solving the set of expressions
in Eqs. (35) or (46). Parameter v (the initial thickness ratio)
is available from the measurement of the initial bilayered
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geometry. Parameter k can be obtained through the direct
comparison of the data on the free sintering dilatometry con-
ducted with the material of each individual layer. Parameter
ξ (the ratio of shear viscosities of fully dense materials of
two layers) would usually require an independent experiment
on the sintering under a known external load. In Section IV,
we describe a way to circumvent the necessity of the pres-
sure-assisted sintering experiment. Using the described
approach, one can obtain the ratio of shear viscosities of
fully dense materials of two layers ξ through a sintering
experiment conducted on the multilayered system with a special
geometrical layer arrangement.

IV. Sintering of Trilayered Symmetrical Laminates:
Determination of the Ratio of Shear Viscosities of Fully

Dense Layer Materials

In the case of a trilayer porous laminate sintering, an
approach similar to the one employed for the analysis of
bilayered composites is used. Eq. (15) is modified as:

ri ¼ 6 _e0ig0iui for i ¼ 1 to 3 (48)

An interesting particular case of a trilayered system is a
symmetric laminate, which comprises two identical layers at
both sides of another layer (Fig. 2). This system has been
analyzed in terms of the cosintering residual stress buildup
by Cai et al. 6,7 and by Ollagnier et al.25 Due to its symme-
try, this system should not experience any bending (under
ideal uniformity conditions, neglecting edge effects, and pos-
sible delamination).

It will shrink both perpendicular and parallel to the layer
thickness directions. As shown below, the analysis of the
respective geometrical changes in this system subjected to sin-
tering provides the assessment of a useful constitutive param-
eter – the ratio of the shear viscosities of the fully dense
materials of the respective layers. This parameter value can
then be utilized when modeling cosintering of asymmetric bi- and
trilayered (as well as, in general, multilayered) porous systems.

The conditions of the force equilibrium and the compatibil-
ity of the layers’ strain rates [see Eqs. (39)–(42)] are given by:

r1h1 þ r2h2 þ r3h3 ¼ 0

_ei ¼ _e0i þ _efi; for i ¼ 1 to 3

_e1 ¼ _e2 ¼ _e3

(49)

and:

_e01g01u1h1 þ _e02g02u2h2 þ _e03g03u3h3 ¼ 0
_e02 � _e01 ¼ _ef1 � _ef2
_e03 � _e02 ¼ _ef2 � _ef3

8<
: (50)

Similarly Eqs. (43):

_e01 ¼ g02u2h2 _ef2�_ef1ð Þþg03u3h3 _ef3� _ef1ð Þ
g01u1h1þg02u2h2þg03u3h3

_e02 ¼ g03u3h3 _ef3�_ef2ð Þþg01u1h1 _ef1� _ef2ð Þ
g01u1h1þg02u2h2þg03u3h3

_e03 ¼ g02u2h2 _ef2�_ef3ð Þþg01u1h1 _ef1� _ef3ð Þ
g01u1h1þg02u2h2þg03u3h3

8>>><
>>>:

(51)

in the case of a symmetric trilaminate, the following relation-
ships are valid:

_e01 ¼ _e03; g01 ¼ g03; u1 ¼ u3; h1 ¼ h3 (52)

the substitution of Eq. (52) into Eq. (51) results in:

_e01 ¼ _e03 ¼
g02u2h2 _ef2 � _ef1

� �
2g01u1h1 þ g02u2h2

; _e02 ¼
2g01u1h1 _ef1 � _ef2

� �
2g01u1h1 þ g02u2h2

(53)

the trilayered composite’s length (in the direction parallel to
the interface) will shrink according to:

_l

l
¼ _ex ¼ _e01 þ _ef1 ¼

g02u2h2 _ef2 � _ef1
� �

2g01u1h1 þ g02u2h2
þ _ef1 (54)

taking into account Eq. (5):

_l

l
¼ �

u1

w1
PL1h1 þ u2

w2
PL2h2

6 2g01u1h1 þ g02u2h2ð Þ (55)

The normalized form of Eq. (55) is (�l ¼ l=l0, where l0 is
the initial length of the composite laminate) as follows:

d�l
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¼ �

u1

w1

�PL1 þ knv u2

w2

�PL2
�h2
�h1

6 2u1 þ nvu2
�h2
�h1


 � �l (56)

The ratio ξ of the shear viscosities of the fully dense mate-
rials of the respective layers can be found from the following
equation:

n ¼ � 2

v
u1

u2

�h1
�h2

�PL1

w1

�lþ 6 d�l
dss

h i
6 d�l
dss
þ k

�PL2

w2

�l
h i (57)

It should be noted that the developed concept can be gen-
eralized for solving problems on sintering multilayered sys-
tems. For example, if we consider sintering of an asymmetric
trilayered system (a–b–c), two ratios of the shear viscosities
of the fully dense materials of respective layers can be found
from the simultaneous dilatometry of the two symmetric tri-
layered systems (a–b–a and b–c–b) based on the respective
layer combinations.

V. Sintering of Bilayered Porous Laminates: Calculation
Results

The set of ordinary differential equations in (35) and (46) has
been solved by using Matlab. The solutions in terms of the
kinetics of both layer porosities, of normalized thicknesses,
and of bending curvature are shown in Figs. 3 and 4 for dif-
ferent sets of input parameters. Figure 3 provides the results
for the sintering of two layers composed of the same material
(i.e., k = ξ = 1) having different initial porosities
(h01 = 0.3, h02 = 0.5). Both layer thicknesses are assumed
equal in the beginning of sintering (v = 1). The solution ofFig. 2. Schematics of the symmetric trilayered porous composite.
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the kinetic equations is also coupled with expressions (37)
and (47) describing the evolution of normal stresses in both
layers.

The calculation results indicate more rapid shrinkage
of the second layer, which has higher initial porosity. Its

thickness decreases during the process (for the duration of
τs = 5) by more than 30%, whereas the thickness of the first,
initially more dense layer, decreases only slightly. The curva-
ture increases monotonically throughout the entire cosinter-
ing process. The first slowly shrinking layer experiences

(a) (b)

(c) (d)

Fig. 3. Evolution of porosity (a), layer thickness (b), curvature (c), and normal stresses (d) in a bilayered composite of L1 and L2 (same layer
material with different initial layer porosities) during cosintering: initial layer porosities h01 = 0.3, h02 = 0.5, k = 1, ξ = 1, v = 1.

(a) (b)

(c) (d)

Fig. 4. Evolution of porosity (a), layer thickness (b), curvature (c), and normal stresses (d) in a bilayered composite of L1 and L2 (different
layer material with the same initial layer porosities) during cosintering: initial layer porosities h01 = 0.5, h02 = 0.5, k = 4, ξ = 0.25, v = 1.
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compressive stresses imposed on it by the faster shrinking
second layer, which is under tensile stresses. The magnitude
of stresses decreases during sintering – it is the highest in the
beginning of the process. This fact indicates higher probabil-
ity of in-sintering damage at the onset of cofiring when the
stress level is the highest and the material strength is the low-
est due to high porosity values in the beginning of sintering.

Figure 4 provides a sample solution for the cosintering of
two different materials with the same initial porosity
(h01 = h02 = 0.5). Free sintering of the material of the second
layer is assumed to be four times faster than the free sinter-
ing of the material of the first layer (i.e., k = 4). The differ-
ence in the free sintering rates is attributed to the difference
in shear viscosities of the fully dense material substances,
therefore, it is assumed that n ¼ 1=k ¼ 0:25. The thicknesses
are assumed equal in the beginning of sintering (v = 1).

In this case, the rate of shrinkage of the second layer is
higher due to the higher sinterability of its material (four
times higher than that of the first layer, k = 4). Hence, the
second layer reaches almost full density at about τs = 2 when
the first layer is still approximately 12% porous. At the point
of time, when porosity of the second layer is less than 10%,
the distortion direction changes, see Fig. 4(c), as indicated by
the normalized curvature evolution. The much more porous
(about 30% versus about 10%) first layer’s shrinkage causes
the relatively densified second layer to change the bending
direction, which flattens out the overall composite to a cer-
tain degree. This geometrical transformation is accompanied
also by the increase in the second layer thickness, which
reaches its minimum at the same point of the bending direc-
tion reversal. The stress sign reversal occurs almost at the
same point of time (slightly earlier), when initially subjected
to tensile stress second layer starts experiencing a compres-
sive load. This compressive load applied to the almost fully
dense second layer results in the above-mentioned increase in
its thickness due to the low compressibility of the material
with low porosity level. That is, the in-plane shrinkage is
compensated by a thickness increase (creep). Note that the
average stress in the layer only gives partial information
because (1) a layer can be globally under tension, but some
part of it might nevertheless be under compression and (2)
the average stress might be much lower than the maximum
stress, which is important to predict fracture.

Note that in both types of material systems, the calcula-
tions are performed based on the linear as well as uniform
strain distributions across the thickness of the layers as per
the solutions in Sections III(1) and (2), respectively.

Figure 5 demonstrates the optimization capability of the
developed algorithm: it includes the stress evolution analysis
for the comparative case of two bilayered composites of the
same features with different ratio of initial layer thickness (v).

The results in Fig. 5(a) indicate that if the thickness of the
first layer, with lower sinterability, is smaller than the thick-
ness of the second layer which has higher relative intensity of

sintering by a factor of 4 (v = 4), then the maximum tensile
stress in the second layer drops almost by a factor of 2 (see
Fig. 4 for stresses with v = 1). The opposite effect is also
shown in Fig. 5(b), in which case v = 0.5. This fact can serve
as a basis for the technological recommendation on increas-
ing the thickness of the second layer material to decrease the
probability of possible in-sintering damage due to excessive
tensile stress buildup.

Figure 6 includes another example of the usage of the
developed model framework for controlling the cosintering
outcomes. It shows the dependence of the final normalized
curvature �j ¼ j= 1= h01 þ h02ð Þ½ � (at τs = 10) on the initial
layer thickness ratio v. It is assumed that the initial layer
porosities are h01 = 0.3, h02 = 0.5. Two representative cases
are considered: layers composed of the same material (k = 1,
ξ = 1); and the layers composed of different materials and
hence different sinterabilities (k ¼ 3

2; n ¼ 2
3 – it is again

assumed that the difference in the free sintering rates is due
to the difference in shear viscosities of the fully dense mate-
rial substances).

The results shown in Fig. 6 indicate that the final curva-
ture can be controlled by manipulating the initial layer thick-
ness ratio. By increasing the thickness of the second layer
one can significantly reduce the residual curvature. In the
limiting case, the curvature goes to zero, when the thickness
of the first layer is negligible compared with the thickness of
the second layer and vice versa. The calculation results indi-
cate also that intrinsic material sinterability may be manipu-
lated to counteract or enhance the sinterability due to the
porosity level (by choosing an appropriate level of the initial

Fig. 6. The dependence of the final normalized curvature (at
τs = 10) of the sintered bilayered composite on the initial layer
thickness ratio: it is assumed that the initial layer porosities are
h01 = 0.3, h02 = 0.5.

(a) (b)

Fig. 5. Evolution of normalized stresses for two cases with different ratios of layer thicknesses (different layer material with the same initial
layer porosities) during cosintering: initial layer porosities h01 = 0.5, h02 = 0.5, k = 4, ξ = 0.25, v = 1, (a), v = 4 and (b), v = 0.5.
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porosity). The former principle (counteraction) can be natu-
rally utilized for equalizing the shrinkage rates in both layers
and thereby for the reduction in the final curvature. Interest-
ingly, Fig. 6 demonstrates that the latter principle (enhance-
ment) can be also employed for decreasing the final
distortion level. Indeed, when switching from the same mate-
rial system (k = 1, ξ = 1) to the system composed of materi-
als with different sinterabilities (k ¼ 3

2; n ¼ 2
3), the final

normalized curvature level drops on average by a factor of 3.
This is the result of the rapid densification of the layer 2 fol-
lowed by the consecutive reversal of the bending direction
due to the continuing shrinkage of the layer 1 (similar to the
effect reflected in Fig. 4).

It should be noted that the results of the calculations shown
in Figs. 3–6 are based on the assumption that the parameters k
and ξ are constant, which corresponds to the conditions of
isothermal sintering. In the case of sintering with varying
temperature (e.g., iso-rate sintering), the specific time of sinter-
ing should be determined based on one of the layers and hence
based on the evolving values of the parameters k and ξ too.

VI. Conclusions

A model framework enabling engineering level solutions of
the problems of sintering of bi and trilayered porous systems
has been developed. Two types of solutions are suggested
based on uniform and linear strain distributions across the
thickness of each layer. The capabilities of the modeling
framework are explained by two types of bilayer systems sin-
tered in isothermal conditions. It is shown that the solutions
from the uniform as well as linear strain distributions across
the layers agree well. The elaborated solutions allow not only
the predictions but also optimizations of the sintering out-
comes by controlling the system initial geometry and structure
characteristics as well as by adjusting the sintering regime.
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Experimental analyses of shrinkage and distortion kinetics dur-
ing sintering of bilayered porous and dense gadolinium-doped

ceria Ce0.9Gd0.1O1.95�d structures are carried out, and com-

pared with the theoretical models developed in Part I of this
work. A novel approach is developed for the determination of

the shear viscosities ratio of the layer fully dense materials.

This original technique enables the derivation of all the input

parameters for the bilayer sintering modeling from one set of
optical dilatometry measurements, including the conversion

between real and specific times of sintering, the layers’ relative

sintering intensity, and the shear viscosities ratio of the layer

fully dense materials. These optical dilatometry measurements
are conducted simultaneously for each individual layer and for

a symmetric trilayered porous structure based on the two lay-

ers utilized in the bilayered system. The obtained modeling pre-

dictions indicate satisfactory agreement with the results of
sintering of a bilayered cerium–gadolinium oxide system in

terms of distortion and shrinkage kinetics.

I. Introduction

ALIOVALENT-DOPED ceria is an important class of materials
that offers high stability, tolerance against harsh envi-

ronments, and high ionic and electronic conductivity at high
temperatures. Particularly, trivalent-acceptor–doped ceria is
used in several electrochemical applications because at high
temperatures and under low oxygen activity, e.g., in fuel
atmospheres, it is a mixed ionic and electronic conductor
(MIEC), whereas in oxidative conditions at intermediate tem-
peratures it is an almost pure and fast ionic conductor. Gad-
olinium 10% molar-doped ceria Ce0.9Gd0.1O1.95�d (CGO10)
has attracted much interest as electrolyte material for inter-
mediate-temperature solid oxide fuel cells (IT-SOFCs), as
ceramic component in Ni-based ionic conductor-composite
anodes in SOFC and as oxygen transport membranes (OTM)
for high-temperatures applications in hydrocarbons conver-
sion.1–7 Particularly in the latter application, the partial oxi-
dation with direct feed of pure oxygen from OTM is an
efficient and clean process which results in the desired prod-
uct ratio of H2/CO suitable for Fischer–Tropsch synthesis.7

For many of such technologies CGO is shaped as dense

membrane components to separate different gases reacting in
the electrochemical processes. High performances in real
operative conditions are usually ensured by reducing the
thickness of the membrane film to few microns. Thin films
usually need to be supported mechanically by thicker layers
in multilayer systems where a support layer is used. The main
requirements for the support layer are to be chemically com-
patible, mechanically stable, porous to allow the diffusion of
the gas species toward the membrane, and to have compara-
ble coefficient of thermal expansion (CTE) with the mem-
brane layer to avoid critical thermal stresses. The processing
route for the multilayer systems’ fabrication typically includes
shaping of each layer as tapes by tape-casting procedure from
designed slurries.7 The tapes are then laminated or cocasted
together in a multilayer system to be finally sintered simulta-
neously by a cofiring sintering procedure. The multilayer sys-
tem after sintering in many cases should be flat to allow
further processing steps such as the deposition of porous cata-
lysts, electrodes, etc., as well as to ensure a proper stacking
and sealing of the membrane components in the final device.

The selection of the materials for the porous support layer
of CGO10 membrane is, however, not trivial because
CGO10 has relatively low mechanical strength, and any ther-
mal expansion difference in the support layer which would
exceed 0.1%–0.3% can create tensile stresses in the mem-
brane that may well be critical for its integrity.8–11 Moreover,
ceria-based materials often undergoes a large chemical
expansion in chemically reducing conditions6; this can drasti-
cally limit the choice of materials compatible with CGO for
the support and the choice of other layers. Therefore, design-
ing and processing of multilayer systems should involve cru-
cial steps to overcome such issues. An effective and reliable
solution commonly adopted to control critical stresses
between the layers is to use the same materials for both the
dense membrane and the porous support. However, although
the bilayered CGO10 with different density level does not
present CTE or chemical expansion mismatches, different
densification rates and total shrinkage of the layers during
cofiring, due to the different porosity level, can still easily
lead to shape distortions and stress buildup. The cofiring
procedure is thus highly important in the ceramic multilayer
technology and a full control of the sintering parameters is
particularly essential to ensure the necessary flatness (or spe-
cific configuration) and quality of the final shape. In Part I
of this work, a theoretical model analyzing the shrinkage and
distortion kinetics during sintering of bilayered structures has
been developed.12 Here, it is applied to study the cofiring of
bilayered porous support and dense membrane CGO10 struc-
tures and the modeling results are compared with the experi-
mentally observed results.

