

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

ELB-trees - Efficient Lock-free B+trees

Bonnichsen, Lars Frydendal; Karlsson, Sven ; Probst, Christian W.

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Bonnichsen, L. F., Karlsson, S., & Probst, C. W. (2014). ELB-trees - Efficient Lock-free B+trees. Poster session
presented at 9th International Conference on High-Performance and Embedded Architectures and Compilers ,
Vienna, Austria.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/43245856?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/elbtrees--efficient-lockfree-btrees(c5a28c3d-8094-434d-8397-2a2b83b5fe14).html

ELB-trees - Efficient Lock-free B+trees
Lars Frydendal Bonnichsen, Sven Karlsson, and Christian W. Probst

Technical University of Denmark

Motivation

IProcessors are increasingly parallel

IWe need scalable, efficient, and thread safe data structures

I Lock based solutions scale poorly

I Lock-free solutions avoid deadlocks and scheduling issues

Contributions

IAn efficient lock-free balanced search tree (ELB-tree)

IUses a single synchronization (CAS) per operation, in the common case

INot dependent on reference counting or automatic garbage collection

IAlmost 30 times faster than left-leaning red-black trees at 30 threads

B+trees (Inspiration)

I Leaf oriented wide search tree

INodes at least 50% full

IRebalance by merging, splitting, or stealing

IOptimized for space and storage on media

ELB-trees (New)

I Leaf oriented wide search tree with fake root

INodes at least k−1, k > 2 full

IRebalance by replacing parent node

IOptimized for parallel speed and RAM storage

Left-leaning red-black trees

I State of the art binary search tree

INo empty nodes

I Local rebalance frequently

IOptimized for speed and RAM storage

Approach

I Insert/remove: Find the relevant leaf and
write with a CAS operation

IRebalance: prevent changes to related
nodes (in purple), replace the parent, and
permit modification of grandparent

Limitations

I Limited to 32 bit keys and values

IOperations not linearizable

IRequires 128 bit CAS operations

Evaluation

IPerform 10,000, 100,000, or 1,000,000 operations on tree of size 10,000, 100,000, or 1,000,000

I 20% of the operations are insert, 20% are remove, and the last 60% are search operations

IUniformly distributed keys and values

IMeassure runtime and speedups relative to single threaded left-leaning red-black tree

I Solid line is 2x 4 Core Intel Xeon, dashed line is 2x 16 core AMD Opteron

●

●

●

●
●

●

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

10,000 operations

Threads

To
ta

l r
un

tim
e

(s
ec

on
ds

)

1 2 4 8 16 24

●

●

●

●
●

●

●

●

●

● ●

● ●
●

●

●

●

0
5

10
15

20
25

30

10,000 operations

Threads

S
pe

ed
up

1 2 4 8 16 24

● ●
●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

0.
00

0.
01

0.
02

0.
03

0.
04

100,000 operations

Threads

To
ta

l r
un

tim
e

(s
ec

on
ds

)

1 2 4 8 16 24

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

0
5

10
15

20
25

30

100,000 operations

Threads

S
pe

ed
up

1 2 4 8 16 24

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1,000,000 operations

Threads

To
ta

l r
un

tim
e

(s
ec

on
ds

)

1 2 4 8 16 24

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

0
5

10
15

20
25

30

1,000,000 operations

Threads

S
pe

ed
up

1 2 4 8 16 24

●
●

●

●

●

●
●

●

●

●

●

IBetter speedup for large than small trees, due to:

I Spatial locality more significant, lower node contention, lower relative overhead for leaf processing

Related Work

IEllen et al. A Lock-Free B+tree. In PODC’10.

IBraginsky et al. A Lock-Free B+tree. In SPAA’12.

IBonnichsen et al. ELB-trees. In MuCoCoS’13.

Conclusion

I Introduced a scalable, efficient, and thread safe dictionary

IComparable sequential performance to left-leaning red-black trees

IHighly scalable, especially for large data sets

DTU Compute - Technical University of Denmark lfbo@dtu.dk http://compute.dtu.dk

