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Abstract—Field-programmable gate arrays, FPGAs, are at-
tractive implementation platforms for low-volume signal and
image processing applications.

The structure of FPGAs allows for an efficient implementa-
tion of parallel algorithms. Sequential algorithms, on the other
hand, often perform better on a microprocessor. It is therefore
convenient for many applications to employ a synthesizable
microprocessor to execute sequential tasks and custom hardware
structures to accelerate parallel sections of an algorithm. In this
paper, we discuss the hardware realization of Tinuso-I, a small
synthesizable processor core that can be integrated in many signal
and data processing platforms on FPGAs. We also show how we
allow the processor to use operating system services. For a set of
SPLASH-2 and SPEC CPU2006 benchmarks we show a speedup
of up to 64% over a similar Xilinx MicroBlaze implementation
while using 27% to 35% fewer hardware resources.

I. INTRODUCTION

The ever increasing cost of developing a custom designed
application specific integrated circuit, ASIC, has long since
passed the point of feasibility for low volume embedded
systems to include such custom components. Instead, designers
look to FPGA devices for low volume markets, especially for
signal and image processing. The performance and unit price
of custom FPGA deigns are orders of magnitude lower and
higher, respectively, than for custom designed ASICs. How-
ever, the attainable performance may be orders of magnitude
higher than a solution that uses generic components.

Not all algorithms benefit equally from implementations
on FPGAs. While it can be very efficient to implement
parallel algorithms on FPGA devices, sequential algorithms
are often better implemented on microprocessors. Therefore,
signal processing applications often include microprocessors
in the FPGA fabric. In this paper, we present our experi-
ences in realizing a custom processor core that targets FPGA
implementation. While we have previously used simulation
to verify designs, in this paper we discuss how we realized
the processor core, the Tinuso-I [1], on the Xilinx Zynq
SoC platform. We propose and implement a method for
offloading operating system services in an embedded system.
The proposed system is composed of a hardware component
and a software component. The hardware component provides
communication interface logic while the software component
provides a run-time library that allow client programs to use
the communication interface logic.

We evaluate the system by executing selected SPEC
CPU2006 and SPLASH-2 benchmarks. We demonstrate a

speedup of up to 64% over a Xilinx MicroBlaze based baseline
system.

To summarize, we make the following contributions:

• We show how we used the Xilinx Zynq SoC to realize
the Tinuso-I processor core.

• We discuss the hardware bringup.

• We propose and implement a method for offloading
operating system services and demonstrate it both with
Tinuso-I and Xilinx MicroBlaze.

• We evaluate the performance of Tinuso-I compared to
Xilinx MicroBlaze by executing SPEC CPU2006 and
SPLASH-2 benchmarks.

The paper is organized as follows: In the next section the
system architecture is described. Section III introduces the
architecture, Tinuso, and its design philosophy. Section IV
describes how we offloaded system calls, such as file accesses.
The evaluation is discussed in section V whereas results
are presented in section VI. Related work on synthesizable
processor cores and system call handling is discussed in section
VII and section VIII concludes the paper.

II. SYSTEM ARCHITECTURE

Several software layers and components are needed to
execute real applications. Applications are commonly devel-
oped assuming a POSIX compliant operating system. However,
running a full operating system on small embedded systems is
often unfeasible.

We will use relatively large benchmarks for illustration.
Such benchmarks are normally used to evaluate application
processors such as mobile phone processors, tablet processors,
desktop processors and server processors. Examples are the
programs in the SPEC CPU2006 and SPLASH-2 suites.

To run these benchmark applications, certain POSIX op-
erating system services must be available. For the SPEC
CPU2006 programs, it is enough to provide the open, close,
read, write, stat and lseek POSIX system calls. The SPLASH-
2 applications also require the gettimeofday system call which
is used to provide detailed timing metrics of the benchmark
execution.

These services are usually provided by an operating system
that runs locally on the processor core that requires the service.
However, it is often not feasible to implement a new, or port an
existing, operating system to resource constrained systems. To
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overcome this problem, we propose to offload operating system
calls to a host system running a regular operating system. The
architecture is presented in Fig. 1.