R. Bordia—contributing editor

Manuscript No. 32473. Received December 14, 2012; approved April 10, 2013.
†Author to whom correspondence should be addressed. e-mail: dwei@dtu.dk and

deweini2013@gmail.com

2666

J. Am. Ceram. Soc., 96 [8] 2666–2673 (2013)

DOI: 10.1111/jace.12374

© 2013 The American Ceramic Society

Journal



II. Sintering of Porous CGO Laminates: Experimentation

Powders with ultra–low surface area (ULSA) of CGO10
(Rhodia S.A., La Rochelle Cedex, France) were used for the
development of the membrane and support layers. The spe-
cific surface areas of the starting powder were measured by
the BET method to be 6.6 m2/g (particle size d50: ~0.2 lm).
Some CGO10 powder was further heat-treated at 1100°C for
2 h and then milled. The specific surface area was reduced to
~5 m2/g with homogenous particle size distribution (d50:
~0.4 lm). For the preparation of the membrane and support
layers, Co3O4 powder was used as sintering aid. This was
added to the CGO10 dry powder in 2% molar content and
mixed by mechanical milling. The resulting powder mixture
was dispersed in a methylehylketone and ethanol (MEKET)-
based suspension with polyvinylpyrrolidone (PVP) as disper-
sant and polyvinylbutyral (PVB) as binder.7 The resulting
slurry for the tape casting was homogenized by ball-milling
for 72 h. For the preparation of the dense membrane, the
precalcined powders were combined using the raw CGO10
powders with a ratio of 1:1. CGO10 slurry for the porous
support structure was prepared in a similar way, but using
only precalcined powders and graphite powder (V-UF1 99.9,
Graphit Kropfm€uhl, Hauzenberg, Germany) as the pore for-
mer. Slurries for the preparation of dense membranes and
porous supports were tape casted on Mylar� foil at constant
speed (30 cm/min) in a controlled environment with a blade
clearance around 300 lm for dense membranes and 1200 lm
for porous support. Below, tape materials for dense mem-
brane and porous support are named CGO_D and CGO_P,
respectively. Final thickness of the CGO_D was approxi-
mately 150 lm and the support CGO_P was around 500 lm
(green tapes after drying). Before sintering, a slow debinder
cycle at 400°C was applied to avoid damage of the tapes, as
will be discussed in detail in Section II (3). Further reduction
in the thickness due to the debinding process led to estimated
thickness of around 30 and 400 lm for CGO_D and
CGO_P, respectively.

The microstructure of the membrane thin film and support
CGO10 layers was investigated by field-emission scanning
electron microscopy (FE-SEM; Supra, Carl Zeiss, Oberko-
chen, Germany). Freeware software ImageJ� was used for
the image analysis of the porosity from the SEM images with
the aim to have a comparison with the porosity calculated
from the dilatometry data. The image analysis of the SEM
data was carried out by using a binary mask with a suitable
threshold value at grain-pore boundaries. However, for
porosity in the nano-range, the contrast between the grains
and the pores was provided with low resolution, causing a
large uncertainty in the estimation of the porosity. Also, in
general, the porosity determined from two-dimensional slices
of a sample may be overestimated.13 The SEM images were
taken at random positions in the samples, and the samples
are assumed to be uniform in terms of the microstructure.

(1) Material Systems
As shown in the companion study,12 the analysis of the
shrinkage kinetics in a symmetric trilayer system along with
the dilatometry data on the free sintering of the individual-
layer materials allows the determination of the complete set
of constitutive parameters for the study of the shrinkage
and distortion during sintering of the respective bilayered
composite. Therefore, the conducted experimental efforts
involved the tests necessary for obtaining the input parame-
ters for modeling (sintering of the individual-layer materials
and sintering of a symmetric trilayered laminate) as well as
the test necessary for the model result validation (sintering
of a bilayered laminate). All the above-mentioned tests
could be conducted simultaneously under the same condi-
tions provided by the optical dilatometry system described
below.

The multilayered CGO10 samples used in the optical dila-
tometry and other sintering tests were assembled by the lami-
nation of the CGO_D and CGO_P tapes together, whereas
individual materials were prepared by tight rolling and press-
ing each tape separately. Individual CGO_D and CGO_P
tapes were rolled and pressed to obtain “bulky” sample of
the thin layers which could be measured using dilatometry.
Final shapes of the samples were obtained by cutting the
rolled tapes in cylindrical chips of about 3–5 mm in length
and 2–3 mm in diameter. The asymmetric CGO_D–CGO_P
bilayered sample was obtained by colamination of the
CGO_D and CGO_P green tapes, both oriented along the
tape-casting direction. A further lamination of the CGO_P
tape on the CGO_D–CGO_P bilayer sample was carried out
to assemble the symmetric CGO_P-CGO_D–CGO_P trilay-
ered system. Final shape of the laminated samples was
obtained by stamping and punching rectangular shapes out
from the green material. Table I shows geometrical size and
porosities of laminated samples before debinding (green after
drying) and the final size after sintering. Debinding process
of the sample was carried out directly during the optical dila-
tometry measurement. Actual sizes of the samples after
debinding were not measured because of the shape distor-
tions and the poor mechanical properties of the samples after
the debinding process. Therefore, SEM observations and the
measurement of the individual-layer thickness before sinter-
ing were performed on presintered samples at 875°C for 2 h.
Here, both the bilayer and trilayer samples had an average
thickness of about 26 and 400 lm for CGO_D and CGO_P,
respectively (i.e., thickness of individual CGO_D and
CGO_P layers after debinding before sintering). The micro-
structural evolution during the treatment at 875°C for 2 h is
assumed not to have introduced significant changes to the
microstructure.

(2) Experimental Setup for Processing and Sintering Video
Monitoring
Dilatometric measurement was performed simultaneously on
the different samples in an optical dilatometer (TOMMI,
Fraunhofer ISC, W€urzburg, Germany). This allows for the
sample shape evolution during sintering to be followed >in
situ, by simply collecting the sequential images (i.e., a video
sequence) of the samples’ silhouettes projected by a source of
visible light onto a high definition camera. After heat treat-
ment, the asymmetric laminate shows large bending due to the
different shrinkage of the CGO_D and CGO_P layers. At the
same time, the symmetric trilayered laminate and the rolled
tapes showed shape stability maintaining a similar flat shape
during the densification. Rolled tape samples were oriented

Table I. Geometrical Parameters and Porosities Before
Debinding and After Sintering for the Laminated Samples

Obtained by the Optical Dilatometry Measurements†

Geometric parameter

Symmetric

trilayered laminate

Asymmetric

bilayered laminate

Initial size h01 (CGO_D) 0.15 mm 0.15 mm
h02 (CGO_P) 0.50 mm 0.50 mm
l0 27.4 mm 24.5 mm
b0 4.3 mm 5.1 mm

Final size h1, f (CGO_D) 0.02 mm 0.02 mm
h2, f (CGO_P) 0.28 mm 0.28 mm
lf 20.2 mm 19.3 mm
bf 2.9 mm 3.3 mm
h1, f (CGO_D) 1.0 � 0.4% 1.6 � 0.3%
h2, f (CGO_P) 27.7 � 3.6% 27.3 � 3.6%

†l, b, and h are the length, width, and thickness of the multilayer, respec-

tively. The subscript 0 and f refer to the initial and final size, respectively. The

subscript 1 and 2 refer to the layer CGO_D and CGO_P, respectively. The

porosity (h) was evaluated from SEM images.
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along the length of the sample lying in the projection plane in
the way to allow measuring the evolution of the samples’
shrinkage in the direction of the length of the cylindrical
samples. TOMMI’s software included tools to measure the
shrinkage of the thick rolled tape along different directions
(width and height). The measurement of the shrinkage of the
thin symmetric trilayered system was performed manually
using the image frames taken at different temperatures.

(3) Processing Conditions and Results
The complete thermal cycle of the processing of the multilay-
ered systems and rolled tapes, including debinding step and
sintering, was performed directly in the optical dilatometer to
avoid moving the samples with possible mechanical failure
after the debinding step. The thermal cofiring cyclogram used
in the optical dilatometry measurement and in the fabrication
of samples used for the SEM investigation of microstructures
includes debinding, sintering, and cooling cycles. The debind-
ing cycle includes a slow heating ramp at 0.25°C/min step
from r.t. to 400°C and an isothermal treatment step at 400°C
for 4 h aimed to remove the organic component from the
samples. Sintering cycle was performed by an iso-rate heating
ramp step up to 1100°C at 0.834°C/min rate, followed by an
isothermal treatment step at 1100°C for 4 h. The cooling of
the samples was at 1.67°C/min.

(A) Free Sintering of Individual Layers: The optical
dilatometry results were collected both as sequence of images
of the samples’ silhouettes (video) and as plots of the samples
size and/or shape with time and temperature. Assuming the
free sintering shrinkage isotropic, the relative density evolu-
tion is calculated based on the dilatometry data and on the
measured final density of the sample, as estimated from SEM
images, using the following equation:

q ¼ qf
ð1þ ðDlÞfl0

Þ3

ð1þ Dl
l0
Þ3

(1)

Figure 1(a) shows the densification process of CGO_D
rolled tape measured by monitoring the shape evolution at
TOMMI dilatometer as a function of time (red points) and
temperature (black points) in the different steps of the sinter-
ing cycle, starting from 400°C. Data show a continuous den-
sification of the CGO_D sample starting from a temperature
of around 745°C with relative density (hereafter r.d.) values
of around 56% as a result of the debinding process. Rapid
increase in the density at 800°C–900°C (see point A at
875°C: r.d. 63%) is followed by an almost full densification
at 1100°C already during the iso-rate heating (see also point
B at 1100°C: r.d. 98%) and a completion of densification at
the isothermal step at 1100°C (see point C at 1100°C: r.d.

100%). Low sintering temperatures for the CGO sample
observed in Fig. 1(a) compared with conventional pure CGO
in other works were attributed to both the homogenous dis-
persion of the CGO powder in the slurry 14 and to the use of
cobalt oxide as the sintering aid.15

Figure 1(b) shows the densification process measured
monitoring the shape evolution of the CGO_P rolled tape at
TOMMI dilatometer as a function of time (red points) and
temperature (black points) in the different steps of the sinter-
ing cycle. CGO_P sample shows a lower starting density
(~24%) than CGO_D because of the large amount of the
binder and the pore former used in the slurry. Similar to
CGO_D, the densification of CGO_P was also activated at
around 745°C but, due to the large amount of porosity, with
a lower rate of the densification during the iso-rate step,
which led to r.d. = 26% at 875°C [point A in Fig. 1(b)] and
r.d. = 46% at 1100°C [point B, Fig. 1 (b)]. Isothermal sinter-
ing at 1100°C for 4 h left residual porosity in the layer of
around 26% [r.d. = 74%, point C in Fig. 1(b)].

Relative density of CGO_D and CGO_P samples showed
in Fig. 1 was calculated assuming that the shrinkage of the
sample was isotropic and considering the geometrical features
of the samples before and after the dilatometry. To support
these calculations with a direct observation of the samples’
microstructure, SEM observations were carried out on the
postmeasured samples and on the samples treated following
the same thermal cycle and interrupting the treatment at
selected temperatures. Figure 2 shows SEM images of the
CGO_P (a) and CGO_D (b) after dilatometry (bottom), with
thermal cycle interrupted at 1100°C after 0.1 h and after a
thermal treatment at 875°C for 2 h. As shown in Fig. 1,
despite some further densification could occur at 875°C dur-
ing the holding compared with the zero-time measurement in
the dilatometry, 2 h holding was applied to ensure that the
samples had necessary mechanical properties to allow for
SEM preparation. SEM observation and image analysis con-
firmed the measurements at the optical dilatometer showing
a full densification for CGO_D sample and r.d. = 72%~75%
for the sample CGO_P postdilatometry. Estimation of poros-
ity of the samples treated at 1100°C for 0.1 h by image anal-
ysis procedure confirmed the dilatometric results indicating
an almost complete densification in CGO_D above 93% and
a residual porosity of about 45% in CGO_P. The specimen
can continue to densify during cooling, especially, if the
experiment is interrupted at the highest sintering rate. That is
why the porosity of CGO_P treated at 1100°C for 0.1 h is
relatively lower compared with the dilatometry result
[Fig. 1(b)]. Whereas this influence on CGO_D is negligible as
it is almost fully densified after heat treatment at 1100°C for
0.1 h. As large amount of nano-metric porosity was still
present in the samples at low temperatures [see also Fig. 2(a)
and (b) top], image analysis failed to evaluate the relative
density of the samples treated at 875°C. It is also found that

(a) (b)

Fig. 1. Results of optical dilatometry for CGO_D (a) and CGO_P (b) free sintering.
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no anisotropic microstructure was observed in SEM images
(Fig. 2). This validated that the assumption of isotropic
shrinkage in relative density calculation is reasonable.

Some of the samples used in the study, especially for those
samples treated at the higher temperatures, showed the pres-
ence of the cobalt oxide, which was used as the sintering aid,
as an extraphase at grain boundaries or at triple points of
the polished cross sections. An example of the cobalt oxide
segregation is shown in Fig. 2(b) (arrows) where the presence
of the extraphase was easily detected in the fully dense
CGO_D matrix treated at 1100°C and in the postdilatometry
structures.

(B) Sintering of Bilayered System: Figure 3 shows the
shape evolution with time (red points) and temperature
(black points) of the bilayered laminated system. The mea-
sured value was the maximum deflection R reached by the
sample during debinding and sintering steps (see also pictures
inserted in Fig. 3). The sample was placed with CGO_D
layer at the top and CGO_P at the bottom in contact with
the furnace. Conventionally for this work, R was taken

positive with the sample bending downward and negative
upward. Adopting such a convention it can be recognized
that the sample bent in two different directions during the
debinding process below 400°C. Shape distortion during de-
binding was expected and can usually be mitigated by
smooth and slow heating treatments. Due to the debinding
process, the sample resulted upward bent starting from
400°C up to 700°C. At higher temperatures during the iso-
rate treatment, the cosintering of the layers occurred. At a
first step, different shrinkage led to further contraction of the
top layer (CGO_D) up to 980°C followed by a rapid inver-
sion of the bending direction ascribed to a rapid shrinkage of
the bottom layer (CGO_P) in the last part of the iso-rate
treatment. At the last step of the process, the isothermal
treatment at 1100°C for 4 h led to a slight and progressive
reduction in R (red plot) due to a probable effect of creep,
gravity, or further contraction of the CGO_P layer in the
final stage of sintering.16,17

Figure 4 shows SEM observations on postdilatometry
bilayered laminated specimen (bottom) and on the same sam-
ple treated following the thermal cycle and interrupted at
1100°C for 0.1 h and at 875°C after 2 h (top). The observa-
tion on the microstructures in Fig. 4 reveals the effect of the
sintering heat treatment on the individual layers in the bilay-
ered laminate. CGO_D resulted to be fully dense after the
scheduled thermal treatment in accord with the postdilatome-
try (r.d. = 98.4 � 0.3%) SEM analysis, although at 1100°C
for 0.1 h it presented large fraction of nano-porosity uni-
formly spread in the cross section; CGO_P showed slightly
higher porosity (2%–4%) compared with the free sintering of
the individual CGO_P rolled tape (Fig. 2 bottom left). A
comparison with the individual CGO_D sample in Fig. 2,
treated under same conditions, points out a different degree
of densification in the bilayered sample which was most
probably due to the effect of stress (and strain) induced by
the CGO_P support layer. To interpret such a behavior it is
necessary to recognize the shape evolution of the bilayered
sample showed in optical dilatometry in Fig. 3: the densifica-
tion of the support layer is fully activated at temperatures
above 980°C leading to a remarkable bending of the sample
downward. Such a change in the sample shape will lead to
an imposed stress on the CGO_D layer affecting its densifica-

Fig. 3. Results of optical dilatometry for CGO_D–CGO_P bilayer
system.

(a) (b)

Fig. 2. Results of SEM characterization during sintering
(interruptive) and postoptical dilatometry for (a) CGO_P rolled tape
and (b) CGO_D rolled tape.

(a) (b)

Fig. 4. Results of SEM characterization during sintering
(interruptive) and postoptical dilatometry of the CGO_D–CGO_P
bilayered system for (a) CGO_P and (b) CGO_D.
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tion process. The top CGO_D layer, although ultimately
subjected to shrinkage, was thus under a tensile stress
induced by the shape distortion. These conditions led also to
a slight increase in the layer thickness from around 26 lm at
875°C for 2 h to above 27 lm at 1100°C for 0.1 h, as
expected for mass conservation.

(C) Sintering of Symmetric Trilayered System: Com-
pared with sintering of a bilayered laminate, a different stress
state was observed in the symmetric trilayered system.
Figure 5 shows the relative length (l) shrinkage of the sym-
metric trilayered CGO_P–CGO_D–CGO_P laminate with
time (red color) and temperature (black color) during the
thermal cycle. Conversely, to the asymmetric sample, the tri-
layered laminate maintained a flat shape both during the de-
binding and along all the sintering steps. A slight relative
shrinkage around 5% of the sample initial size was observed
during the debinding step. Further shrinkage of around 15%
(total 20%) was observed at temperatures above 850°C with
a continuous contraction in the iso-rate step up to 1100°C. A
further densification of about 5% (total 25%) was also
resulted in the final isothermal step.

