

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Safe Asynchronous System Calls

Brock-Nannestad, Laust; Karlsson, Sven

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Brock-Nannestad, L., & Karlsson, S. (2014). Safe Asynchronous System Calls. Poster session presented at
International Symposium on Code Generation and Optimization, CGO 2014, Orlando, Florida, United States.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/43245866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/safe-asynchronous-system-calls(750f9d04-b458-4e16-acb7-9dd15449fecf).html

Safe Asynchronous System Calls
Laust Brock-Nannestad and Sven Karlsson

Technical University of Denmark

Motivation

IEach traditional system call incurs a context switch overhead

ITraditional system calls are executed in isolation
IWell known security issues due to lack of composability [5]

I Solutions

I Issue multiple operations asynchronously

IReceive responses asynchronously

ICompose system calls using transactions [2]

IMinimize context switch overhead

IBeneficial for application and kernel to reside on different cores

Architecture

Figure : Queues in shared memory replace traditional system call traps.

IQueues are implemented as ring buffers in shared memory [1]

IOne sender, one receiver per buffer

IVirtual Memory subsystem sets up shared mappings

IWell known strategy for distributed operating systems

INo context switching required

IA transaction is local to each thread of a process

Code example

c h a r ∗ f n = ” example . dat ” ;

i n t r = access (fn , W OK) ;
i n t f d = open (fn , O WR) ;

/∗ P e r m i s s i o n s r e a d w i t h
access may no l o n g e r be
v a l i d ∗/

i f (r == 0 && f d > 0)
{

write (fd , . . .) ;
close (f d) ;

}

Figure : Conventional system call
interface. Vulnerable to a race
condition.

c h a r ∗ f n = ” example . dat ” ;
send (b e g i n) ;
send (a c c e s s (fn , W OK)) ;
send (open (fh , O WR)) ;
barr ie r () ;
i n t r = g e t () ;
i n t f d = g e t () ;

i f (r == 0 && f d > 0)
{

send (w r i t e (fd , . . .)) ;
send (c l o s e (f d)) ;

}
send (commit) ;
barr ie r () ;

Figure : Asynchronous system calls.
Transaction ensures atomicity of
access and open.

INon-blocking primitives

I send

Iget

Ibarriers make data dependencies explicit

IThread is descheduled at a barrier.

IThread is rescheduled once all preceding responses are ready

Per-process transaction management

IEach process has a thread dedicated to transaction management

IThe kernel detects conflicts and manages kernel state

Same resource!

Commit

Retry

Transaction

Transaction

Halt, Notify
Resolve,

System
Operating

Detected
Conflict

Reschedule
Roll back and

Thread 2Thread 1Thread
Management

Figure : a per-process thread is responsible for transaction house keeping

Preliminary Evaluation

IPrevious work shows a 22% reduction in clocks-per-instruction [4]

IReduction is due to less pollution of data cache by kernel

Future Work

IOptimization of the implementation with respect to the memory hierarchy

I Integration into a fully fledged operating system

ITransaction based system libraries and run-time

Conclusion

IThe traditional system call interface has several disadvantages

INeed to rethink the system call interface as part of a new operating system

ITransactions and system call communication through shared memory
avoids common pitfalls

ITransactions are already central to new programming models

IWith operating system support, transactions span the entire
software stack

Related work

[1]Bershad, B. N., et al. User-level interprocess communication for
shared memory multiprocessors. ACM TOCS 9, 2 (1991).

[2]Porter, D. E., et al. Operating system transactions. In SIGOPS
22 (2009), ACM.

[3]Rajagopalan, M., et al. Cassyopia: Compiler assisted system
optimization. In HotOS (2003).

[4]Soares, L., and Stumm, M. Exception-less system calls for
event-driven servers. In OSDI (2011).

[5]Wei, J., and Pu, C. Tocttou vulnerabilities in unix-style file
systems: An anatomical study. In FAST (2005).

DTU Compute - Technical University of Denmark laub@dtu.dk http://www.compute.dtu.dk