System-on-Chip FPGA devices are silicon devices that
contain one or more application processors tightly coupled
to an on-chip FPGA. In our system architecture, a Tinuso-I
or Xilinx MicroBlaze system, as examples of resource con-
strained systems, are implemented in the FPGA fabric of the
device. Requests for operating system services are relayed by
a small runtime library to a service running on the application
processor in the device. The application processor can then
forward the request to a more capable device, or process the
request locally if that is possible. In our experiments, and for
convenience, we offload all requests to a desktop computer
host.

We will later, in this paper, utilize the system architecture
described in this section to evaluate the Tinuso-I processor
with SPEC CPU2006 and SPLASH-2 benchmarks.

III. THE TINUSO ARCHITECTURE

Tinuso is a statically scheduled processor architecture opti-
mized for high throughput when implemented on FPGAs [2].
Tinuso employs a single issue in-order pipeline with a load-
store architecture [3]. Register file size, cache sizes, and cache
organization are chosen to match the memory resources of
current state-of-the-art FPGAs.

Tinuso aims to obtain a high instruction throughput by
enabling super pipelined implementations. Tinuso leverages a

hardware/software co-design approach where functionality that
is not directly performance critical is moved from the hardware
to the compilation toolchain. For example, the pipeline, with
side-effects, is fully exposed to software. Thus, the compiler
has to consider all types of hazards when scheduling instruc-
tions and must insert no-operation instructions, nops, if nec-
essary. This approach gives the compiler sufficient control to
eliminate many hazards, yielding a more lightweight hardware
design that is easier to optimize and verify.

In processors with a large number of pipeline stages, branch
instructions are resolved late in the pipeline which makes these
instructions costly. Tinuso supports predicated instructions to
reduce the number of dynamically executed branch instructions
and to efficiently fill branch delay slots.

The instruction set architecture of Tinuso uses a fixed 32-
bit word length with three operands. 7 bits are reserved for
register operands, allowing for 128 general purpose registers.
Tinuso supports 8 predication registers that can be used to
leverage predicated execution.

Our current hardware implementation, the Tinuso-I core,
is an instance of the Tinuso architecture. Tinuso-I applies
super pipelining to obtain a high system clock frequency.
Hence, register file, instruction cache, and data cache are
implemented with pipelined block RAMs. These pipelined
memory resources are found in state-of-the-art FPGAs [4].
Hence, each register file and cache access takes two clock
cycles. To take full advantage of the fast memory accesses,
Tinuso-I pipelines the execution stage into two stages, which
results in a deep pipeline with 8 stages as depicted in Fig. 2.

Branch instructions in Tinuso-I are not resolved until the
first execution stage. Thus, there are a total of 4 branch
delay slots. Predicated instructions are supported to circumvent
costly pipeline stalls due to branches. Predicated instructions
also allow the compiler to transform if-else constructs into
straight line code and thus avoid branch instructions. We
have recent results indicating that compiler driven instruction
scheduling using a modern compiler can be very efficient in
using predicated instructions to avoid branch instructions and
utilize branch delay slots.

The pipeline of Tinuso-I is fully exposed to the com-
piler. Tinuso-I has no pipeline interlocking logic, but sup-
ports forwarding from all pipeline stages where forwarding
is possible without stalling. The pipelined memory access and
the pipelined execution unit introduce a number of potential
data dependency hazards. The compiler must resolve all these
hazards when scheduling.

Cache misses are handled by invalidating instructions in
the pipeline and restarting the pipeline when the cache miss
has been resolved. This mechanism keeps the complexity of
the control logic in the pipeline low, but makes cache misses
more expensive as only one cache miss is resolved at a time.

The result of Tinusos design decisions is that we obtain
an implementation that is both small and fast. By moving
complexity away from the processor pipeline and into the
compiler, the Tinuso-I implementation achieves a very high
clock frequency, up to 376 MHz when synthesized to a Xilinx
Virtex 6 device, and requires fewer FPGA resources than other
commercial soft cores.



