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Technical University of Denmark

Motivation

IEach traditional system call incurs a context switch overhead

ITraditional system calls are executed in isolation
IWell known security issues due to lack of composability [5]

I Solutions

I Issue multiple operations asynchronously

IReceive responses asynchronously

ICompose system calls using transactions [2]

IMinimize context switch overhead

IBeneficial for application and kernel to reside on different cores

Architecture

Figure : Queues in shared memory replace traditional system call traps.

IQueues are implemented as ring buffers in shared memory [1]

IOne sender, one receiver per buffer

IVirtual Memory subsystem sets up shared mappings

IWell known strategy for distributed operating systems

INo context switching required

IA transaction is local to each thread of a process

Code example

c h a r ∗ f n = ” example . dat ” ;

i n t r = access ( fn , W OK) ;
i n t f d = open ( fn , O WR ) ;

/∗ P e r m i s s i o n s r e a d w i t h
access may no l o n g e r be
v a l i d ∗/

i f ( r == 0 && f d > 0)
{

write ( fd , . . . ) ;
close ( f d ) ;

}

Figure : Conventional system call
interface. Vulnerable to a race
condition.

c h a r ∗ f n = ” example . dat ” ;
send ( b e g i n ) ;
send ( a c c e s s ( fn , W OK ) ) ;
send ( open ( fh , O WR ) ) ;
barr ie r ( ) ;
i n t r = g e t ( ) ;
i n t f d = g e t ( ) ;

i f ( r == 0 && f d > 0)
{

send ( w r i t e ( fd , . . . ) ) ;
send ( c l o s e ( f d ) ) ;

}
send ( commit ) ;
barr ie r ( ) ;

Figure : Asynchronous system calls.
Transaction ensures atomicity of
access and open.

INon-blocking primitives

I send

Iget

Ibarriers make data dependencies explicit

IThread is descheduled at a barrier.

IThread is rescheduled once all preceding responses are ready

Per-process transaction management

IEach process has a thread dedicated to transaction management

IThe kernel detects conflicts and manages kernel state

Same resource!
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Figure : a per-process thread is responsible for transaction house keeping

Preliminary Evaluation

IPrevious work shows a 22% reduction in clocks-per-instruction [4]

IReduction is due to less pollution of data cache by kernel

Future Work

IOptimization of the implementation with respect to the memory hierarchy

I Integration into a fully fledged operating system

ITransaction based system libraries and run-time

Conclusion

IThe traditional system call interface has several disadvantages

INeed to rethink the system call interface as part of a new operating system

ITransactions and system call communication through shared memory
avoids common pitfalls

ITransactions are already central to new programming models

IWith operating system support, transactions span the entire
software stack
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