

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Exploring Adaptive Program Behavior

Bonnichsen, Lars Frydendal; Probst, Christian W.

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Bonnichsen, L. F., & Probst, C. W. (2014). Exploring Adaptive Program Behavior. Abstract from International
Symposium on Code Generation and Optimization, CGO 2014, Orlando, Florida, United States.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/43245847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/exploring-adaptive-program-behavior(00848301-8ed8-4b97-9a60-b6a0b03b964b).html

Exploring adaptive program behavior

Lars Bonnichsen, Christian W. Probst

1 Abstract

Modern computer systems are increasingly complex, with ever changing bot-
tlenecks. This makes it difficult to ensure consistent performance when port-
ing software, or even running it. Adaptivity, ie, switching between program
variations, and dynamic recompilation have been suggested as solutions.
Both solutions come at a cost; adaptivity issues a runtime overhead and
requires more design effort, while dynamic recompilation takes time to per-
form. In this project, we plan to investigate the possibilities, limitations,
and benefits of these techniques. This abstract covers our thoughts on how
adaptivity and dynamic recompilation can be integrated and evaluated.

2 Introduction

Most problems can be solved in many ways. The solution variants make
different tradeoffs, such as trading off space for time. For instance, there
are many sorting algorithms offering different tradeoffs, each with numerous
implementations. Which variant is best depends on the hardware it runs on,
the data being processed, the system load, the power profile, etc. Tradition-
ally applications are deployed once and run many times, making it unlikely
to deploy the best solution.

Deciding which solution to use before knowing the exact conditions it
operates under is at best an art and at worst guesswork. Adapting program
behavior through adaptivity or dynamic recompilation, aims to make con-
sistently good decisions. The system decides which solution is used based
on observations of the system. Recompilation changes the implementation
at runtime by recompiling the program. Adaptivity changes the behavior of
programs by deciding which pre-compiled solution to use at runtime. Use of
adaptivity requires developing multiple solutions, while recompilation gener-
ates new solutions. The new solutions are unlikely to differ as significantly.

1

In the past 15 years the advantages of adaptive program behavior have
been thoroughly studied. Recompilation and adaptivity have been used to
adapt programs based on; e.g. compiler flags, branch alignment, loop un-
rolling, prefetching, parallelization, and algorithmic choices. In many cases
adapting program behavior can dramatically improve performance and con-
sistency.

Adaptive program behavior is not without its faults. Finding new solu-
tions is costly, and allowing for such changes may harm optimization oppor-
tunities. Worse, most adaptive solutions are domain specific and difficult to
integrate and debug. Often the costs may outweigh the benefits of briefly
using a better solution.

Deciding if adaptive program behavior is beneficial for a new problem,
before trying it out, is at best an art and at worst guesswork. We aim to
investigate the costs and benefits of adaptive program behavior, so that it
can be applied with consistent results. To do this, we will compare integrated
and stand alone adaptivity and dynamic recompilation against state of the
art optimization techniques on real life applications.

At the core, we want to discover under which conditions:

1. adaptivity is able to achieve good and consistent performance,

2. dynamic recompilation is able to achieve good and consistent perfor-
mance?

3. traditional compilation techniques is able to achive good and consistent
performance?

3 Adaptive program architecture

We propose a simple feedback loop, where applications are iteratively refined.
The overall structure is outlined in Figure 1. Adaptive behavior is specified
through code annotations, by providing multiple solutions to problems. The
compiler uses the annotations to generate adaptive code, and to refine its
compilation procedure. While executing on a system, the program adapts
to external events. When the system state changes sufficiently the program
is recompiled based on observed system state.

The compiler keeps adaptivity in check. When enough information is
available, the compiler decides which solution to use, avoiding the cost of
adaptivity. When opportunities for adaptivity are detected, the compiler
may reintroduce or generate variants of solutions.

2

Figure 1: The overall structure

The system state is monitored fully to detect opportunities for adaptivity.
At runtime we will monitor the system state through performance counters,
OS events, and executed code patterns. The system state guides adaptivity
and significant changes trigger recompilation. When compiling, the system
state is correlated with the compilers intermediate representation, to evaluate
the strength of solution variants.

We will investigate where and why recompilation and adaptivity are ben-
eficial on real life applications. Any benefit from adaptive behavior will be
scrutinized, to answer the following:

• Can similar benefits be achieved without adaptive behavior?

• Do the benefits outweight the disadvantages?

• Is it portable to other systems?

4 Conclusion

Adaptive program behavior has enormous potential, but it is difficult to
apply well. We aim to reduce the costs of adaptive program behavior, by
studying when and how it can be applied in diverse scenarios. In the research
project we will implement and integrate adaptivity and dynamic recompila-
tion using feedback loops based on the observed system state. The various
forms of adaptive program behavior will be compared against well studied
compilers on real life applications.

3

	Abstract
	Introduction
	Adaptive program architecture
	Conclusion