IV. OFFLOADING OPERATING SYSTEM CALLS

In this section we present at method for offloading op-
erating system calls for processor cores embedded in FPGA
fabric. We focus our discussion on file system services, but
the method is applicable to any operating system service.

A. File System Access

Providing simple file sytem access to a program running
on a Tinuso-I core implemented in FPGA fabric amounts to
providing the POSIX functions such as open, close, read and
write.

In a regular computing system, this requires 1) access to
a storage medium and 2) a software stack to provide a file
system on top of the storage medium. One way to provide
these services is to attach a storage controller to the processor,
such as a SATA controller. The storage controller is used to
provide access to an attached storage medium such as a hard
drive. The storage controller needs to be managed by a driver
running on the processor core. The file system services can
then use the storage controller driver to back the file system
service.

Since we are only interested in evaluating the performance
of Tinuso-I, not in implementing a storage stack, we chose to
leverage existing implementations of storage medium access
and software stack, and only provide a thin shim to interface
these existing services. We achieve this by intercepting file
system service requests at the application level and offloading
them to a regular desktop computer.

We intercept file system service requests by linking the
benchmark applications with a custom run-time library. When
an application requests a file system service, as when invoking
the open system call, the run-time library sends the request to a
desktop computer via a communication link. The response is
received by the run-time and relayed back to the requesting
program. With this approach it is possible to provide file
system access to a processor core by only implementing the
following:

• A minimal run-time library that intercepts file system
service requests from programs running on the Tinuso-
I core in FPGA fabric.

• Communication link support on the desktop computer
that services the file system requests and on the soft
core.

• A service on the desktop computer that responds to
the file system service requests.

With this approach it is possible to leverage the entire
storage stack available on a regular desktop computer, without
porting the entire file system stack to the system under test.

B. Implementation

We implement the proposed offloading method for a
Tinuso-I core synthesized to the FPGA fabric of a Xilinx
XC7Z020-CLG484-1 Zynq device [5]. The silicon device is
part of an AvNet ZedBoard development kit [6]. The Zynq
device is a complex unit with many components, including
two ARM Cortex A9 cores, an 1G Ethernet MAC and an

FPGA fabric area. We use TCP/IP over the 1G Ethernet MAC
to provide the communication link between Tinuso-I and the
desktop computer.

We compile applications for the Tinuso-I using an embed-
ded binutils/GCC/Newlib tool chain [7], [8], [9]. A Standard
C library API is provided by the Newlib C library. Newlib
services file system requests by calling user supplied methods
that implements the services.

A visual representation of the system architecture is given
in Fig.3. The Tinuso-I core is placed in the FPGA fabric. It has
an interrupt line capable of interrupting the Cortex A9 cores, a
64 bit wide burst capable AXI Master [10] interface connected
to the on chip DDR memory controller and a 32 bit wide AXI
Lite [10] slave interface connected to the Cortex A9 cores for
configuration. We use one of the Cortex A9 cores to bootstrap
the system and load the Tinuso program into main memory.
In order not to port the driver for the 1G Ethernet MAC to
Tinuso, we run the driver and the TCP/IP stack on the ARM
core.

When Tinuso application calls the open, close, read or
write C library functions, a request structure is populated
by the runtime. The structure is stored in main memory. An
interrupt is raised by the runtime on the Tinuso core to notify
the ARM core of the pending request.

The ARM core sends the request via 1G Ethernet to the
desktop computer. The desktop computer services the request
using a local disk and responds with data if applicable. The
ARM core stores this data in main memory and notifies the
Tinuso-I core that the request has been serviced by writing a
hardware register in the Tinuso-I core. This causes the Tinuso-I
core to lower the interrupt and continue application execution.
The steps for servicing a file system call, as depicted in Fig.3,
are:

1) Tinuso-I populates a request structure and installs
a pointer to the structure on a predifined memory
location.

2) Tinuso-I core raises a level sensitive interrupt flag for
the ARM core.

3) The ARM core reads the request structure and dis-
patches the request to the desktop computer host via
Ethernet.

4) The desktop computer host executes the service re-
quest locally and returns the result.