Figure 6 shows SEM analysis of the postdilatometry tri-
layered laminated specimen (bottom) and of the same sample
treated following the thermal cycle interrupted at 1100°C for
0.1 h and at 875°C for 2 h. For both the CGO_P and
CGO_D layers, the postdilatometry images in Fig. 6 show
comparable microstructures to those obtained in the bilay-
ered sample (Fig. 4) and to the individual tapes rolled sam-
ples (Fig. 2). All the CGO_D postdilatometry specimens
(trilayered, bilayered, and individual tapes rolled samples)
were fully dense. As shown in Table I, the amount of poros-
ity in CGO_P in the trilayered laminated postdilatometry
specimens (27.3 � 3.6%) resulted in comparable values with
those in the CGO_P in the bilayer postdilatometry specimens
(27.7 � 3.6%), but slightly higher than those for the individ-
ual CGO_P rolled-sample postdilatometry specimens (~26%).
This fact indicates a certain influence of the stress developed
in the multilayer on the final microstructures. As shown in
Fig. 6, the CGO_D layer reached almost full densification
after the interrupted treatment at 1100°C for 0.1 h
(r.d. = 99.0 � 0.4%, as shown in Table I). Such a result indi-
cates that the stress/strain generated during the iso-rate treat-
ment of the symmetric configuration is favorable to the
densification of the CGO_D layer, which was opposite to the
conditions observed and discussed above for the asymmetric
bilayered sample [Fig. 4(b)]. Moreover, a general overview
and comparison between the microstructures showed in
Figs. 6(a) and (b) for the CGO_P and CGO_D at 875°C for
2 h with the other samples treated under the same conditions
shown in Figs. 2 and 4 indicated that the layers have compa-

rable features after debinding and that the effect of grain
growth is negligible.

III. Assessment of Modeling and Experimental Data

(1) Determination of Input Parameters for Modeling
Based on the theoretical framework described in Part I of this
work,12 the modeling of sintering of a bilayered system
requires nine input parameters. Those include four initial
dimensions (layer initial length l0, initial width b0, and two ini-
tial layer thicknesses:h01 and h02), two initial porosities h01 and
h02, and three sintering constitutive parameters: the conversion
factor PL01=g01 from the real time to specific time (ss) of sin-
tering, the layers’ relative sintering intensity k, and the ratio ξ
of the shear viscosities of the fully dense layer materials. The
geometrical parameters and porosities are listed in Table I. In
the modeling processes, the initial porosities h01 and h02of the
bilayer are assumed to be similar to the trilayer sample.

The conversion between the real and specific time of sin-
tering can be obtained based on expression (8):
h ¼ h0 expð�3

8ssÞ obtained in the companion study.12 Figure 7
shows the results of the free sintering conducted for two indi-
vidual layers (CGO_D and CGO_P) in terms of the real time
of sintering and the specific time of sintering as a function of
temperature. The determined specific time of sintering is
based on the dilatometry data for the CGO_P material. The
curves shown in Fig. 7(a) represent the respective truncated
portions of the curves provided by Fig. 1. The truncation,
which provides the analysis starting point at about 745°C,
has been conducted to distinguish the pure sintering densifi-
cation stage of processing avoiding the debinding-related
phenomena and omitting the initial sintering period when no
essential shrinkage is present.

The layers’ relative sintering intensity k is based on eq.
(34) in the companion study.12 It can be determined from the
expression:k ¼ h1

h2
dh2
dh1

. To find the derivative dh2
dh1

in the latter
relationship, the layer porosities can be plotted with
respect to each other (Fig. 8). The conducted regression
provided the analytical relationship:h2 = (0.093 � 0.002)ln
(h1) + (0.835� 0.006), which in turn, resulted in the following
assessment:k ¼ 0:093

h2
. The fitted expression is purely chosen

for the quality of the fit and is not based on any physical

Fig. 5. Results of optical dilatometry for CGO_P–CGO_D–CGO_P
trilayer system.

(a) (b)

Fig. 6. Results of SEM characterization during sintering
(interruptive) and postoptical dilatometry of the CGO_P–CGO_D–
CGO_P trilayered system for (a) CGO_P and (b) CGO_D.
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model. The regression of the obtained data provides the
expression for k as a function of specific time of sintering:
k = 0.1224exp(0.375ss).

The determination of the ratio ξ of the shear viscosities of
the fully dense layer materials is based on eq. (57) of the com-
panion study12 derived for the case of the sintering of a sym-
metric trilayer system. To utilize the above-mentioned
equation, the normalized linear shrinkage rate d�l=dss, the evo-
lution of the ratio of the normalized thicknesses �h2

�
�h1, and

the evolution of layer porosities h1and h2 should be known.
The linear shrinkage rate of the symmetric trilayer CGO_
P–CGO_D–CGO_P system is provided by the optical dila-
tometry (Fig. 5) and plotted versus specific time of sintering
in Fig. 9. The regression of the experimental data provides:

Dl
l0
¼ ð�0:015� 0:001Þs3s þ ð0:11� 0:004Þs2s � ð0:269
� 0:005Þss þ ð0:003� 2� 10�4Þ

Again, the fitted expression is purely chosen for the quality
of the fit and is not based on any physical model. Thus, the
normalized linear shrinkage rate can be described by the rela-
tionship:

d�l

dss
¼ �0:0477s2s þ 0:2256ss � 0:2698

The optical dilatometry data does not contain information
on the kinetics of the porosity and layer thickness evolution.

The conducted SEM characterization of the sintered speci-
mens as well as the initial specimen geometry data provide
the initial and final values of layer thicknesses, tape widths
and porosities (Table I). It should be noted that the experi-
mentally observed differences in the shrinkage rates along the
tape width and length directions indicate an impact of sinter-
ing anisotropy phenomena, which are not taken into account
in this work. Assuming linear kinetics of layer thicknesses
(�h1and�h2) and the same shrinkage kinetics between the length
and width evolution: �b ¼ �l, one can determine the evolution
of the layer porosities based on the mass conservation for
each layer:

hi ¼ 1� ð1� hi;fÞ
�lf �bf �hi;f
�lx �bx �hi

; i ¼ 1; 2 and hi;f

is taken from Table I. The results of the respective estima-
tion of the sintering kinetics of the trilayer dimensions and
porosities are shown in Fig. 10. During sintering of the
symmetric trilayer, the shrinkage of CGO_P was constrained
by CGO_D in the length and width directions, whereas their
shrinkage in the thickness direction was free. That makes
the strain in the thickness direction of the CGO_P larger
than the one observed in the longitudinal direction, as
shown in Fig. 10(a). Figure 10(b) indicates the results of the
assessment of the porosity evolution in the symmetric trilay-
er system and the evaluation of the shear viscosities ratio ξ
of the fully dense layer materials. It is shown that the deter-
mined parameter ξ increases as sintering proceeds, but

(a) (b)

Fig. 7. (a) Results of optical dilatometry for free sintering of CGO_P and CGO_D tapes in terms of the real time of sintering; (b) sintering
temperature regime in terms of the specific time of sintering.

Fig. 9. Regression of the experimental data on the linear shrinkage
in the symmetric trilayer CGO_P–CGO_D–CGO_P system.

Fig. 8. Regression of the experimental data utilized in the
derivation of the coefficient of the relative sintering intensity k.
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decreases at the moment about ss = 2.4. This can be
explained by the fast grain growth of CGO_D in the final
stage of sintering. Normally, grain growth of ceramics is lin-
ear and slow in the early stage of sintering, but it turns
nonlinear and rapid at a certain densification point (nor-
mally when relative density is greater than 90%) during the
final stage of sintering.18

Thus, two essential constitutive parameters, k and ξ,
required for the modeling of sintering of the bilayered
CGO_D–CGO_P (asymmetric) porous system, are deter-
mined based on the optical dilatometry and on the SEM
characterization of the sintered single layer and symmetric
trilayered specimens.

(2) Comparison of Modeling and Experimental Results
The available optical dilatometry data on the sintering of the
bilayered CGO_D–CGO_P (asymmetric) porous system pro-
vide the assessment of the kinetics of the distortion span R
(see Fig. 3). The distortion parameter R is replotted as a
function of the specific time of sintering in Fig. 11(b).

The modeling of sintering of the bilayered CGO_
D–CGO_P (asymmetric) porous system has been conducted
based on the solution of eqs. (35) and (46) in Part I of this
work,12 taking into account the expressions for parameters k
and ξ derived in Section III. (1). In Fig. 11, the modeling
results are compared with the experimental data in terms of
distortion R (see Fig. 3), taking into consideration the
following geometrical relationship:

R ¼
�h1h01 þ �h2h02

�j
1� cos

�ll0�j

2 �h1h01 þ �h2h02
� �

 ! !
(2)

where �j is the normalized curvature, which is defined as eq.
(34) in Part I of this work12:

�j ¼ j
1= h01 þ h02ð Þ (3)

The modeling results shown in Fig. 11(a) agree well with
the experimental data in terms of the porosity evolution for
both layers. An image analysis carried out for the SEM
images shown in Fig. 4 indicates the final volume fractions
of pores equal to 27.3% and 1.6% for CGO_P and CGO_D
layers (as the dots shown in Fig. 11(a), also shown in
Table I), respectively. These values agree very well with the
results of porosity evolution shown in Fig. 11(a). Simulta-
neously, it can be found that the modeling results shown in
Fig. 11 from the linear and uniform strain distributions give
almost similar results in terms of evolution of porosity as
well as the distortion.

The results of modeling indicate rather good qualitative
agreement with the experimental data on shape distortion.
The quantitative discrepancies between the theoretical and
experimental shape distortion and porosities-related results
can be attributed to various factors. Those include the

(a) (b)

Fig. 10. (a) Experimental data-based assessment of the geometry evolution (length, width, and thickness) of the symmetric trilayered CGO_P–
CGO_D–CGO_P system during optical dilatometry; (b) determination of the shear viscosities ratio ξ of the fully dense materials of the
respective layers based on the sintering results of the symmetric CGO_P–CGO_D–CGO_P trilayer system

(a) (b)

Fig. 11. Comparison of the experimental and modeling results in terms of porosity (a) and distortion (b) in the bilayered CGO_D–CGO_P
(asymmetric) system. The modeling results based on both the linear and uniform strain distributions are presented together, which showed
almost the same values in terms of evolution of porosity as well as the distortion.
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simplification assumed in the model developed in the com-
panion study,12 such as omitting possible anisotropy of vis-
cosity and of the sintering stress. Possible structure spatial
heterogeneity as well as nonuniformity of temperature distri-
bution could have an impact on the experimental outcomes
too. In addition, gravity of thin layers tends to flatten the
camber, therefore acting against the formation of shape dis-
tortion.19,20 This effect is not considered in this work. Frand-
sen et al.16,17 considered the possible gravity effect during
cofiring of bilayered CGO structures and it was indicated
that the gravity had a significant effect on the shape distor-
tion development especially at the final stage of sintering.

One important assumption influencing the agreement
between the theoretical and experimental data is the assump-
tion of linear kinetics of layer thicknesses during sintering of
the symmetric trilayer CGO_P–CGO_D–CGO_P system.
A possible refinement of this assumption can be achieved
through calculating the normalized thickness evolutions
(�h1and�h2) using expressions (51)–(53) of Part I of this work12

instead of the linear shrinkage assumption followed here.
The obtained thickness kinetics can be then further substi-
tuted in eq. (57) of Part I to determine the new value of
coefficient ξ, which can be again substituted in the equation
set (51)–(53) of Part 1 of this work,12 and so on, until this
iterative process reaches a satisfactory level of conversion. As
one of the major objectives of the conducted analysis is the
formulation of engineering-level solutions avoiding compre-
hensive computer codes, the described iteration approach is
left outside the scope of the conducted work.

The modeling results shown in Fig. 11(b) point toward the
change in the sign of the bilayered system’s distortion (from
concave to convex shape), which is fully confirmed by the
experimental data on the distortion given in Fig. 11(b). The
reason for this change in the distortion sign can be explained
based on the regularities of the shrinkage kinetics. In the
beginning of the sintering process, the CGO_D layer sinters
faster due to the sintering aid and smaller initial grain size.
This causes the larger contraction of the CGO_D layer com-
pared with the CGO_P layer, with the respective bending/dis-
tortion occurring in the bilayered system. At the moment
corresponding to about 0.5 value of the specific time of sin-
tering (at about 1000°C), the CGO_D is significantly densi-
fied, and the intensity of the shrinkage of the CGO_P
exceeds the intensity of the shrinkage of the CGO_D layer.
At this moment, the direction of bending changes, the sys-
tems “flattens out”, and at the moment about ss = 1.5 the
sign of the system curvature reverses. Despite some quantita-
tive discrepancies, this phenomenon is described qualitatively
well by the developed model.

The obtained results indicate that despite a number of
simplifying assumptions, the developed theoretical frame-
work is capable of qualitatively reliable predictions of distor-
tion and shrinkage kinetics in bilayered porous systems.

IV. Conclusions

The theoretical model analyzing shrinkage and distortion
kinetics during sintering of bilayered structures developed in
Part I of this work was applied to the cofiring of the bilayered
porous and dense gadolinium-doped ceria system. The novel
approach making possible the determination of all the bilay-
ered system sintering modeling input parameters from a single
dilatometry run conducted simultaneously for the individual
single layers and for a symmetric trilayered system composed
of the layers utilized in the bilayered system is put forward.
The solutions obtained based on the developed modeling

technique agree well with the results of the conducted experi-
ments in terms of the distortion and shrinkage kinetics.
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The need for understanding the mechanisms and optimization

of shape distortions during sintering of bilayers is necessary

while producing structures with functionally graded architec-
tures. A finite element model based on the continuum theory of

sintering was developed to understand the camber developments

during sintering of bilayers composed of La0.85Sr0.15MnO3 and

Ce0.9Gd0.1O1.95 tapes. Free shrinkage kinetics of both tapes
were used to estimate the parameters necessary for the finite

element models. Systematic investigations of the factors affect-

ing the kinetics of distortions such as gravity and friction as

well as the initial geometric parameters of the bilayers were
made using optical dilatometry experiments and the model.

The developed models were able to capture the observed behav-

iors of the bilayers’ distortions during sintering. Finally, we
present the importance of understanding and hence making use

of the effect of gravity and friction to minimize the shape dis-

tortions during sintering of bilayers.

I. Introduction

CERAMIC structures with functionally graded multilayer
architectures are generally considered as promising

materials for various applications related to efficient energy
technologies. Some of the application areas include solid
oxide fuel cells, piezoelectric actuators, gas membranes etc.1–4

Manufacturing of multilayered structures often includes cos-
intering of laminated tapes prepared from different sets of
powders. One of the problems often observed during sinter-
ing of bi-layer systems is distortion of the samples which
often poses as a problem in the final assembly of the different
components. For example, in the case of solid oxide fuel cells
it is important to cofire the different layers with little or no
shape distortion of the planar geometry to succeed with the
intended assembly of the solid oxide fuel cell stacks.4,5

Distortion during sintering of bilayers occurs mainly due
to mismatch in the shrinkage behaviors of the layers. The
other factor affecting distortion in bilayers is the evolution of
relative viscosity between the layers during the sintering
cycle.6,7 In an effort to reduce the distortions during sintering
of bilayers, it is sometimes necessary to modify the intrinsic
material behaviors of each tape. For example, though it
requires cumbersome experimental works, tailoring the densi-
fication kinetics of each layer so as to minimize the mismatch
in shrinkage strains could significantly reduce stress develop-
ments during cofiring. In addition to modifying the intrinsic
material behaviors of the tapes, few authors have also sug-
gested other techniques like applying external loads resisting

the deformation8 and optimization of the sintering tempera-
ture profile.9

However, camber evolution is also affected by geometrical
parameters such as the ratio of layers’ thickness and length
of the sample.6,10 Furthermore, additional factors like own
weight of the sample (gravity) and friction (between the
edges of the bilayer and the surface of the sample support
while the bi-layer deforms) have often significant effect on
the overall distortion of the sample.3,5,11,12

With regards to the effect of geometrical parameters,
methodical studies describing the effect of the thickness ratio
of layers on the camber evolution have been previously
reported.8,10 Olevsky et al. also discussed how the initial
porosity of each layer making the bi-layer could also be used
to optimize the camber evolution during cofiring.10 On the
other hand, M€ucke et al. showed the effect of gravity on the
evolution of camber by sintering bilayers in the horizontal
and vertical orientations.5

For the basic understanding of the influence of materials
intrinsic properties on the evolution of camber during sinter-
ing of bilayers, the continuum theory of sintering together
with the use of beam theory have been applied and its use is
widely reported.2,13,14 In general, to model the sintering
behavior of multilayers, the continuum theory of sintering
with the assumption of linear response of the shrinkage rate
to the applied load can be used.2,3,13–16 Often free sintering
of tapes is assumed to be isotropic but anisotropies due to
nonuniform initial density distributions can also be intro-
duced into the continuum model.17

Despite these works, there are still needs to create better
understanding on how stress and distortions develop with
respect to geometrical parameters and factors like gravity and
also friction during cofiring in order to have better and
refined process optimizations. This can be achieved by the use
of numerical techniques, such as the finite element method.

