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ELB-trees - Efficient Lock-free B+trees
Lars Frydendal Bonnichsen, Sven Karlsson, and Christian W. Probst

Technical University of Denmark

Motivation

IProcessors are increasingly parallel

IWe need scalable, efficient, and thread safe data structures

I Lock based solutions scale poorly

I Lock-free solutions avoid deadlocks and scheduling issues

Contributions

IAn efficient lock-free balanced search tree (ELB-tree)

IUses a single synchronization (CAS) per operation, in the common case

INot dependent on reference counting or automatic garbage collection

IAlmost 30 times faster than left-leaning red-black trees at 30 threads

B+trees (Inspiration)

I Leaf oriented wide search tree

INodes at least 50% full

IRebalance by merging, splitting, or stealing

IOptimized for space and storage on media

ELB-trees (New)

I Leaf oriented wide search tree with fake root

INodes at least k−1, k > 2 full

IRebalance by replacing parent node

IOptimized for parallel speed and RAM storage

Left-leaning red-black trees

I State of the art binary search tree

INo empty nodes

I Local rebalance frequently

IOptimized for speed and RAM storage

Approach

I Insert/remove: Find the relevant leaf and
write with a CAS operation

IRebalance: prevent changes to related
nodes (in purple), replace the parent, and
permit modification of grandparent

Limitations

I Limited to 32 bit keys and values

IOperations not linearizable

IRequires 128 bit CAS operations

Evaluation

IPerform 10,000, 100,000, or 1,000,000 operations on tree of size 10,000, 100,000, or 1,000,000

I 20% of the operations are insert, 20% are remove, and the last 60% are search operations

IUniformly distributed keys and values

IMeassure runtime and speedups relative to single threaded left-leaning red-black tree

I Solid line is 2x 4 Core Intel Xeon, dashed line is 2x 16 core AMD Opteron
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IBetter speedup for large than small trees, due to:

I Spatial locality more significant, lower node contention, lower relative overhead for leaf processing

Related Work

IEllen et al. A Lock-Free B+tree. In PODC’10.

IBraginsky et al. A Lock-Free B+tree. In SPAA’12.

IBonnichsen et al. ELB-trees. In MuCoCoS’13.

Conclusion

I Introduced a scalable, efficient, and thread safe dictionary

IComparable sequential performance to left-leaning red-black trees

IHighly scalable, especially for large data sets
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