5) The ARM core places the result delivered by the host
desktop computer in the buffers used by the Tinuso-I
core.

V. EVALUATION

We evaluate the hardware system described in section IV-B
by running a number of benchmarks that is widely used to
evaluate the performance of computing systems. We run a
selection of benchmarks from the SPLASH-2 [11] and SPEC
CPU2006 [12] benchmark suites. The benchmarks include sev-
eral scientific computations, artificial intelligence algorithms
and algorithms used in computer graphics. We scale the work-
loads to achieve execution times between 1 and 15 minutes.
The benchmark names and workload sizes are presented in
table I.
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TABLE I. WORKLOAD PARAMETERS FOR THE BENCHMARKS.

Benchmark Workload Size
445.gobmk capture.tst
458.sjeng Defaut test input
462.libquantum Default training input
fmm 2048 elements
ocean-noncont 258x258 grid points
radiosity large-room
raytrace teapot
water-nsquared 512 molecules
water-spatial 512 molecules

445.gobmk is an artificial intelligence program that plays
the GO game. The program repeatedly reads game positions
and analyses the game for the next move. 458.sjeng is an
artificial intelligence program that plays chess. The program
takes as input a chess position and performs a game tree search
to find a good move. 462.libquantum is a quantum computing
simulator. It simulates a quantum computer algorithm that
factorizes integers in polynomial time. All of the programs
from the SPEC CPU2006 suite are integer programs that
contain no floating point calculations.

fmm is an implementation of the Fast Multipole Method
for simulation of the N-body problem. ocean is a large scale
simulation of ocean movement and eddy currents. radiosity is
program that calculates the equilibrium distribution of light in
a scene. raytrace is a program that renders 3D graphics with
a ray tracing algorithm. water is a physical N-body simulation
of water molecules. All of the programs from the SPLASH-2
suite are floating point programs. The SPLASH-2 programs
are designed to be executed in multi-processor systems, but
have been modified to execute only one thread for the use in
this paper.

A. Tool Chain

We compile the benchmark programs for Tinuso-I using
our own GCC 4.9.0 based tool chain. The benchmarks are
linked with Newlib version 1.20.0. All benchmarks and the C
library are compiled with optimization level -O2.

B. Execution Time Measurements

For the SPLASH-2 programs we use the built-in timing
measurements to report execution time. This logic depends
on the gettimeofday system call. This system call is handled
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at the connected desktop computer in the same way that file
system calls are handled. The SPEC programs do not include
timing logic. We measure the execution time of the SPEC
programs by starting a timer on the ARM core when the
Tinuso-I core is released from reset. The timer is sampled
again when the the exit system call is invoked by the program
running on the Tinuso-I core.

C. Baseline Platform

To provide a baseline, we implement a MicroBlaze based
system that is as similar as possible to our Tinuso-I based
system, see Fig.4 for reference. Due to architectural differences
between MicroBlaze and Tinuso-I, the topology of the systems
cannot be completely identical. In the Tinuso system, we
use a set of system registers embedded inside Tinuso-I to
control the Tinuso-I core. Because there is no such registers
in MicroBlaze, we use an AXI slave peripheral containing
two registers for this purpose in the MicroBlaze system. The
registers are used by the MicroBlaze core to raise the Cortex
A9 interrupt line, and by the Cortex A9 core to acknowledge
interrupts from the MicroBlaze core.

The MicroBlaze IP core requires three AXI interface con-
nections. A non-cached AXI-Lite Master interface is used to
communicate with the control register bank. Two separate burst
capable AXI Master interface is used to service the instruction
and data caches. The latter two interfaces are connected to
separate AXI slave ports on the Zynq memory controller.

We confgure the MicroBlaze IP core similarly to our
Tinuso-I core, with separate 16 kilo byte direct mapped instruc-
tion and data caches using 32 byte cache lines. We enable the
barrel shifter, disable the multipier, the divider and the floating
point unit.

We compile the benchmarks for the MicroBlaze sys-
tem using GCC compiled from the official Xilinx GCC 4.8
branch [13]. The binaries are linked with Newlib 1.19 com-
piled from Xilinx sources [14].