The use of finite element method to describe stresses dur-
ing the sintering process has so far focused mainly on the
powder compaction process.18–21 Numerical implementation
of the continuum theory of sintering to describe shape distor-
tions of cylindrical porous specimen under free sintering in
the presence of gravitational forces is reported by Olevsky
et al.22 Schoenberg et al. modeled stresses during cofiring of
bilayers consisting of layers with different initial densities.23

In their study, Schoenberg et al. used temperature-dependent
artificial coefficient of expansion (CTE) as an input to the
finite element model to simulate the volumetric shrinkage
strain in each layer. A good agreement between the stress
predicted from the finite element model and analytical mod-
els is shown.23 However, it is difficult to use the technique
proposed by Schoenberg et al. to model stresses and distor-
tions during isothermal sintering cycle as the artificial CTE is
a function of the changing temperature in their iso-rate
sintering experiment. Similarly, analysis of stresses during
sintering of multilayered structures using the continuum the-
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ory is reported by Brown et al.24 Brown et al. was able to
show the distortions during sintering of trilayered solar cells
using experimental measurements of the free shrinkage of
each layers to estimate the input parameters for the 3D finite
element model.

In this study we have developed a finite element model in
the commercial software, ABAQUSTM, based on the contin-
uum theory of sintering in order to be able to predict the
curvature evolution during sintering of bilayered structures.
To verify the model, different sintering experiments of bilay-
ers composed of La0.85Sr0.15MnO3 (LSM) and
Ce0.9Gd0.1O1.95 (CGO) tapes have been conducted. In addi-
tion, the influence of the geometric parameters of the bilayer,
gravity, and friction on the evolutions of curvature have been
studied both experimentally and numerically. For such pur-
pose, systematic variation of the initial length of the samples
and thickness ratio between the layers making the bilayer is
made. Sintering experiments of similar bilayers with different
orientations is also made to study the effect of gravity and
friction on the evolution of curvature.

II. Experimental Procedures

Ce0.9Gd0.1O1.95 (CGO, specific surface area: 5.2 m2/g, Rho-
dia S.A., La D�efense, France) and La0.85Sr0.15MnO3 (LSM,
d50: 0.6 lm; specific surface area: 23.24 m2/g, Haldor Topsoe
A/S, Copenhagen, Denmark) were used as starting powders
for the development of CGO and LSM tape cast layers by
standard processing. Details of the tape casting processing
can be found in Ni et al.25,26 After drying, both the CGO
and LSM green tapes had a uniform thickness of 220 and
110 lm respectively.

In this work, the conducted experiments involve measure-
ments necessary for obtaining material input parameters for
modeling (free shrinkage kinetics of the individual layers) as
well as experiments necessary for validation of the model
(sintering of bilayered laminates).

Individual CGO and LSM green tapes were rolled and
pressed to obtain ‘bulky’ sample of the thin layers for dila-
tometry measurements. Final shapes of the samples were
obtained by cutting the rolled tapes in cylindrical shapes of
3–5 mm in length and 2–3 mm in diameter.

The asymmetric CGO/LSM bilayered samples were assem-
bled by colamination of the CGO and LSM green tapes both
oriented along the tape-casting direction. Five different CGO/
LSM bilayered samples with different thickness ratio and
length were prepared by laminating different numbers of CGO
and LSM green tapes. Final shapes of the laminated samples
were obtained by stamping and punching rectangular shapes
from the green material. Table I summarizes the initial size of
five different CGO/LSM bilayered samples used in this work.

Measurements of shrinkage and curvature evolutions on
all the samples were performed under the same heating pro-
file in an optical dilatometer (TOMMI, Fraunhofer Institut
Silicatforschung ISC, Neunerplatz 2, D-97082 W€urzburg,
Germany). This allows for the sample shape evolution during
sintering to be followed in situ and noncontact, by simply
collecting the sequential images (i.e., a video sequence) of the
samples silhouettes projected by a source of visible light onto
a high definition camera.

The rolled tape samples were oriented in a way to allow
measurement of the evolution of shrinkage of the samples in
the length direction of the cylindrical samples. During the
dilatometric measurements of bilayered samples, the CGO
was placed on the bottom side of the asymmetric laminates.
The bilayer samples were placed on a plane support (Alu-
mina repton plates). The complete thermal cycle of the pro-
cessing, including the de-binding step and sintering, was
performed directly in the optical dilatometer to avoid moving
the samples with possible mechanical failure after the de-
binding step. The de-binding cycle includes a slow heating
ramp at 0.33°C/min from room temperature to 400°C and an
isothermal step at 400°C for 4 h aimed at removing the
organic component from the samples. The sintering cycle
was performed by an iso-rate heating ramp step up to
1250°C at a heating rate of 1°C/min, followed by an isother-
mal step at 1250°C for 4 h. The shrinkage (free sintering)
and curvature evolution (bilayered CGO/LSM samples) were
monitored in situ continuously during the heating and cool-
ing cycles. Microstructures of cross-section were character-
ized using scanning electron microscopy (SEM, Supra, Carl
Zeiss, Germany).

Figure 1 shows the dilatometric image from TOMMI
depicting the sample geometry at the onset of the sintering
cycle (i.e., after de-binding) for one of the bilayers built with
an initial thickness ratio, X (CGO:LSM) = 4 and initial
length of l0 = 40 mm. Due to differential de-binding, signifi-
cant deformations of the bilayer samples were observed after
de-binding (600°C) or at the onset of the sintering cycle.

III. Model Development

The linear-viscous form of the continuum theory of sintering
(SOVS) is used to define the inelastic (sintering related) strain
rate in the porous body. According to SOVS, the total strain
rate, _es, during sintering of a body is given by the sum of
creep, _ecr, and free sintering, _ef,strain rates as:14

_es ¼ _ecr þ _ef

_es ¼ r0

2g0u
þ rm � rs

3ð2g0wÞ
I (1)

where r0, rm, and rs are the deviatoric stress tensor, mean and
sintering stresses, respectively. The mean stress is equivalent to
the hydrostatic pressure, rm ¼ 1

3 trðrÞ. During the implementa-
tion of SOVS, normalized parameters, u and w, are used to
relate the effective shear and bulk viscosities of the porous
body to the viscosity of the fully dense body depending on the
instantaneous amount of porosity, see Eq. (2).14

u ¼ ð1� hÞ2and w ¼ 2

3

ð1� hÞ3
h

(2)

In view of the continuum theory of sintering, the driving
force for sintering or sintering stress is directly proportional

Table I. Initial Sizes of the Bilayered CGO/LSM Samples

Samples

Length

l0(mm)

Width

b0(mm)

Thickness

ratio

X(CGO:LSM)

Thickness

of CGO

h01ðlmÞ

Thickness

of LSM

h02ðlmÞ

1 25 5 2:1 220 110
2 25 6:1 660
3 25 4:1 440
4 15 4:1 440
5 40 4:1 440 Fig. 1. Geometry of the sample at the onset of the sintering for bi-

layer with an initial length of 40 mm.
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to the surface energy per unit area, a, of the porous surface
and is given by:

rs ¼ 3

2

a
G
ð1� hÞ2 (3)

where h and G are the instantaneous amount of porosity and
grain size respectively. The viscosity of the fully dense body,
g0, varies with temperature,T, and is given by an Arrhenius
form expression with an Arrhenius constant, A, and the
effective or apparent activation energy for densification, Ea.

27

Here R is the universal gas constant.

g0 ¼ ATexpðEa

RT
Þ (4)

Sometimes the viscous parameters of the porous body are
measured and reported in terms of the uniaxial viscosity, gu,
and viscous Poisson’s ratio,mv, as:

10

gu ¼
18g0wu
6wþ u

and mv ¼ 3w� u
6wþ u

(5)

The grain growth during the sintering process is a strong
function of time, t, and the initial grain size, G0, as given
by:28

Gn ¼ Gn
0 þ k0expð�Eg

RT
Þt (6)

where k0 and Eg are the grain growth pre-exponential factor
and the activation energy for grain growth respectively. Here
n is the grain growth exponent depending on the densifica-
tion mechanism (e.g., n = 3 for volume diffusion).28 In this
work, the possible anisotropies in the pore-grain structure
are not considered and hence the shrinkage rate in the free
standing tape is assumed to be isotropic, which is formulated
using Eqs. (2)–(4), see Eq. (7). For a detailed description of
the continuum theory of sintering, please refer to Ref. [15].

_ef ¼ � rs

6g0w
¼ � 3

8

a
AGT

expð�Ea

RT
Þð h
1� h

Þ (7)

For the numerical implementation, the elastic part of the
material response is assumed to be isotropic and character-
ized by Hooke’s law as:

_r ¼ C _eel (8)

Here C is the elastic stiffness matrix and, _eel, is the elastic
strain rate. The total strain rate, _e, in the porous body can
be given by:

_e ¼ _eel þ _es (9)

Combining Eqs. (1), (8), and (9), it is possible to get the
constitutive relationship for the incremental stress during sin-
tering as:

_r ¼ C _eel ¼ Cð _e� _ecr � _efIÞ (10)

The above model was used to simulate the sintering of
bilayer systems made up of tapes with different initial den-
sity. This was made possible by implementing the linear-vis-
cous form of the continuum theory of sintering (SOVS) in
ABAQUSTM with the help of a user subroutine. The creep
user subroutine provided by ABAQUSTM defines the total

incremental inelastic strain, de, as the sum of creep, decr, and
swelling, desw, strains40 which are obtained integrating Eq.
(1) with time.

The evolving relative density or porosity in the structure
can be updated using the principle of mass conservation. The
inelastic volumetric strain is used to calculate the relative
density as shown in Eq. (11) by using the initial relative den-
sity of the porous body, q0.

em ¼ ecrIþ esw

qi ¼ q0expð�emÞ (11)

ABAQUSTM provides users with the ability to define solu-
tion-dependent state variables (SDVs) in the user subrou-
tines. In this work, two SDVs have been employed to update
the relative porosity and grain size in each layer. For exam-
ple, the porosity in each tape is stored in one of the SDVs,
such that it can be passed every time the subroutine is called,
thereby updating the current value. At the end of the simula-
tion, they can be used to analyze the model’s behavior in
time. The grain sizes and porosities in each layer are updated
on every time step using the equations described above, see
Eqs. (6) & (11).

Geometrically linear as well as nonlinear analysis can be
performed using ABAQUSTM based on the strain measures
defined as41:

e ¼
L�L0

L0
; Linear

ln L
L0
; Non-linear

(
(12)

The effect of the evolving porosity on the mechanical
properties of the tape i.e., on the elastic modulus, E, and
Poisson’s ratio,m during densification is estimated by a
composite sphere model suggested by Ramakrishnan and
Arunachalam.29 Here E0 and m0 are the Young’s modulus
and Poison’s ratio of the fully dense body.

E ¼ E0
ð1� hÞ2
ð1þ bEhÞ where bE ¼ 2� 3m0

m ¼ 0:25
4m0 þ 3h� 7m0h
1þ 2h� 3m0h

(13)

Two dimensional plain strain formulations were used
together with symmetry boundary conditions on half of the
bilayer geometry. Quadratic elements with an average size of
50 lm have been chosen for meshing with visco analysis
steps.

The distortion at the onset of the sintering, see Fig. 1, is
taken into account as the initial geometric configuration of
the bilayer model as shown in Fig. 2. The sintering temper-
ature ramp is defined as a boundary condition on the entire
geometry of the model. Figure 2 also shows examples of
the directions of the gravity, Fg, and friction, Ff, forces act-
ing on the bilayer bending towards the LSM layer. Note
that the friction force is generated between edge and sup-
port of the sample in the furnace. The effect of gravity on
the evolution of the distortions is considered by applying a
body force obtained by using the theoretical density of each
tape.

IV. Results and Discussions

(1) Obtaining Material Parameters
The parameters defining the viscosity of both CGO and
LSM tapes, A and Ea, were estimated by fitting the free
shrinkage strain model in Eq. (7) to experimental measure-
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ments of free sintering. The approach used here has been
explained in detail in previous work by Molla et al.12 and
Reiterer et al.27

Based on the optimization procedure, Fig. 3(a) shows the
comparison between the free shrinkage strains in each tape
during the entire sintering cycle. About 11% and 26% of
shrinkage was observed in CGO and LSM tapes respectively.
The free shrinkage strain model is also shown to agree well
with the experimental observations of shrinkage strains.

The evolution of the viscosity as a function of temperature
is the other important parameter for modeling the distortions
in the bilayer system. Figure 3(b) shows the fully dense vis-
cosities of both CGO and LSM tapes during the iso-rate sin-

tering cycle, which is calculated as per Eq. (4). The effect of
porosity on the viscosity of the porous body is included
based on the evolution of porosity during the sintering of the
bilayer. The fully dense body viscosity results are consistent
with previous observations of same materials reported in.12

All the other parameters required to model densifications
and distortions during the cofiring of CGO and LSM tapes
are obtained from experimental measurements and are sum-
marized in Table II. Note here that the impact of the grain
growth on the viscosity of the fully dense tapes is not consid-
ered explicitly as shown by Eq. (4). But those effects can be
included in the Arrhenius constant, A and the effective or
apparent activation energy, Ea, as these, are made to be free
parameters, while fitting the shrinkage strain model to the
experimental measurements. This approach is explained in
detail in previous works by Molla et al. 12 as well as Reiterer
et al.27

The change in the elastic properties of both tapes as a
function of the evolving porosity during the sintering process
was considered using Eq. (13). Fan et al. and Atkinson et al.
studied the elastic properties of CGO10 as a function of
porosity where the fully dense CGO is reported to have a
Young’s modulus, E0 = 200GPa at 800°C.31,32 Similarly Gi-
raud et al. studied the elastic properties of LSM tapes with
different porosities in which he reported the Young’s modu-
lus of dense LSM at room temperature to be, E0 = 110GPa
and shown to change little with temperature between 350°C
and 950°C.33 In fact, the variation of the Young’s modulus
with temperature is not critically important as the elastic
response from the porous bodies during sintering is very
small. In this study, the Poisson’s ratio for the dense bodies,
m0, of both tapes is assumed to be 0.328.32

(2) Effect of Gravity and Geometric Nonlinearity
Figure 4 (left) shows the dilatometric images for the evolu-
tion of curvature at different temperatures for one of the bi-
layers built with an initial thickness ratio, X(CGO:LSM) = 4
and initial length Io = 40 mm. The corresponding results
from the finite element model are also shown in Fig. 4
(right). The model is shown to agree well with the experimen-
tal observations in terms of shape evolutions during the sin-
tering cycle. Example of the 2D contour plot showing
principal stresses in the xx direction (S11) at 1180°C is also
shown where the CGO layer is under compressive stress due
to the fast shrinking LSM layer.

Fig. 2. The initial geometric configuration of the bilayer sample
with an initial length of l0 = 40 mm and initial thickness ratio of
X ¼ h01

h02
¼ 4 with the finite element meshes.

(a)

(b)

Fig. 3. (a) Comparison of model and experiments for free
shrinkage strains and (b) The evolution of fully dense body viscosity
as a function of temperature.

Table II. The Parameters used in the Modeling for LSM

and CGO Layers

Parameter LSM CGO Source

Initial porosity,
h0 (%)

0.58 0.38 Measurement

Initial grain size,
G0 (lm)

0.45 0.13 Measurement

Final grain size,
G (lm)

1.34 0.2 Measurement

Surface energy,
a (J/m2)

2.5 1 [11,42]

Activation energy
for grain growth,
Eg (kJ/mol.K)

420 480 [25,30]

Grain growth
coefficient, k0

1.11 e�8 4.39 e�9 Fitting

Arrhenius constant,
A (GPa.s/K)

121 1202 Fitting

Apparent
activation energy,
Ea (kJ/mol.K)

148 138 Fitting
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To study the effect of gravity and geometric nonlinearity,
the evolution of curvature during cofiring of CGO and LSM
tapes is analyzed with different models. Two models based
on linear-viscous theory as reported by Cai et al.,6which does
not consider gravity, and Frandsen et al.,11which considers
gravity, are compared with two finite element models based
on geometrically linear and nonlinear analysis.

Comparison of model predictions for curvature including
the experimental measurements in a bilayer with an initial

length of lo = 40 mm and thickness ratio X ¼ h01
h02
¼ 4 is

shown in Fig. 5. Note that in this work, curvature develop-
ment towards the bottom layer i.e., the CGO layer is taken
as positive and vice versa.

The experimental results show almost no curvature devel-
opment for the first 5.5 h, which is due to the small shrink-
age rate difference between the two layers. After this period
of time the LSM (top) layer shrinks faster than the CGO
layer. This is followed by development of stress in the bilayer
sample and hence led to camber of the sample. After
t � 10 h, the curvature changes in the bilayer sample starts
to slowdown because of the combined effects of slower
shrinkage activity in the LSM layer, gravity, and stress relax-
ation in the constraining CGO layer.

All the models considered predict a similar trend in cam-
ber growth for the first 9 h of the sintering. The model by
Cai et al. predicts a further growth in curvature in the later
stages of the sintering, while the other model by Frandsen
et al. show reductions in the curvature after t � 10 h. The
finite element models also show reductions in the curvature
as observed in the experiment. Similarly almost all the mod-
els predict an early start in curvature evolution, when com-
pared to the experiment, which may be caused by stress
relaxations in the bilayer during the experiment. From the
comparisons shown in Fig. 5, it is clear to see the significant
effects of gravity on the evolution of curvature and it is obvi-
ous that including gravity capture the real physics of the
camber development. It is also shown that the results from
the linear-viscous model, which accounts for gravity (the
model by Frandsen et al.) differs from the finite element
models. This could be due to the absence of elasticity and/or
the simplifications made by Frandsen et al. in the analytical

(a)

(b)

(c)

(d)

Fig. 4. Experimental (left) and finite element model results (right) showing the evolution of distortion during the sintering cycle.