D. Performance Counters

We characterize the memory system for each of the bench-
marks by using hardware profiling counters in the Tinuso-I
core. The profiling counters count the following:

• Instruction cache misses



• Data cache misses

• Data cache write-back events

• Cycles spent waiting for instruction cache

• Cycles spent waiting for data cache

• Cycles spent on write-back operations by the cache
controller

Enabling the profiling counters in the Tinuso-I core lowers the
maximal operating frequency of the core. Therefore we obtain
the profiling information separately from the execution time
information.

E. Hardware Configuration

The desktop computer host used in the experiments is a
2013 MacBook Pro with a 2.4 GHz Intel i5-4258U CPU and
8 GB of 1600 MHz DDR3 memory.

The ZedBoard is configured with 512 MB of DD3 memory
on a 32 bit bus operating at 1066 MT/s. The board is equipped
with the Xilinx XC7Z020-CLG484-1 System-on-Chip device.

The ARM core in System-on-Chip is clocked at 667 MHz
and is attached to separate 4 kilo byte, 4-way set associative L1
instruction and data caches. The L1 caches interface a shared
L2 cache. The L1 caches are non-blocking with support for 4
outstanding reads and 4 outstanding writes, and speculative
pre-fetching. The L2 cache is a 512 kilo byte 8-way set
associative cache. All caches use write-back policy and 32
byte lines. The A9 core has a 4 slot 64 bit store buffer with
data merging support.

Tinuso-I is configured with separate 16 kilo byte direct
mapped instruction and data caches with a line size of 32 bytes.
The data cache uses write-back policy. The cache controller is
capable of handling one outstanding miss at a time. On a data
cache write-back, dirty data will be written back before a read
of the new data is issued.

For the parts of the system placed in the FPGA fabric, the
full FPGA flow including synthesis, mapping, placement and
routing is performed in Xilinx’s most recent Vivado 2013.4
Design Suite.

VI. RESULTS

The hardware implementation results for both the Tinuso
and MicroBlaze based systems are based on the ”Place and
Route” report of the Xilinx Vivado Design Suite. Table III
lists the MicroBlaze settings in the IP configurator. Parameters
are configured to match the Tinuso-I pipeline and its memory
hierarchy.

Table IV shows the FPGA resources required by the Tinuso
based system compared to those required by the MicroBlaze
based system. The Tinuso system utilizes about 27% fewer

TABLE II. MAXIMUM CLOCK FREQUENCY FOR THE MICROBLAZE
SYSTEM AND THE TINUSO-I SYSTEM.

System Clock Frequency (MHz)
MicroBlaze 115
Tinuso-I 168

TABLE III. MICROBLAZE CONFIGURATION.

Pipeline configuration
Pipeline stages 5
Branch Target Cache enabled
Branch Target Cache Size default
Barrel Shifter enabled
Integer Multiplier disabled
Integer Divider disabled
Floating Point Unit disabled

Cache configuration
Instruction and Data Cache enabled
Size in Bytes 16kByte
Line length (words) 8
Enable Write-back Storage Policy enabled
Number of Victims 0

TABLE IV. FPGA RESOURCE UTILIZATION THE MICROBLAZE
SYSTEM AND THE TINUSO-I SYSTEM.

Resource MicroBlaze System Tinuso-I System Reduction
LUTs 2946 2143 27%
Registers 2811 1811 35%
F7 Muxes 128 31 75%
F8 Muxes 2 0 100%

registers and 35% fewer LUTS than a similar MicroBlaze
based system.

Even though Tinuso-I employs a deeper instruction pipeline
than MicroBlaze it utilizes fewer hardware resources. The low
hardware resource usage of Tinuso-I is a result of the design
choice to move complexity from hardware to software, which
enables a simpler pipeline design. The Tinuso-I compilation
toolchain considers all types of hazards, therefore there is no
need for dependency checks and interlock logic in hardware.
Moreover, the Tinuso instruction set architecture is simpler
than the MicroBlaze instruction set architecture. For example,
Tinuso-I only implements memory operations for 32-bit data
types. Thus, memory accesses of shorter data types in Tinuso-I
require mask and shift instructions.