Fig. 5. Comparison of different model predictions for curvature
evolution over time with the experimental measurements.
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implementations of the effect of gravity in to the linear-vis-
cous model.11

During the experiments, a significant amount of distortion
after de-binding in the bilayer samples was observed. It is
therefore important to model stresses and shape distortions
because of differential de-binding of the layers during sinter-
ing of bilayer. In the finite element model, considering the
initial deformed geometry of the sample at the onset of the
sintering process is also important to properly include
the effect of gravity. For example, in the beginning, the grav-
ity force actually supports the evolution of curvature until
the sample become flat (before bending to the LSM layer).
The finite element model based on geometrically nonlinear
analysis is also shown to predict the magnitude of the curva-
ture better than the model based on geometrically linear
analysis. Some discrepancy between the most advanced
nonlinear model and the experiment are still present, though.
Table III shows the convergence behavior of the FE model
as a function of the total number of elements for bilayer
sample with an initial length l0 = 15 mm and thickness ratio
X = 4.

(3) Effect of Initial Length and Thickness Ratio
Different finite element models based on geometrically non-
linear analysis have been developed to simulate the curvature
evolutions for samples with different initial length and thick-
ness ratio. As explained above, the respective initial deforma-
tions at the onset the sintering for all the samples are
considered while building the bi-layer models.

Figure 6 shows the curvature measurements of three dif-
ferent bilayers of CGO/LSM tapes with the same initial
thickness ratio of X ¼ h01

h02
¼ 4 but different initial length

lo = 15, 25, and 40 mm. For the sake of comparison, the ini-
tial curvature of all the samples is adjusted to zero. If there
was no effect of gravity on the development of the distor-
tions, all the three bilayer systems should have shown the
same evolutions of curvatures. This is because the internal
stresses balance over the thickness of the layers which makes
the curvature to be affected only by the thicknesses in addi-
tion to the material properties.9–11 However, it is observed
that the curvature varies depending on the length of the sam-
ples where less curvature is shown as the length of the sam-
ple increases because of gravity.

Figure 6 also shows the model predictions for curvatures
of bilayers simulated for the three different samples described
above. The variation of curvature with the length of the sam-
ples is also verified by the finite element models. The influ-
ence of gravity is pronounced when the length of the bilayer
increases due to longer arm span of the distorted sample,
which increases the effect of gravitational weight opposing
the development of the distortion.

Similarly, three separate experiments and simulations have
been made for bilayer geometries consisting of the same ini-
tial length lo = 25 mm but different thickness ratios of
X ¼ h01

h02
¼ 2; 4; and 6. The simulations were used to study the

effect of the initial thickness ratio of the layers on the curva-
ture evolution, Fig. 7.

It is observed that for a bilayer having a thickness ratio of
X = 2, the distortion is very large and it reduces with increas-
ing thickness ratio. The trend shown in the experiments has
also been verified by the finite element models built with dif-
ferent thickness ratios as shown also in Fig. 7. For the sake
of comparison, the initial curvatures of all the samples have
been adjusted to zero.

Although the model accounts for most of the known
effects including geometric nonlinearity, some discrepancies
between the model predictions and experimental measure-
ments in all the bilayers are observed, see Figs. 6 and 7.
These might be due to stress relaxation that results from
some observed microcrack growth close to the interface of
the bilayer after de-binding and/or during the sintering cycle.
Microcracks close to the interface between the CGO and
LSM layer and also around the surface of the CGO layer
has been observed by SEM images taken from the bilayer
samples at the end of the sintering cycle, see Fig. 8.

Development of microcracks especially in the constraining
layer can reduce the stress development in the bilayer result-
ing in small curvature development. A similar observation is
reported by Ollagnier et al.3 The effect of micro-cracks is
more pronounced when there is a very large stress as in the
case of bilayer with initial thickness ratio X = 2, as seen on

Table III. Mesh Convergence Behavior of the Finite Element

Model (for Bilayer Sample with an Initial Length of 15 mm

and Thickness Ratio of 4)

Total number of elements Maximum curvature (1 m�1)

200 93.62
250 100.21
390 112.43
940 136.84
1275 139.22
1850 140.01
2861 140.12

Fig. 6. Comparison of curvature evolutions for three bilayers with
different initial lengths (solid lines) together with the corresponding
model predictions (dashed lines).

Fig. 7. Comparison of curvature evolutions for three bilayers with
different initial thickness ratios (solid lines) together with the
corresponding model predictions (dashed lines).
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Fig. 7 showing larger discrepancy between the model and
experiments compared to the others. Other effects such as an-
isotropies in the pore-grain structure, which has not been
considered in this work, could also explain the discrepancies
between the models and experiments. Continuum theory of
sintering, in its current state, is not able to account for these
losses of continuity. The continuum theory of sintering could
be combined with damage models 34 or meso-scale models35–
37 in order to describe the development of these micro-cracks
and the consequent reduction of stresses. It is beyond the
scope of this work to pursue such enrichments of the contin-
uum theory of sintering.

In addition to the micro-cracks in the bilayer samples, the
simplified constitutive models used in this study, for example,
to describe sintering stress and creep properties could be the
other factors for the discrepancy between the model and the
experiments. For instance, the limitations of linear-viscous
models, originally developed for bodies that sinter by viscous
flow, are discussed by Garino et al.38 Furthermore, the effec-
tive sintering viscosity could be described by more rigorous
models which can account for additional parameters, e.g.,
grain size, as described by Arg€uello et al.39 with more experi-
mental works. Summary of the different models for sintering
viscosity can also be found in Ref. [14].

As an example of how the change in the final curvature as
a function of the initial thickness ratio of the layers after 8 h
of sintering has also been shown in Fig. 9. The change in
curvature is drastic for the range in the thickness ratio of
0 < X < 2. By increasing the thickness of the slowly shrink-
ing layer, in this case the CGO layer, it is possible to signifi-
cantly reduce the curvature at the end of the sintering cycle.

(4) Effect of Friction
Finally the effect of friction between the edges of the sample
and the surface of the sintering furnace has also been investi-
gated. Two bilayers with the same initial length and thickness

ratio of CGO and LSM tapes were cofired in different orien-
tations. In the first orientation, the bilayer sample is cofired,
where it is placed in such a way that the CGO layer is on the
bottom side. The opposite is made in the second orientation
i.e., the bilayer sample is placed in a way that the CGO layer
is on the top side of the bilayer. Figure 10 shows the curva-
ture evolutions measured during the sintering cycle. In the
second orientation where the curvature is growing towards
the LSM tape, in contact with the support surface, it is
shown that the distortion is retarded compared to the first
orientation. This is clearly due to the friction between the
sample edges and the surface of the sample support hindering
the kinetics of distortion. Furthermore the bumpy kinetics of
distortion (curvature plot) in the second orientation clearly
indicates the effect of friction. Note here that the curvature
of the bilayer in the first orientation is opposite to the second
one. The curvatures are plotted with opposite signs and nor-
malized to zero at the start of the sintering for the sake of
comparison.

V. Conclusions

A finite element model based on the continuum theory of
sintering were developed to justify the distortions during sin-
tering experiments of bilayers composed of LSM and CGO
tapes. Free shrinkage kinetics of both tapes were used to
estimate the input parameters necessary for finite element

(a)

(b)

Fig. 8. Microcracks observed in the bilayers at the end of the
sintering cycle (a) micro-cracks at the interface of the layers and (b)
micro-cracks at the surface of the CGO layer.

Fig. 9. Variation of final curvatures after sintering for 8 h as a
function of initial thickness ratio.

Fig. 10. Curvature evolution of the same bilayer samples in
different orientations showing the effect of friction.
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models. Systematic studies on the effect of factors like gravity
and friction together with the initial geometries on the kinet-
ics of distortions of bilayers during sintering is presented.
The finite element model simulations were able to capture
the observed behaviors of distortions during different sets of
experiments involving different bilayers. Some discrepancies
are still observed, and it was speculated that these were due
to stress relaxation near the interfaces of the bilayers due to
micro-crack growth. Understanding the effect of factors like
gravity and friction during sintering of bilayered porous
structures could be helpful to reduce the shape distortion
problems usually observed during cofiring.
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Abstract 

Constrained sintering of tubular bi-layered structures is being used in the development of various 

technologies. Due to mismatch in the densification rate between the layers in the tubular geometry, 

stresses develop and sometimes create various processing defects. An analytical model is developed to 

describe the densification and stress developments during constrained sintering of tubular bi-layered 

samples. The direct correspondence between linear elastic and linear viscous theories is used as a basis 

for the model development. The developed analytical model is first verified by finite element simulation 

for the constrained sintering of tubular bi-layer system. Furthermore, the analytical model is validated 

using densification results from sintering of bi-layered tubular supported ceramic oxygen membrane 

based on porous MgO and Ce0.9Gd0.1O1.95-d layers. Model input parameters, such as the shrinkage 

kinetics and viscous parameters are obtained experimentally using optical dilatometry and thermo-

mechanical analysis. Results from the analytical model are found to agree well with finite element 

simulations as well as measurements from sintering experiment.  

Keywords: Constrained sintering, Tubular bi-layer, Oxygen membrane, Sintering, Stress    
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1. Introduction  

Functionally graded tubular multi-layered ceramic structures are being used in the development of 

tubular type of solid oxide fuel cells and gas separation technologies [1 - 5]. A tubular multi-layer 

structure with thin film oxygen transport membrane layer on a porous support offers improved 

performance due to reduced thickness of the separation layer. Mechanical and dimensional stability 

together with the opportunity to use cost effective shaping processes for mass production such as 

extrusion and dip coating is some of the other reasons to use tubular multi-layers [1 - 3]. Nevertheless, 

an important and critical step in the manufacturing of such tubular multi-layers is the simultaneous 

sintering of the different layers (co-sintering), which is required to densify the green structure and give it 

higher strength [4]. Processing defects like cracks, delaminations and coating peel-offs are some of the 

problems associated with sintering of tubular multi-layer samples. Such defects are believed to occur 

mainly due to the transient stress development inside the structure in response to the differential 

shrinkage in the constituent layers. In order to produce defect free tubular multi-layered structures, it is 

important to control and optimize the transient stress generation during the entire sintering process. 

Thus, it is necessary to develop a model to understand development of stresses and densification 

mechanisms.  

The problem of transient stresses during sintering of planar multi-layer structures including camber 

development in asymmetric multi-layers has been addressed in numerous publications [6 -20]. Generally 

to model densification and stress generations during co-firing of planar multi-layered samples, the 

continuum theory of sintering has been used [6, 7]. The porous structure has then assumed to have a 

linear viscous behavior, where the viscous strain rate is directly proportional to the applied load [6]. The 

total deformation in the sintering body is thus equal to the sum of the viscous strain rate and internal 

shrinkage rate, which is driven by a hydrostatic potential often referred to as the sintering stress [21].    
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Timoshenko and Goodier provided an analytical elastic solution for stresses in a single layered tube 

exposed to a gradient in internal strain (e.g. thermal or chemical) [22]. In addition, Lamé derived the 

stress field in a tube exposed to an external pressure [23]. Recently Kwok et al. generalized those 

analytical expressions in [22] and [23] for elastic materials to describe stress developments in bi-layered 

tubular supported oxygen membranes under internal and external pressures [24]. For bi-layer 

structures, Kwok et al. assumed the pressure in Lamé’s model as the interaction pressure between the 

two monolithic tubular layers, which may arise due to mismatch in the internal strains of the layers. In 

this work, Kwok et al. tried to analyze elastic stress developments due to gradient and mismatch in the 

chemical and/or thermal strains during operations of bi-layered tubular structures, for example, in 

oxygen separation applications [24].    

Based on the analogy between linear elasticity and linear viscous models, the methodology used by 

Kwok et al. to analyze elastic stresses could be extended for linear viscous materials and a time 

dependent analysis. This is made by invoking the analogy between internal strains (thermal or chemical) 

in the elastic materials and free shrinkage rates in the viscous materials. The mechanical viscous 

properties are then defined for a given temperature and microstructure during the sintering cycle.    

During sintering of porous bi-layered tubular body, mismatch in the densification rate between the two 

layers can also develop stresses. If the sintering bodies in the tubular bi-layer system are modeled by 

linear viscous materials, the mismatch in the internal shrinkage rate between the two layers should be 

directly proportional to the development of stress. By doing so, it is possible to model the development 

of stresses and densification in each layer during sintering of bi-layered tubular structures. 

Therefore, an analytical model describing stress developments and densification during constrained 

sintering of bi-layered tubular structures has been developed in this work. In order to verify the 

analytical model, finite element simulations for constrained sintering of bi-layered tubular sample is 
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performed. The analytical model is also validated using constrained sintering experiment of tubular bi-

layered oxygen membrane based on porous magnesium oxide (MgO) and Ce0.9Gd0.1O1.95-d (CGO) layers. 

Model input parameters such as the shrinkage kinetics and viscous parameters of the individual layers of 

the tubes are obtained experimentally using optical dilatometry and a thermo-mechanical analysis 

(TMA) respectively.   

2. Experimental  

Raw powders  

Three types of powders were used for the preparation of asymmetric tubular membrane structures: 1) 

MgO powder (Product # 12R-0801, Inframat Advanced Materials, USA) and 2) a graphite powder (V-UF1 

99.9, Graphit  Kropfmühl AG, Germany) as a pore former, both for the porous support; and 3) CGO  

(GDC10-TC, Fuel Cell Materials, USA) for the dense membrane layer.  The raw ceramic powders (MgO, 

CGO) were pre-calcined at 1000 °C with a heating rate of 100 °C/hr for 10 hrs to reduce the surface area 

of the powder and hence reduce the sintering activity. The specific surface areas of the calcined MgO 

and CGO powders were measured by the BET method to be 10.8 m
2
/g and 4.3 m

2
/g with a particle size 

of (d50: ∼1.53 μm) and (d50: ∼2.14 μm) respectively. 

Layer preparation   

MgO feedstocks for thermoplastic extrusion were prepared from MgO powder, graphite, a 

thermoplastic binder (Elvax 250, Du Pont; USA), paraffin wax (Sigma-Aldrich, USA) as a plasticizer, and 

stearic acid (Sigma-Aldrich, USA) as a dispersant. The MgO feedstocks were extruded into tubes (14 mm 

outer diameter and 1 mm wall thickness) using a Brabender extruder 19/20DN to prepare the porous 

membrane support layer.  

For the dense membrane layer, first the pre-calcined CGO powder was dispersed in an ethanol based 

suspension with polyvinylpyrrolidone (PVP) as dispersant and polyvinylbutyral (PVB) as binder. The 
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resulting slurry for the dip coating was homogenized by ball milling for 72 hrs. The slurry for the 

preparation of the dense membrane was dip coated on the extruded MgO tubes at a constant speed of 

2.5 mm/s in a controlled atmosphere.  The green densities of the extruded and dip coated layers were 

measured on the basis of mass and volume measurements. The relative density of the sample was 

calculated from the ratio between the measured density and the theoretical density of the powder. 

Sintering procedures  

The heat treatment procedure for the tubular asymmetric bi-layered sample was performed by applying 

an iso-rate ramp of 0.25 
o
C/min for the de-binding cycle from room temperature to 650 °C and 0.5 

°C/min for the sintering cycle. Further bi-layers were heated with the same heating profile to different 

temperatures of 250 °C, 450 °C, 650 °C, 850 °C, 1000 °C, 1100 °C and 1300 °C, followed by cooling down 

to room temperature. The bi-layers were checked for defects after each respective temperature cycle 

and simultaneously the necessary data were collected for comparison with model.  Figure 1 shows a 

schematic cross section and a photo of the MgO tube with a dip coated CGO layer after heat treatment 

to 650 °C.     

Figure 1: about here 

The shrinkage in each layer was calculated from the sample thickness after each thermal treatment. The 

sample thickness was measured using scanning electron microscopy, SEM (TM300, Hitachi, Japan). After 

de-binding, a fractured surface of the cross section was analyzed for the microstructure characterization 

and thickness measurement. The samples sintered above 850 
o
C were imbedded in a polymer and 

afterwards polished. The polished cross sections were then used for measuring the shrinkage of MgO 

and CGO layer. The average values of thickness were determined from four measurements. Similarly, 

the porosities in each layer were calculated using the SEM Images from the fractured surfaces of the 
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sample.  Table 1 shows the different dimensions and porosity values of the layers measured at the initial 

and final (1300 
o
C) stage of the sintering cycle.  

Table 1 about here 

By using the raw materials of both MgO and CGO described above, free standing tapes of each layer 

were prepared to measure the free shrinkage kinetics and viscosity. The heat treatment profile used for 

bi-layered tubular supported membrane is also applied while measuring the shrinkage and viscosity of 

each tape. For free sintering of individual layers, optical dilatometry (TOMMI, Fraunhofer ISC, Würzburg, 

Germany) results were collected for each sample size with time and temperature. Assuming isotropic 

shrinkage, the densification strains are calculated from the linear shrinkage data. Details of the 

methodologies used in the sample’s processing and optical dilatometry can be found in Ni et al. [25]. 

 

The viscosities of MgO and CGO during sintering were determined using cyclic loading dilatometry with 

the help of thermo-mechanical analyzer (TMA 402 F1 Hyperion, Netzsch, Germany). The details of the 

methodology used are explained in [26]. For thermo-mechanical analysis, two layers with a final 

thickness of 1 mm for each material were shaped and cut into 20 mm x 5 mm bars. Specimens were 

calcined at 700 °C for 2 hrs with a heating rate of 0.25 °C/min, to obtain samples that were stiff enough 

to be placed in a three-point bending configuration. During the measurement, the samples were heated 

in air from room temperature at a heating rate of 0.5 °C/min applying a superimposed 8-min cyclic 

squared profile. The maximum load was 8 mN. The load was applied by a trapezoidal push rod at the 

center of the beam with 5 mm width and span of 1 cm. The deflection changes were measured with an 

accuracy of ± 0.125 nm.  

3. Model development  

Consider the cross section of porous bi-layered tubular structure made of support and membrane as 

shown in Figure 2. The tubular structure has the internal and external radii of 
i

r  and 
o

r  and an interfacial 
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radius of fr in between the support and membrane.  According to Bordia et al. a constitutive equation 

based on linear viscous behaviors is quite appropriate to use for porous bodies during sintering [6, 7]. In 

this theory, the viscous strain rate of isotropically deforming body is directly proportional to the stress 

components. There is also a direct correspondence between linear elasticity and linear viscous theories, 

where the viscous mechanical properties of the porous body can be defined either by bulk and shear 

viscosities or by uni-axial viscosity and viscous Poisson’s ratio [6]. Therefore in this work, the analogy 

between linear elasticity and linear viscous theories, the elastic-visco elastic correspondence principle 

[27], has been used to describe the densification and stress developments during sintering of the porous 

bi-layered tubular structures. 

Figure 2: about here 

 

 

The length of the tube is assumed to be very large compared to the thickness of each layers, and hence 

plane strain analysis can be applied. Stresses develop only in the principal directions i.e. tangential, rr , 

radial,θθ , and axial, zz , axis, as all the shear stresses vanish because of axisymmetry.  

During sintering, stress in the support as well as membrane can develop because of: 

1. The gradient of the internal free shrinkage rate, fε& , in each layer and  

2. The interfacial pressure,
f

P , that develop due to the mismatch in the shrinkage rates between 

the two layers.    

Employing the correspondence between linear elasticity and linear viscous materials, the expressions in 

[24] can be adapted to linear viscous materials. In the case of a sintering tubular body, the internal 

strain,ε , can be replaced by the internal shrinkage rate, fε& . Table 2 summarizes how the equations for 

linear elastic model have been transformed into linear viscous materials.  

Table 2 about here 
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In the expressions given in Table 2, the subscript s and m indicates the support and membrane, where as 

the superscript, ε , indicates stresses due to the internal strain in the elastic case or free strain rate, fε& , 

in the linear viscous case.  As it is shown in Table 2, the stress expressions for linear viscous materials are 

found by replacing the Young’s modulus and Poisson’s ratio,  and E ν , in the elastic model by uni-axial 

viscosity and viscous Poisson’s ratio,  and η ν ′ .  Note that the expressions provided here represent 

stress/force balance of a viscous media at the specific geometry or radius, r , and not the time derivative 

of the elastic solution.  

The stresses,σ , in the radial and tangential directions due to the interfacial pressure,
f

P , that develops 

because of the mismatch in the shrinkage rate between the two layers, can be calculated based on 

expressions provided by Lame [23] as:      

2 2 2

, 2 2 2 2 2
( )

f f f f iP

rr s

f i f i

P r P r r

r r r r r
σ = −

− −
                                                                        (1) 

2 2 2

, 2 2 2 2 2
( )

f f f f iP

s

f i f i

P r P r r

r r r r r
θθσ = +

− −
                                                                      (2) 

2 2 2

0

, 2 2 2 2 2

0 0( )

f f f fP

rr m

f f

P r P r r

r r r r r
σ

− −
= −

− −
                                                                        (3) 

2 2 2

0

, 2 2 2 2 2

0 0( )

f f f fP

m

f f

P r P r r

r r r r r
θθσ

− −
= +

− −
                                                                      (4) 

Here the superscript, P , indicates that stresses are from the interfacial pressure, whereas the subscripts 

s and m are again for the support and membrane. To calculate the stress components in Eqs (1) - (4), 

first the interfacial pressure has to be determined at each time during the sintering cycle based on the 

mismatch in the shrinkage rate,
f

mis
ε& , between the two layers. To determine this, the continuity of 
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tangential strain rate, θθε& , at the interface between the support and membrane can be applied as 

suggested by Kwok et al. [24] This implies:      

, ,     at   
s m f

r rθθ θθε ε= =& &                                                                         (5)  

The boundary condition in Eq (5) gives the interfacial pressure, 
f

P , as:   

1

1 f

f mis
P

S
ε= &                                                                                      (6) 

where 
1
 and 

f

mis
S ε& are given by: 

2 2 2 222
0

1 2 2 2 2

0

1 (1 )1 (1 )
 

f f is s sm m m

m f s f i m s

r r r rv v vv v v
S

r r r rη η η η

+ +′ ′ ′′ ′ ′− +− +
= + + −

− −
                                          (7) 

0

2 2 2 2

0

2(1 )2(1 )

( ) ( )

f

f i

r r
f f fsm

mis m s
r r

f f i

vv
r dr r dr

r r r r
ε ε ε

′′ ++
= −

− −∫ ∫& & &                                                      (8) 

For the details of the derivations, please refer to the work by Kwok et al. [24]. 

The total stress components, σ , in the radial and tangential directions can thus be given by Eqs (9) and 

(10) where the subscript,  or j s m= . 

, , ,

P

rr j rr j rr j

εσ σ σ= +                                                                          (9)   

, , ,

P

j j j

ε
θθ θθ θθσ σ σ= +                                                                      (10) 

For derivation of the axial stress components, the axial strain rate components are assumed to be 

independent of the radius in the bi-layer structures and they can be written as [24]:  

, , ,( ) ( )f

zz s s zz s s rr s s
v θθσ η ε ε σ σ′= − + +& &                                                                (11) 

, , ,( ) ( )f

zz m m zz m m rr m m
v θθσ η ε ε σ σ′= − + +& &                                                           (12) 
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Here 
zz
ε& is the axial strain rate in the bi-layer, which can be calculated from the force balance in the axial 

direction, see Eq (13). Substituting Eqs (11) and (12) into Eq (13), the axial strain rate can be found as:  

0

, ,2 2 0
f

i f

r r

zz s zz m
r r

r dr r drπ σ π σ+ =∫ ∫                                                                  (13) 

02

2

1
2( ) 2 2

f

f i

r r
f f

zz m s f f m m s s
r r

v v P r r dr r dr
S

ε η ε η ε ′ ′= − + +  ∫ ∫& & &                                                 (14) 

Here the factor 
2

S  is given by:  

2 2 2 2

2 0
( ) ( )

m f s f i
S r r r rη η= − + −                                                                (15) 

The equations up until now are adapted from the general elastic solution in [24] to linear viscous 

materials in order to calculate the stress levels at a given time during the sintering cycle. The stresses at 

each time step are then used to calculate the constraint related strain rates so as to update the porosity, 

radii and thickness of each layer.  

Obtaining the porosity evolution 

By dividing each layer through n equal points and by using numerical integrations, it is possible to find all 

the stresses components at each point in time and hence calculate the corresponding viscous strain 

rates over the thickness, vε& , in each layer as: 

, , , ,

1
( )v

rr j rr j s j zz j

j

v θθε σ σ σ
η

′ = − + &                                                               (16) 

, , , ,

1
( )v

j rr j s rr j zz j

j

vθθε σ σ σ
η

′ = − + &                                                               (17) 

Here again the subscript, j , can be of either for the substrate, s, or membrane, m.   

The total strain rate in the radial, rr , tangential,θθ , and axial, zz , axis and the corresponding volumetric 

strain rate, e& , in either the support or membrane can be updated as:   
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, ,

f v

rr j j rr j
ε ε ε= +& & &                                                                            (18) 

, ,

f v

j j jθθ θθε ε ε= +& & &                                                                          (19) 

,zz j zzε ε=& &                                                                                 (20) 

, , ,j rr j j zz je θθε ε ε= + +& & & &                                                                      (21) 

Therefore the porosity in each layer can be updated based on the conservation of mass that relates the 

volumetric strain rate, e& , to the porosity, pθ ,as [21]:  

, ,
(1 )

p j j p j
eθ θ= −& &                                                                          (22) 

The uni-axial viscosity is obtained experimentally, see Section 2. But the viscous Poisson’s ratio,ν ′ , is 

updated based on the instantaneous porosity of each layer at each time step using [18,21]:  

3

2
(1 )3 2

    where    and =(1- )
6 3

p

p

p

θψ ϕ
ν ψ ϕ θ

ψ ϕ θ

−−′ = =
+

                                           (23) 

Obtaining the thickness evolution 

The total tangential strain rate, θθε& , can be described using the expression given in Eq (24) [22]. Here, 
r

V , 

the radial deformational velocity field and 
t

V θ∂ ∂  is the change in the tangential velocity field with an 

angle θ , which vanishes for an axisymmetric body in cylindrical r zθ− − coordinate system.   

1 tr
VV

r r
θθε θ

∂
= +

∂
&                                                                           (24) 

By using the tangential strain rates from Eq (19), the deformational velocity field,
r

V , is calculated from 

Eq (24) across the thickness of the layer. The corresponding thicknesses of the layers are updated based 

on the updated internal, interfacial and external radii. Note that during the sintering cycle, the above 

equations are solved in a time dependent manner where the shrinkage rate, mechanical properties and 

the geometrical parameters are updated for each time step.  
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Finite element model  

To verify the analytical model described above, a two dimensional finite element model for the 

constrained sintering of bi-layered tubular structure has been developed using ABAQUS
TM

. With the help 

of creep user subroutine the total inelastic strains and porosity evolutions during sintering has been 

defined based on the Skorohod Olevsky viscous sintering model (SOVS) [21]. Details about the 

implementation of the SOVS theory into ABAQUS
TM

 with the help of creep user subroutines to model 

sintering of multi-layers are reported in Molla et al. [28].   

Only one quarter of the cross sectional domain is modeled because of symmetry of the geometry, 

loading and boundary conditions. The domain was discretized using eight noded plane strain elements 

(commonly referred to as CPE8 in the ABAQUS element library) with an element size of 50 and 13 µm for 

the support and membrane respectively. Symmetry boundary conditions are imposed on the truncated 

ends of the finite element model.  

4. Results and discussion  

The analytical model for constrained sintering of bi-layered tubular structure explained in Section 3 is 

implemented using a Matlab program. The development of stresses and densification in each layer 

together with geometrical parameters (the different radii in the bi-layer system and thicknesses) are 

calculated. The stress calculations from the analytical model are verified with the help of the finite 

element model developed to simulate the constrained sintering of bi-layered tubular sample. 

Furthermore, the shrinkage results from the analytical model are compared with SEM measurements 

made during the sintering experiment of tubular samples. From the dilatometry data, densification 

starts first in CGO layer and hence the bi-layer model simulations are performed beginning from the 

temperature wherein the CGO membrane starts to densify.      
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Figure 3 shows results for the uni-axial viscosity of both MgO and CGO as function of temperature 

obtained using the data collected from the TMA analysis. The uni-axial viscosities of both tapes show an 

exponential drop at lower sintering temperatures and remain more or less constant as the temperature 

increases. The trend in the viscosity variation for the sintering temperatures is similar with the 

observations reported for most porous ceramic oxides during densification [8, 19, 26].     

Figure 3 about here 

0.1. Development of stresses  

The tangential stress (often called hoop stress) evolution at the external surfaces of each layer i.e at 

f
r r= in the case of the MgO support and at 

o
r r= in the case of CGO membrane is calculated from the 

analytical model. Figure 4 shows comparison of results from the analytical and finite element 

simulations. As it is shown the hoop stresses from the analytical model agree very well with predictions 

from numerical simulations. The hoop stresses are shown to be maximum at the beginning of the 

sintering process, wherein the membrane and support are exposed to tensile and compressive stresses 

respectively.  

Figure 4 about here 

During the sintering cycle, the hoop stresses evolve and finally the membrane and support will be in 

compression and tension respectively. The hoop stress in the membrane is quite large compared to 

stresses in the support, which are usually the main causes for hindering the densification in the CGO 

membrane. This means that the hoop stress is also the main cause for defects like cracks and peel-offs. 

Similarly the analytical model predictions for the evolutions of radial stresses in both layers have been 

compared with the respective stress values from the numerical simulations as shown in Figure 5.  Here 

also, the MgO support is initially exposed to compressive radial stress and evolves to tensile stress in 

time. Generally the magnitude of radial stresses in both layers is very small compared to the hoop stress 
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throughout the sintering cycle.  Such observations again show that, most of the processing defects occur 

due to the hoop stresses at the beginning of the sintering cycle as the magnitudes of radial stresses are 

almost insignificant in both layers.  

Figure 5 about here 

In addition to stress evolutions in time, the variation of the hoop stress across the radius of each layer 

for a given time has been invetigated using both the analytical as well as numerical simulations. Figure 

6(a) and (b) shows the hoop stress variation across the radius of the support and membrane around the 

early stage of the sintering ( 4 hrst ≈ ).  Again a good agreement of the stress calculations from the 

analytical and numerical models are obitained as shown in Figure 6. The maximum deviation between 

the analytical and finite element models, in this case is close 1.24%. Note here that, the variations of the 

stresses are plotted as a function of radius from the inner,
i

r , to interfacial,
f

r , in case of the support and 

from the interfacial,
f

r , to outer,
o

r , in case of the membrane at the given time.  

Figure 6 about here 

The analytical model and the finite element simulations are in good agreement for all stresses during 

constrained sintering of tubular bi-layered structure. The strains and displacements also compare well in 

the two models. Therefore the analytical model provides a very good alternative to a circumstantial 

finite element analysis (FEA). In the following, the evolutions of shrinkage, porosity and shape of the bi-

layered sample from experiment are compared with results from the analytical model.   

0.2. Shrinkage  

Figure 7 shows the analytical model prediction for the linear shrinkage across the thickness of each layer 

in comparison with free shrinkage data and the measurements taken during the sintering of tubular bi-

layer. Comparison of shrinkage in the constrained CGO membrane with the free CGO tape shows that 

the CGO membrane is exposed to tensile stresses, which hinder the densification during sintering of the 
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tubular bi-layer. The constrained shrinkage in the MgO support is almost unaffected by the level of 

stresses generated in it. Results from the model agree well with the shrinkage measurements from SEM 

images of the samples at four different temperatures. It is evident that the linear shrinkage in the CGO 

membrane dominates the sintering cycle, which exposes it to tensile stress from the MgO support for 

most of the time.   

Figure 7 about here 

0.3. Porosity evolution  

The porosity evolutions in each layer during constrained sintering of the bi-layer tubular sample were 

measured using SEM images at four different temperatures. Figure 8 shows the example of SEM images 

of MgO support and CGO membrane at 1100 
o
C. From the analytical model, Eq (22) is used to update 

the porosity in time. Figure 9 shows the comparison between results from the analytical model and 

measurement values with the standard deviation from the measurement. The standard deviations are 

deduced from the variations in the thickness observed from SEM images of the layers. Predictions from 

the analytical model agree well with the measured values in both the support as well as membrane. 

Porosity evolution in the case of constrained bi-layered tubular structures is size dependent as the total 

stress varies with the radius of the sample during constrained sintering of tubular samples.   

Figure 8 about here 

 

Figure 9 about here 

0.4. Evolution of shape  

In addition to densifications, the geometrical parameters of the tubular samples were also calculated 

using the analytical model. Figure 10(a) shows the evolutions of the internal, 
i

r , interfacial, 
f

r , and 

external,
0

r , radii of the bi-layer sample during the entire sintering cycle. Experimental values, deduced 

from measurements of the interface diameter and thickness of the MgO support at four temperatures, 
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are also in good agreement with the model. The model predictions for the thickness evolution of each 

layer have also been shown in Figure 10(b).  

Figure 10 about here 

Processing defects such as axial cracks and peel-offs of the coating or membrane often occur due to the 

transient hoop stress, which is maximum at the beginning of the sintering process as shown in Figure 4. 

This is similar with processing flaw generations during constrained sintering of planar multi-layers [29]. 

The densification and stress analysis during constrained sintering of tubular bi-layer structures would 

help to optimize stresses, for example, as a function of thickness of the support or membrane. Figure 11 

shows example of variation of the maximum hoop stress as function of ratio of thickness (i.e. radial 

thickness of the CGO membrane to the MgO support). For the sample analyzed in this study, increasing 

the thickness ratio between the two layers would not only decrease the hoop stress in the membrane 

but also increases the compressive hoop stress on the support. The increase of compressive hoop stress 

on the support can have an effect on the final size of the sample. Sometimes the dimensions are of 

course set by the application of the tubular structure, and the possibility for tuning these parameters 

might not be available.      