Table II lists the maximum system clock frequency for
both the Tinuso based system and MicroBlaze based system.
While the Microblaze system can be clocked at 115 MHz,
we achieve timing closure for the Tinuso based system at
168 MHz. The higher clock frequency of the Tinuso based
system can be attributed to the pipelined cache memories, the
pipelined register file, the pipelined execution stages, and the
exposed pipeline architecture.

We identified the time critical path of the design of the
Tinuso-I configuration as the routing delay of the interface to
the AXI memory controller. It is a possibility to add more
pipeline stages in the AXI interface logic to obtain a higher
clock frequency and better routing options. However, this will
add more clock cycles latency for each cache miss. Hence, the
performance of the Tinuso-I core is limited by the implemented
memory hierarchy.

A. Code Execution Time

The execution time for the benchmarks are depicted in
Fig.5. The figure shows the execution time for the benchmarks
when executed on a 168 MHz Tinuso-I system and a 115 MHz
MicroBlaze system, normalized to the latter. The results show
that the Tinuso-I system achieves a speedup of up to 64%. We
run each benchmark 15 times on each platform and compute
the average runtime. The runs are very consistent with less
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than 1% difference between each run of the same benchmark
on the same platform.

Fig.6 shows the average time spent in the IO system. The
IO time is just a tiny fraction of the entire execution time, no
larger than 1% and in most cases less than 0.2%.

Tinuso-I performs significantly better than MicroBlaze
on benchmarks that execute many floating point operations.
The compiler successfully leverages predicated instructions of
Tinuso to produce very efficient software based floating point
algorithms.

The Tinuso-I system is slower than the MicroBlaze system
on the three SPEC benchmarks. To better understand these
results, we have implemented profiling counters in the cache
controller of the Tinuso-I system. The profiling counters mea-
sure the number of cache misses and the number of cycles the
system spend waiting for the cache controller. Fig.7 presents
the number of misses in the instruction cache divided by
the execution time of the program. Fig.8 shows the same
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metric, but for the data cache. For the three SPEC benchmarks
where Tinuso-I is slower than MicroBlaze, the number of data
cache misses is significantly higher. Fig.9 shows the fraction
of the execution time that is spent waiting for the caches
by the Tinuso-I system. For 458.sjeng and 462.libquantum,
execution time is heavily influenced by cache stalls.

Tinuso-I uses 16 kilo bytes of one way direct mapped
cache for instruction and data each. These caches are interfaced
to a blocking cache controller that is implemented in the
hard silicon DDR memory controller available via the Zynq
AXI interconnect. Tinuso-I does not support prefetching or
speculative execution, so every cycle spent waiting for memory
is effectively wasted time. The latency of memory operations
therefore has a very high impact on the performance of the
Tinuso-I system. Based on the performance counters in the
cache controller, we determine the average wait time for a data
cache access is 50 cycles. It is clear that if memory subsystem
performance can be improved, the system performance will
benefit significantly.

445.gobmk includes a high number byte sized memory
operations, as it uses bytes to represent game state. Tinuso-I
only supports aligned full-word memory operations. To access
a short data types in main memory, Tinuso-I must perform
a memory operation and apply shift and mask operations to
extract the data. Due to scheduling constraints on memory and
shift operations, there is an overhead to accessing short data
types in main memory.

VII. RELATED WORK

Major FPGA vendors such as Xilinx, Altera and Lattice
Semiconductors offer synthesizable processor cores optimized
for their respective technologies. These cores are highly con-
figurable and come with a large number of peripherals and rich
tool-chain support. Xilinx MicroBlaze and Altera Nios II come
as optimized netlists of vendor specific primitives. Hence, they
are bound to the vendor’s hardware and toolchains.