Figure 11 about here 

5. Conclusion  

A closed form analytical model based on the analogy between linear elastic and linear viscous theories 

has been developed to describe densification and stress development during sintering of tubular bi-

layered samples. Stresses during constrained sintering of tubular bi-layered structures develop not only 

due to mismatch in the shrinkage rate of the layers but also because of the radial gradients in the 

internal shrinkage rate of each layer. The developed analytical model is first verified by finite element 

simulation for the constrained sintering of tubular bi-layer system. Furthermore, the analytical model is 
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validated using densification results from sintering of bi-layered tubular supported ceramic oxygen 

membranes based on porous MgO and Ce0.9Gd0.1O1.95-d layers. Results from the analytical model agree 

well with finite element simulations as well as measurements from the experiment.  

In general, the radial stresses in the bi-layered tubular structures are very small throughout the sintering 

cycle as compared to the hoop stresses. Processing defects like axial cracks and coating peel-offs mainly 

occur due to the hoop stress which is maximum at the beginning of the sintering cycle. The model 

provided in this study could be used to minimize the transient stress generations during constrained 

sintering of tubular bi-layered structures.  
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Figure captions   

Figure 1: Schematics of the cross section (left) and photo of a tubular asymmetric MgO support/CGO 

membrane bi-layer (right) after heat treatment to 650 °C. 

Figure 2: Schematic representation of the porous bi-layered tubular structure. 

Figure 3: Uni-axial viscosity of MgO and CGO tapes as a function of temperature. 

Figure 4: The evolution of hoop stress in the support and membrane during the sintering cycle. 

Figure 5: The evolution of radial stress in the support and membrane during the sintering cycle. 

Figure 6: Hoop stress variation across the radius (a) MgO support (b) CGO membrane.  

Figure 7: Comparison of linear shrinkage in free and constrained sintering together with experimental 

measurements for constrained sintering. 

Figure 8: SEM characterization of the bi-layered tubular sample after sintering to 1100°C (a) MgO support 

and (b) CGO membrane.  

Figure 9: Comparison of the evolution of porosity from model and experiment during constrained sintering 

of tubular bi-layer sample. 

Figure 10: Evolution of geometrical parameters during the sintering cycle: (a) the different radii in the bi-layer 

(b) thickness.  

Figure 11: Variation of hoop stress with ratio of thickness of the layers (CGO-membrane to MgO-support) at 

the beginning of the sintering cycle.     
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Figure 1: Schematics of the cross section (left) and picture of the asymmetric bi-layer tubular sample (right) 
consisting of dip coated CGO-membrane and MgO-support at 650 °C.  

126x122mm (300 x 300 DPI)  
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Figure 2: Schematic cross section of porous bi-layered tubular structure.  
83x67mm (300 x 300 DPI)  
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Figure 3: Uni-axial viscosity of MgO and CGO tapes as a function of temperature.  
99x76mm (300 x 300 DPI)  
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Figure 4: The evolution of hoop stress in the support and membrane during the sintering cycle.  
99x76mm (300 x 300 DPI)  
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Figure 5: The evolution of radial stress in the support and membrane during the sintering cycle.  
97x73mm (300 x 300 DPI)  
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Figure 6: Hoop stress variation across the radius (a) MgO support (b) CGO membrane.  

51x20mm (300 x 300 DPI)  
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Figure 7: Comparison of linear shrinkage in free and constrained sintering together with experimental 
measurements for constrained sintering.  

97x73mm (300 x 300 DPI)  
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Figure 8: SEM characterization of the bi-layered tubular sample after sintering to 1100°C (a) MgO support 
and (b) CGO membrane.  

138x186mm (300 x 300 DPI)  
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Figure 9: Comparison of the evolution of porosity from model and experiment during constrained sintering of 
tubular bi-layer sample.  

98x75mm (300 x 300 DPI)  
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Figure 10: Evolution of geometrical parameters during the sintering cycle: (a) the different radii in the bi-
layer (b) thickness.  

51x20mm (300 x 300 DPI)  
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Figure 11: Variation of hoop stress with ratio of thickness of the layers (CGO-membrane to MgO-support) at 
the beginning of the sintering cycle.      
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Tables  

 

Table 1: Parameters of MgO and CGO layers before and after sintering of the tubular bi-layer at 1300
o
C 

 Initial Final 

External diameter of CGO (mm) 14.42±0.10 12.61±0.61 

Thickness of CGO (µm) 26.80±0.30 23.55±0.91 

Thickness of MgO (µm) 1002±6.10 886.76±4.52 

Relative porosity of CGO  0.44±0.01 0.20±0.03 

Relative porosity of MgO 0.63±0.02 0.46±0.03 

 

 

Table 2: The analogy between linear elasticity and linear viscous materials for stress at a given radius, r. 

Linear elastic Linear viscous 
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a b s t r a c t

Models for deformational behaviors of porous bodies during sintering often rely on limited number of
internal variables as they are formulated based on simplified or ideal microstructures. Considering real-
istic microstructures can improve the predictive capabilities of the already established theories like the
continuum theory of sintering. A new multi-scale numerical approach for modeling of shape distortions
during sintering of macroscopically inhomogeneous structures combined with a microstructure model is
developed. The microstructures of the porous body are described by unit cells based on kinetic Monte
Carlo (kMC) model of sintering. During the sintering process the shrinkage rate is calculated from the
kMC model. With the help of computational homogenization, the effective viscosity of the powder
compact is also estimated from a boundary value problem defined on the microstructures of unit cells
simulated by the kMC model. Examples of simulation of sintering of bi-layers based on different material
systems are presented to illustrate the multi-scale model. The approach can be considered as an exten-
sion to the continuum theory of sintering combined with the meso-scale kinetic Monte Carlo model.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Shape instabilities during sintering of functionally graded por-
ous multi-layers is one of the problems often observed in the
development of various technologies like the solid oxide fuel cells
(SOFC), gas purification membranes, etc. [1–8]. Frequently, this
problem is related to the differential shrinkage that arises from
the macroscopic inhomogenities in the porous body [9–12]. The ef-
fect of the sample own weight has recently been shown to be an-
other factor generating stress and distortions during sintering of
multi-layer systems [4,6,7]. Generally there is a growing interest
towards explicit understanding of the effect of inherent material
properties on the extent of shape distortion during sintering of
multi-layered porous structures [13]. Significant achievements in
modeling of densifications and shape distortions in multi-layer
systems have been made using the continuum theory of sintering
[2,11,13,14]. The continuum theory of sintering predicts the mac-
roscopic displacement rate in the porous bodies assuming that
the powder particles behave in an incompressible linear viscous
way [14]. The driving force for sintering (sintering stress) is treated
as an additional hydrostatic pressure that arises due to the minimi-
zation of surface energy in the entire volume of the sintering spec-
imen. Therefore, to implement the continuum theory of sintering,

it is necessary to experimentally measure the sintering behavior
i.e. sintering stress or shrinkage rate and the effective viscosity of
the porous body. Usually separate set of experiments is used to
study those two properties which are then implemented in a mod-
el of multi-layer systems [5,10,15,16].

In general, the magnitude of shrinkage rate and the effective
viscosity are functions of the internal parameters of the porous
structure [14]. These internal parameters are for example the
amount and size of pores, grain size of particles, average neck ra-
dius, pore diameter to grain size ratio, powder packing, dihedral
angle, etc. [17]. Traditionally porosity and grain sizes are consid-
ered as the internal parameters defining the evolution of sintering
stress and viscosity in the continuum theory of sintering
[11,18,19]. This practice however needs to be extended further to
account for other internal parameters and hence refine the predict-
ing capabilities of the models. The challenge here is not only the
lack of explicit knowledge about which internal parameters are
necessary for accurate modeling of the material behaviors, but also
that these parameters are very cumbersome to obtain by direct
experimental investigations.

The natural extension of the continuum model is to directly
consider the internal geometric features of the porous structure
to estimate the shrinkage as well as the viscous behaviors. This
can be done through a so called multi-scale modeling procedures
[17,20,21]. If a representative unit cell of the microstructures evo-
lution is defined during the sintering cycle, it is possible to extract

http://dx.doi.org/10.1016/j.commatsci.2014.02.041
0927-0256/� 2014 Elsevier B.V. All rights reserved.
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the viscous behaviors of the porous body using techniques in mul-
ti-scale modeling. The first challenge here is to be able to predict
the proper microstructural geometry of the powder compact and
to model its evolution in time. Kuzmov et al. have considered sim-
plified unit cells with circular and elliptical pores and they have
also demonstrated the impact of shape of pores on the densifica-
tion as well as distortion of bi-layered structures [21]. Kuzmov
et al., however, assumed the sintering stress to be a curvature
dependent traction applied on the surface of the pore, which still
limits the effect of other internal parameters on the shrinkage rate
of the porous body [21].

Recently there have been a number of reports showing the
capabilities of a numerical model based on a kinetic Monte Caro
(kMC) method [22,23]. The kMC model is able to simulate both
densification and microstructural evolution during sintering of a
powder compact at the meso-scale level. This model is based on
solid state sintering having the ability to simulate the different
underlying phenomenon during sintering of a powder compact
including grain growth, pore migration and vacancy annihilation.
It has demonstrated its robust capabilities in predicting the micro-
structural evolution during sintering of porous bodies [22]. The
model has been compared with the sintering of copper spheres
as observed using X-ray tomography [22], as well as been used
to study the sintering of close packed spheres and powders with
a particle size distribution [23,24].

In an attempt to obtain more accurate expressions for sintering
stress and bulk viscosity, Olevsky et al. used the 2D microstruc-
tures of porous body simulated by the kMC model [25]. Olevsky
et al. were able to determine the interfacial-free energy for a series
of microstructures in time so as to calculate the sintering stress.
The sintering stress and normalized bulk viscosity obtained from
the kMC model is also compared with the result found using the
model suggested by Skorohod [41] where a good agreement is
shown in the case of normalized bulk viscosity [25].

In this work, a unit cell based on the kMC model is established
for multi-scale modeling of sintering. This approach is advanta-
geous as the kMC model can be extended to provide the important
parameters to the continuum model i.e. the densification/shrink-
age and viscous behaviors of the powder compact, without having
to conduct large amount of experiments. Furthermore the micro-
structural simulation based on the kMC model has the potential
to incorporate any of the internal parameters for the given powder
compact without limitations.

Therefore the objective of this study is to create a unified model,
which couple the local kinetic Monte Carlo (kMC) model with a glo-
bal finite element model in order to predict the shape distortions,
e.g. during sintering of bi-layered porous structures. The kMC mod-
el provides the microstructure evolution as a function of time and
temperatures for the representative volume elements (RVEs),
which are then used to extract the shrinkage as well as viscous
parameters of the powder compact that often require tedious
experimental work.

2. Multi-scale modeling

The multi-scale modeling approach used in this study consists
of two models; one at meso- and another at macro-scale. The
meso-scale model is the previously discussed kMC model for solid
state sintering, where as the macro-scale model is based on finite
element method. The meso-scale model is considered to be the
RVE of the macro-scale geometry, where the RVEs are assumed to
be distributed throughout the finite element nodal points of the
macrostructure.

Two main mechanisms are considered in the deformation of the
microstructure, i.e. (1) sintering contraction through diffusion

mechanisms (2) viscous deformation of the microstructure from
stresses. (1) Is the shrinkage rate in the powder compact _es

kk, which
is simulated by the kMC model. Hereby introduction of concepts
like sintering stress is avoided. In the current work the influence
of stress on the annihilation processes and pore migration in the
kMC are disregarded. This approach is valid for systems where
the microstructural evolution is not strongly affected by the stres-
ses throughout the system. While the change in microstructural
evolution of course depends on the magnitude of the internal or
external stresses, it has been shown that while pores orient
depending on the external stress, properties such as the mean
grain size can differ little between constrained and freely sintered
samples [26,27]. The onset of microstructural anisotropy also de-
pends on the sintering mechanisms; Alumina, sintering by solid
state sintering, develops anisotropy during the final stage of sinter-
ing [28], while glass, sintering by viscous flow, is anisotropic dur-
ing sintering but becomes isotropic at the end of the process
[29]. Furthermore, the influence of the stress also varies within
the sample, allowing parts of a constrained sample to behave as
though it was freely sintering [30]. (2) The viscous deformation
of the microstructure is handled by a microstructural finite ele-
ment model with which a homogenization procedure is performed.

The extractions of the viscous properties of the powder compact
Dijkl, are based on a special set of boundary value problems (BVPs)
established on the RVEs. The theory of computational homogeniza-
tion is implemented on each RVE, which in this case is based on the
microstructure obtained from the kMC model in time. The bound-
ary conditions applied on the RVE are updated in each time step
using the viscous strain rate from the macro-scale model. Fig. 1
shows a schematic flow diagram of the multi-scale modeling pro-
cedure used in this study.

Below are the details for the different parts of the multi-scale
model.

2.1. Unit cell model or RVE

The kinetic Monte Carlo defines individual grains and pores on a
two or three dimensional square/cubical grid, where a single grid
cell is referred to as a voxel in both two and three dimensions.
The model simulates grain growth, pore migration and vacancy
formation and annihilation through diffusion processes. The driv-
ing force for sintering in the model is the capillarity (reduction of
interfacial free energy), which is defined by the neighbor interac-
tion energy between voxels. Only a brief description of the model
is given here as it has been described in detail in previous works
[22,31].

Fig. 1. Schematics of organization in the multi-scale modeling.
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The energy at a given site, i, is proportional to the sum of unlike
neighbors to that site, i.e.

Ei ¼ 1
2

X8 or 26

j¼1

Jð1� dðqi; qjÞÞ ð1Þ

where J is the neighbor interaction energy, qi and qj are the state of
the sites i and j respectively, and d is the Kronecker delta function. A
value of J = 1 is chosen, as this constitutes the simplest case possi-
ble. Grains are identified by different values of q, while all pore sites
all have the same state, q = 0. The number of neighboring sites con-
sidered is 8 for a two dimensional simulation and 26 for a three
dimensional one.

Sintering is modeled by interchanging two neighboring sites,
altering the state of a single grain site or collapsing an isolated
pore site, called a vacancy, by moving it to the surface of the sam-
ple. If any of these ‘‘moves’’ lowers the total energy of the system,
as calculated in the equation above, then the move is accepted,
whereas if the energy is increased the move may be accepted
with probability P based on the standard Metropolis algorithm,
defined as:

P ¼ exp �DE
kBT

� �
for DE > 0

1 for DE 6 0

(
ð2Þ

Here T is the temperature and kB is Boltzmann’s constant and
the different types of events can have different temperatures. The
attempt frequency of each type of event can also be varied, allow-
ing different magnitudes of pore surface diffusion, grain boundary
diffusion and grain boundary mobility. The attempt frequency is
the probability that a given type of move is attempted.

In this study, a two dimensional kMC model is used. The shrink-
age strain rate of the powder compact is calculated from the den-
sification data at each time step during the simulation of the kMC
model. Simultaneously the simulated microstructure as shown in
Fig. 2 is used as the RVE for computational homogenization. Only
an internal part of the simulated volume shown in the rectangle
is used, in order to remove surface effects.

The microstructure predicted by the kMC model is considered to
be a typical structural unit of the macroscopic composite. It is thus
assumed that any macroscopic piece of the material has the inter-
nal structure corresponding to the RVE. The typical microstructure
of the RVE in time is meshed using quadrilateral elements, see
Fig. 3. The finite element mesh built on the RVE micrograph is con-
sequently used to set up the boundary value problem (BVP) for
homogenization of the effective viscosity of the powder compact.
The computational homogenization over the volume of the RVE is
based on a linear viscous material model. The details about setting
up the boundary value problem and the corresponding homogeni-
zation procedures are explained in Section 2.2. For the sake of sim-
plicity only 2D model in plain strain formulation is considered in
this study.

In the case of inhomogeneous specimen, e.g. a bi-layer system
with different initial porosity, different sets of RVEs can be consid-
ered depending on the macrostructural domain. Note that the dif-
ferent RVEs deform in a different way depending on the
macrostructural domain they belong to.

2.2. Homogenization for effective viscous parameters

Computational homogenization theories are used to estimate
the effective viscosities of the microstructure using finite element
methods. The effective properties of the macroscopic body can be
found by the solution of a boundary value problem formulated
on a single unit cell or RVE with a proper boundary condition
[20,21,32–35]. This is based on the assumption that any material

point Xp 2 �V in the continuum scale can be associated to the local
RVE whose domain is V with a boundary oV. Fig. 4 shows the sche-
matics of the continuum macrostructure and the kMC based RVE.
Note that the characteristic length of the RVE is much smaller than
the continuum model.

In order to estimate the effective viscosity of the heterogeneous
body, the sub-scale modeling approach described by Nguyen et al.
[32] is used with the theory of direct correspondence between lin-
ear elastic and linear viscous problems [36]. Table 1 below shows
the analogies between the linear elastic and linear viscous models.
For details of the sub-scale modeling in the case of linear elasticity,
please refer the work by Nguyen et al. [32].

The extraction of the viscous parameters from the boundary va-
lue problems described above is based on the Hill-Mandel principle
of consistency of energy dissipation rate between the meso and
macro-scale models [32,34]. For the meso-scale model to be ener-
getically consistent, the rate of deformation energy at the macro-
scopic level should be equal to the volume average of the meso-
scale stress energy dissipation.

�rij
_�eij ¼ 1

V

Z
V
rij _eij dV

U ¼ V
2

�rij
_�eij

ð3Þ

For a material that can be analyzed by a linear viscous behav-
iors, the general constitutive relation between the macro-scale
stress and strain rate tensors and hence the stress energy dissipa-
tion is:

�rij ¼ Dijkl
_�ekl ) U ¼ V

2
_�eijDijkl

_�ekl ð4Þ

By solving the boundary value problem on the RVE using the
periodic boundary conditions described above, it is possible to cal-
culate the stress work (the energy dissipation rate due to deforma-
tion, U). Therefore the effective viscosity tensors, Dijkl, of the
macrostructure can be obtained by applying a suitable macro-
strain rate tensors, _�eij, depending on the viscous tensor required.
To find all componenents of Dijkl, independent load cases in differ-
ent directions are considered on each RVE. For the macro-scale
model with 2D plain strain formulation, the entire viscosity tensors
can be obtained using separate uniaxial strain conditions and one
pure shear deformation. For example, for pure uni-axial strain rate
applied in the x-direction _�e11 ¼ 1, the rate of stress energy dissipa-
tion computed on the RVE is given by Eq. (5) from which the tensor,
D1111, is calculated.

U ¼ V
2

D1111ð _�e11Þ2 ¼ V
2

D1111 ð5Þ

Fig. 2. Example of the representative volume element (RVE) micrograph
(400 � 400 pixels) with each grain having different color.
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2.3. Macro-scale model

The finite element method is used to solve the continuum mod-
el in the macrostructural model using the shrinkage strain rate _es

kk,
and the effective viscosity tensor Dijkl, of the porous body. The finite
element equations are formulated based on the direct correspon-
dence between linear elastic and linear viscous problems [36].
The constitutive relationship for linear viscous problems can be
written as:

rij ¼ Dijkl _ec
kl ð6Þ

where _ec
kl and rij are the viscous/creep strain rate and viscous stress

respectively. The total strain rate in the sintering body is given by:

_ekl ¼ _ec
kl þ _es

kl ð7Þ
The sintering related strain rate (densification strain rate) is cal-

culated from the kMC based RVE model and can be expressed in
terms of the relative density q, of the powder compact as:

Fig. 3. Schematics of the procedure used to model the effective viscosity of the porous body using boundary value problems (BVP).

Fig. 4. Schematics of the continuum macrostructure (left) and the representative volume element (RVE) model (right).

Table 1
Field variables and related governing equations for linear elastic model as described in [32] and linear viscous model in this work,

Linear elastic Linear viscous Remarks

Microscopic field
variables

Displacement ð~uiÞ Velocity ð~v iÞ
Strain (eij) Strain rates ð _eijÞ
Stress (rij) Stress (rij)

Governing equations @rij

@xj
¼ 0 8x 2 V @rij

@xj
¼ 0 8x 2 V No body force

eij ¼ 1
2

@~ui
@xj
þ @~uj

@xi

� �
_eij ¼ 1

2
@~v i
@xj
þ @~v j

@xi

� �
Boundary conditions Mean and fluctuation fields on the boundary of the RVE

ui ¼ �ui þ ~ui

Mean and fluctuation fields on the boundary of the RVE
v i ¼ �v i þ ~v i

~uðxþÞ ¼ ~uðx�Þ 8xþ 2 @Vþ and matching 8x� 2 @V� ~vðxþÞ ¼ ~vðx�Þ 8xþ 2 @Vþ and matching 8x� 2 @V� Periodic boundary
condition

Initial conditions rij ¼ eij ¼ ~ui ¼ 0 rij ¼ _eij ¼ ~v i ¼ 0

Averaging theory �rij ¼ 1
V

R
V rijdV �rij ¼ 1

V

R
V rijdV

�eij ¼ 1
V

R
V eijdV _�eij ¼ 1

V

R
V

_eijdV
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_es
kk ¼ �

_q
q

ð8Þ

Considering Eqs. (6) and (7), it is possible to write the constitu-
tive relation for the sintering body as:

rij ¼ Dijklð _ekl � _es
klÞ ð9Þ

The finite element formulations used for the 2D linear viscous
analysis is similar to the one used for linear elasticity where the
strain is replaced by strain rate defined with the help of the nodal
velocity fields. Once the velocity fields are calculated, the displace-
ments of the nodal points are then calculated by integrating the
velocity field through the sintering time. The details of the finite
element formulations are described in Appendix A.

3. Model application: bi-layer porous structure

The multi-scale modeling procedures described above are
implemented using Matlab code. In this section, two types of por-
ous bi-layered structures are considered to illustrate the capabili-
ties of the approach. These are:

I. Bi-layer composed of layers of same materials (similar sin-
terabilities) but with different initial porosities.

II. Bi-layer composed of layers of different materials (different
sinterabilities) but having equal initial porosities.

Bi-layer systems of the first and second type shall be referred to
as bi-layer A and bi-layer B, respectively. Fig. 5 shows example of
the schematics of the continuum bi-layer structure with the
respective RVEs of each layer having different porosities. Note that
the sinterability of the layer is related to the material’s intrinsic
driving force for sintering [13].

The initial microstructures were generated by simulation of the
pouring of spherical particles with a uniform size distribution with
radii between 15 and 20 pixels into a cubic container
400 � 400 voxels. The powder with lower initial density also con-
tained a number of spherical pore former particles that were re-
moved before sintering. The numerical code used to simulate
pouring and packing is the Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) code, available as open
source from Sandia National Laboratories. Each powder particle is
a single grain.

The sintering behavior of the powders was simulated assuming
isothermal heating. All simulations are run for the same length of
time, which scales linearly with physical time [22]. The simulation
parameters used for this study are temperatures for grain growth,
pore migration and for vacancy formation of kBT = 0, 0.7 and 1.5,
respectively. The attempt frequencies were chosen in the ratio
1:1:5 for grain growth pore migration and vacancy formation,

respectively. The values for the temperatures and attempt frequen-
cies were chosen such that the modeled samples displayed a real-
istic sintering behavior for a powder compact.

Since both layers of bi-layer A are of same materials, the shear
viscosity of the fully dense bodies are assumed to be equal i.e. g1 -
= g2 = 40 GPa s. In the case of bi-layer B, the fully dense body of
Layer-2 is assumed to have higher shear viscosity than Layer-1
i.e. g1 = 40 GPa s and g2 = 55 GPa. In both cases the viscous Pois-
son’s ratio of the fully dense bodies are assumed to be m = 0.48
[7]. The viscous behaviors of the fully dense bodies are considered
to be constant which corresponds to the isothermal sintering
where there is no effect of temperature change. In bi-layer A, the
initial relative densities of the first and second layers are 0.64
and 0.83 respectively where as in bi-layer B both layers have equal
initial relative densities of 0.85.

For the analysis of the macro-scale model, 2D plain strain for-
mulation is used with an initial length of the sample l0 = 20 mm.
Both layer’s thicknesses are also assumed to be equal at the begin-
ning of the sintering. While simulating the macro-scale bi-layer
model, symmetric condition is used by taking half of the entire
length of the sample. To account for the randomness in the kMC
model, the extraction of shrinkage strain rate as well as the effec-
tive viscosity of each layer is made based on the average values ta-
ken from simulation of nine unit cells or RVEs with the same initial
microstructures.

The relationship between Monte Carlo and physical time should
be evaluated by fitting experimental measurements of densifica-
tion and the Monte Carlo model prediction for a given powder
compact as explained in Mori et al. [37]. Often the physical time
of sintering is related to the Monte Carlo simulation time in a linear
manner [22]. In this work, a common constant, C with a unit of
physical time is used to convert the kMC time steps to physical
time step s as shown in Eq. (22).

s ¼ CtkMC ð10Þ
In this study, it is also assumed that the evolution of the micro-

structure in each layer is unaffected by the amount of stress in the
bi-layer system. This assumption is valid when the shear stress in
the bi-layer is not significantly higher than the sintering stress,
similar to the observations reported in Ref. [6]. The multi-scale
model solutions in terms of kinetics of shrinkage rates in each layer
and bending curvature are discussed here under.

The shrinkage strain rate of each layer in both bi-layer A and B
are shown in Fig. 6 with the standard deviation from the nine kMC
simulations of unit cells with the same initial microstructures. In
case of bi-layer A, the results indicate more rapid shrinkage in
the Layer-1, which has higher initial porosity. In bi-layer B, the
shrinkage in Layer-1 is also observed to increase rapidly because
of its faster sinterability and/or lower viscosity of the fully dense
body. The evolutions of the microstructures of each of the layers
in bi-layer A and B at three sample time steps are also shown in
Fig. 7. At the initial time step, it is visible to see the difference in
the amounts of voids between Layer-1 and Layer-2 in bi-layer A
compared to the seemingly similar microstructures between
Layer-1 and Layer-2 in bi-layer B. In bi-layer B, it is also clear to no-
tice the rapid densification and the associated grain growth in
Layer-1 compared to Layer-2. The different colors on the kMC
micrographs represent different grains within the powder com-
pact. Fig. 8 shows the average normalized grain growth in each
of the layers from the nine kMC simulations. The normalized grain
growth in the both layers of bi-layer B is higher than those in bi-
layer A. This could indicate the effect of sinterability of the materi-
als on the grain growth compared to the initial density.

The homogenized shear viscosities for each of the layers have
been modeled based on the procedures outlined in Section 2.2.
Note that several authors proposed different models based on

Fig. 5. Schematics showing the continuum bi-layer structure having layers of same
material with different initial porosities and the respective representative volume
elements (RVEs).
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simplified assumptions of the microstructures to describe the
shear viscosity as a function of density. Comparison of some of
these models is summarized by Bordea and Scherer [38] which
show deviations from one model to the other. In this work, the re-
sults for the evolution of the homogenized shear viscosity is com-
pared with the model suggested by Skorohod and Olevsky i.e. the
Skorohod–Olevsky Viscous Sintering model (SOVS) [14,41], the
experimental model determined by Rahaman et al. for shear vis-
cosity of porous CdO [39] and the composite sphere model (CSM)
of Ramakrishnan and Arunachalam for shear modulus [40]. Fig. 9
shows the normalized shear viscosities of the Layer-1 (in bi-layer
B) as a function of relative density. The shear viscosity extracted
from the RVEs is shown to be lower than those predicted by the
SOVS and CSM theories at lower densities but agrees well with

the one suggested by Rahaman et al. The 2D plain strain formula-
tion used while solving the BVPs over the unit cell models could af-
fect the accuracy of the results of homogenized viscosities. But at
higher densities, all the models show good agreements converging
to unity at fully dense state.

The average effective shear viscosities of each layer in bi-layer A
and B as estimated from the nine unit cell models are shown in
Fig. 10. In bi-layer A, Layer-2 which has higher initial density is
shown to have higher effective shear viscosity throughout the time
considered. In case of bi-layer B, Layer-2 which has higher dense
body viscosity, is found to have higher effective shear viscosity
than Layer-1. The lower rate of densification in Layer-2 as shown
in Fig. 6(b) is also found to be consistent with the higher effective
shear viscosity.

Fig. 6. Sintering strain rates obtained from the kinetic Monte Carlo (kMC) models: (a) bi-layer A and (b) bi-layer B.

Fig. 7. Microstructural evolutions of each layer in bi-layer A and bi-layer B.
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The contour plot showing the stresses in the x-axis in case of bi-
layer B is also shown in Fig. 11(a) with a distortion towards Layer-1.
The slowly shrinking layer experiences tensile stress imposed on it
by the faster shrinking layer which is under compressive stress. Fi-
nally the camber evolution in time is also shown in Fig. 11(b) where
bi-layer A shows shape reversal in the early stage of the sintering in
contrast to a monotonic increase shown in bi-layer B. For the same
range of time, the magnitude of distortion in bi-layer A which has
layers with different initial porosities is larger than bi-layer B con-
sisting layers of same initial porosities with different sinterabilities.

The approach adopted here could help to explicitly understand
the influences of the intrinsic internal parameters on the kinetics of
shrinkage and viscous behaviors of powder compacts. Appropriate
modeling of those parameters will in turn help to model shape dis-
tortions or stresses often observed during sintering of macroscop-
ically inhomogeneous structures. To increase the accuracy of the
model, it is also possible to consider distinct unit cells or RVEs at
each integration point of the elements in the macro-scale model.
It is also possible to extend the method described in this work into
3D as the kMC model is also able to predict the three dimensional
microstructural evolutions of the powder compact during sinter-
ing. As the densification proceeds, the number of elements in the
representative volume element (RVE) increases with the sintering

Fig. 8. Grain growth as obtained from the kinetic Monte Carlo (kMC) models: (a) bi-layer A and (b) bi-layer B.

Fig. 9. Normalized shear viscosities.

Fig. 10. The effective shear viscosities of each layer in (a) bi-layer A and (b) bi-layer B.
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time which in turn increases the computational time to homoge-
nize each RVEs. In this study, for an average of 5000 elements in
the RVE and 112 elements in the macro-scale model, the computa-
tional time required to simulate 25 data points in time is approx-
imately 30 min. Experimental validation of the model can also be
made by characterizing features of the initial powder compacts
of samples so as to get a proper data for the kMC model.

4. Conclusions

A new multi-scale modeling procedures using unit cells simu-
lated by the kinetic Monte Carlo method is developed to be able
to model shape distortion during sintering of bi-layer systems.
The kMC model is able to predict the shrinkage rate as well as
the microstructure of the powder compact, which is then used to
homogenize the effective viscosities. The approach presented here
has no limitation on the number of internal parameters considered
for modeling the densification as well as viscous behaviors of pow-
der compacts. Comparison of the normalized shear viscosities cal-
culated using the approach developed is found to be in good
agreement with other theories from the literature. Using the new
procedures, it was possible to model curvature evolution of bi-lay-
ers consisting layers of the same and different materials. The ex-
pected behavior of the distortion of the bi-layer is observed. The
developed multi-scale algorithm can be considered as an extension
to the continuum theory of sintering in which the kinetic Monte
Carlo model is included.
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Appendix A. Finite element formulations for 2D linear viscous
analysis

The strong form or the equilibrium equation for 2D linear
viscous analysis is similar to the equilibrium equation for linear

elasticity with the stress in elasticity replaced by viscous stress
rij as described in Eq. (A2). The viscous/creep strain rate is defined
by the velocity field vc as shown in Eq. (A3). The internal load due
to gravity (b) is also considered in the equilibrium equation with
boundary traction (t):

@rx
@X þ @rxy

@X þ bx ¼ tx

@ry

@Y þ @rxy

@X þ by ¼ ty

)
()rTrþ b ¼ t ðA1Þ
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r ¼ Dð _e� _esÞ for _e ¼ rvc where vc ¼ vc
x
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ðA3Þ
The corresponding weak form of the equilibrium equation is de-

rived from Eq. (A1) with the help of an arbitrary weight function
WðX;YÞ [42] and is given as:Z

A
ðrWÞTrdA ¼

Z
A

WT bdAþ
I

L
WT t dL ðA4Þ

Note that in 2D analysis, the area A can be loaded with stress r
and body force b. In addition the boundary can be loaded with trac-
tion Lt and/or given a prescribed displacement Lu. The finite ele-
ment formulation for linear viscous analysis is therefore derived
in the following:

Introducing the constitutive equation i.e. Eq. (9) to the weak
form or Eq. (A4):Z

A
ðrWÞT Dð _e� _esÞdA ¼

Z
A

WT bdAþ
I

L
WT t dL ðA5Þ

The total strain rate is expressed in terms of the gradient of the
velocity field as _e ¼ rvc and hence Eq. (A5) can be written as:Z

A
ðrWÞT Drvc dA�

Z
A
ðrWÞT D _es dA

¼
Z

A
WT bdAþ

I
L

WT t dL ðA6Þ

Fig. 11. Distortion in the bi-layer system: (a) contour plot of stress and (b) distortions in bi-layer A and B.
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The same shape function, N is used to define the velocity field
vc, and the weight function W, i.e. vc ¼ Nv; W = Nw where v and
w are nodal values of the velocity field and the arbitrary weight
function respectively. After introducing the gradient of the shape
function B ¼ rN, it is possible to re-write Eq. (A6) as:Z

A
BT DBdA � v �

Z
A

BT DdA � _es ¼
Z

A
NT bdAþ

I
L

NT t dL ðA7Þ

The term in the left side of Eq. (A7) is formulated as:Z
A

BT DBdA
� �

½v� �
Z

A
BT DdA

� �
½ _es� ¼ K½v � � Kf ½ _es� ðA8Þ

where

K ¼
Z

A
BT DBdA and Kf ¼

Z
A

BT DdA ðA9Þ

Here _es is the free sintering strain rate, which is to be found
from the kMC based RVE model and v is the nodal velocity field
associated with the total strain rate to be calculated.

Terms in the right side of Eq. (A7) represent body and traction
loads. The load due to internal body forces, e.g. due to gravity is
represented as Fb and is also given by:

Fb ¼
Z

A
NT b dA ðA10Þ

The boundary traction and/or prescribed displacement field
vectors are denote by Ft and is given as:

Ft ¼
I

L
NT t dL ðA11Þ

Therefore the overall finite element linear formulation can be
written using Eqs. (A8)–(A11) as:

kV � Kf _es ¼ Ft þ Fb

kV � Kf _es ¼ Ftb

kV ¼ Ftb þ Kf _es

kV ¼ F

ðA12Þ
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