Xilinx’s MicroBlaze is a popular synthesizable processor
that implements a 32-bit Harvard RISC architecture with a
rich instruction set optimized for embedded applications [15].
The performance optimized MicroBlaze configuration utilizes
a five-stage pipeline. A large amount of peripheral, memory
and interface features are available to adapt the processor to
a given application. MicroBlaze comes with an AXI interface
which can be used to connect to memory controllers or to build
multicore systems.

Altera’s current equivalent to MicroBlaze is called
Nios II [16]. The Nios II family includes three processors
that are optimized for highest performance, smallest size, and
performance and size balanced implementation. NIOS II allow
for up to 256 custom instructions which can be used to tune
the system to improve the performance of dedicated signal and
image processing applications.

There exists a plethora open source synthesizable processor
cores, such as LEON3 and OpenRISC 1200. However, the
available instances of these processor cores are not optimized
for any specific target technology and can therefore only be
clocked at a relatively low clock frequency. As a result, perfor-
mance and instruction throughput are low when implemented
on an FPGA [17].

The LatticeMico32 is another open-source processor design
provided by Lattice Semiconductors [18]. It is available in
synthesizable register transfer language and can be ported
to any FPGA family. LatticMico32 is an in-order single
issue processor with a load-store instruction set. Although
LatticeMico32 comes with a 6-stage pipeline, the performance
is typically lower than a MicroBlaze configuration. One reason
for this is the high branch cost in LatticeMico32 caused
by the static branch prediction. LatticeMico32 comes with a
Wishbone-interface for connection to memory controllers.

SCOORE is an attempt to implement an of out-of-order
processor on FPGA devices [19]. However, efficient imple-
mentation of out-of-order architectures require the use of fully
associative memories, which are not efficiently implemented
in FPGA fabric.

Multiple projects describe methods that allow soft proces-
sor cores, programmable accelerators, or hardware threads to
access operating system services in way that is transparant to
the requesting entity. In ReconOS, the concept of hardware
threads is introduced [20]. A hardware thread in ReconOS
is an HDL core that is loaded into FPGA fabric. The HDL
core interacts with the operating system through a predefined
interface and a state machine that implements a predefined pro-
tocol. In ReconOS terms, a Tinuso-I core could be considered a
hardware thread. ReconOS has been extended with transparent
address translation in the ReconOS VM system [21].

Khiar et al. describe the Flexible Operating System for
Reconfigurable Hardware, FOSFOR [22]. Like ReconOS,
FOSFOR provides an abstraction for hardware components
and processors in re-configurable fabric that allow them to
communicate and access operating system services.

Predicated execution is a well know architectural fea-
ture [23]. It is often used in SIMD engines such as graph-
ics processors to allow efficient software pipelinening of
loops [24]. Mahlke et al. show that the use of hyperblock
scheduling on a fully predicated instruction set results in
an average speedup of 72% on an 8 issue processor [25]
Allen et al. have demonstrated how control dependence in the
instruction stream can be translated into data dependence using
an if-conversion pass in the compiler back end [26].

Tinuso-I has been demonstrated in high performance signal
processing applications such as Synthetic Aperature Radar
applications [27] and Microwave Imaging [28].

VIII. CONCLUSIONS

In this paper, we have shown how we used the Xilinx
Zynq SoC to realize the Tinuso-I processor core and to
perform a hardware bringup. We have proposed a method for
offloading operating system services using the ARM host of
the Xilinx Zynq SoC. This proposed system for offloading
operating system services is highly relevant for prototyping
and simulating signal and data processing applications. For
example, it allows for emulating a camera system by operating
on a set of files.

We have demonstrated our method by using it to evaluate
both Tinuso-I and Xilinx MicroBlaze. We evaluate the sys-
tem by executing a set of SPEC CPU2006 and SPLASH-2
benchmarks. We measure a speedup of up to 64% for Tinuso-I



over a similar Xilinx MicroBlaze baseline system. The Tinuso-
I system uses 27% fewer LUTs and 35% fewer registers than
the MicroBlaze system. Tinuso-I is highly configurable and the
simple architecture allows for easy extension with dedicated
hardware blocks. Tinuso therefore is an attractive platform for
a broad range of embedded system signal and data processing
applications.
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