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Abstract 

  A new dynamic method for solar collector testing is developed. It is characterized by using the 

Laplace transformation technique to solve the differential governing equation. The new method was 

inspired by the so called New Dynamic Method (NDM) [1] but totally different. By integration of the 

Laplace transformation technique with the Quasi Dynamic Test (QDT) model [2], the Laplace – QDT 

(L-QDT) model is derived. Two experimental methods are then introduced. One is the shielding 

method which needs to shield and un-shield solar collector continuously during test period. The other is 

the natural test method which doesn’t need any intervention.  

The new L-QDT model with the shielding method are tested by TRNSYS [3] simulation.  

Experiments were carried out at Technical University of Denmark by using the L-QDT method and the 

natural experimental method. The identified collector parameters are then compared and analyzed with 

those obtained by the steady state test method and the QDT test method. The results comparison shows 

that the L-QDT method and the natural experimental method are also valid.  

  It can be concluded that the new Laplace test method can obtain reasonable and accurate collector 

parameters under transient weather condition.  

Key words: solar collector, Laplace transformation technique, dynamic test method, solar collector 

parameters.  

Nomenclature 

PA   Aperture area of solar collector ( 2m ) 

c  Specific heat capacity ( J/(kg K)⋅ ) 

'F  Collector efficiency factor (-) 

'
LF U  Heat loss coefficient at 0f aT T− =  ( 2W/(m K)⋅ ) 



'
1F U  Temperature dependence of the heat loss coefficient ( 2 2W/(m K )⋅ ) 

'
wF U  Wind speed dependence of the heat loss coefficient ( 3J/(m K)⋅ ) 

tG  Total solar irradiance ( 2W m ) 

bG  Beam irradiance ( 2W m ) 

dG  Diffuse solar irradiance ( 2W m ) 

bK  Incident angle modifier for beam irradiance (-) 

dK  Incident angle modifier for diffuse irradiance (-) 

L  Length of collector absorber ( m ) 

m  Mass ( kg ) 

m  Mass flow rate ( kg/s ) 

( )emc  Effective heat capacity of the collector per unit area ( 2J/(m K)⋅ ) 

n  Number of times 

t  Time ( s ) 

uq  Heat flux per square meter ( 2W m ) 

T  Temperature  ( K ) 

*
mT  Reduced temperature ( 2K m / W⋅ ) 

U  Heat loss coefficient ( 2W/(m K)⋅ ) 

w  Wind velocity ( m/s ) 

Greek symbols 

τ∆  Time interval ( s ) 

τ  Time ( s ) 

( )enτα  Transmittance-absorptance product at normal incidence (-) 

θ  Angle of incident (°) 

ρ  Fluid density ( 3kg/m ) 

Subscripts  

a Ambient 

c Collector 



f Fluid 

fin Collector absorber fin 

fo Fluid outlet 

fi Fluid inlet 

w Wind 

0 Beginning 

  

1. Introduction 

1.1 Background 

The solar collector testing technology is mainly applied in the area of solar collector evaluation and 

thermal performance prediction. The definition and identification of solar collector parameters are the 

main tasks of solar collector testing. The collector parameters can have a variety forms by different test 

methods. The prevalent test method is the steady state test method which is adopted by most test 

standards around the world such as ISO 9806 [4], EN 12975-2 [5] and ASHRAE 93 [6]. The steady 

state test method is featured by its simple mathematical model and convenient data processing method. 

But the strict test conditions and high-precision data acquisition requirements limit its wide application 

in connection with outdoor testing. For example, in some regions, especially the north of Europe, it 

may take several months to acquire enough test data for one test. What’s more, the cost of construction 

and maintenance of the high-precision data acquisition device and control instruments will be 

obviously high. 

To overcome the drawbacks of the steady state test method mentioned above, different kinds of 

dynamic and quasi-dynamic test methods have been invented since 1980s [7]. Generally, the dynamic 

test method can be characterized by its relatively complicated mathematical model and data processing 

techniques but relatively loose test conditions, short test period and extensive adaptability. The Quasi- 

Dynamic Test (QDT) method [2] is the only dynamic test method adopted by the standard till now as 

an alternative method in EN 12975 [5] and ISO 9806 [4]. It is the representative of one node method 

which considers the solar collector and the fluid as a whole. The collector thermal capacity is lumped 

together and referenced by the mean fluid temperature. The transfer function method [8-11] and the 

improved transfer function (ITF) method [12] are typical multi-node test methods. The solar collector 

is divided into a solid part and a fluid part. Each part has its own thermal capacity which is referenced 



by each part’s mean temperature. Other dynamic test methods are known as its unique mathematical 

model or data processing techniques such as response function method [13-16], the filter method [17], 

the Laplace transformation method [1], the thermal resistance method [18], the power correction 

method [19], etc. 

1.2 The Quasi-Dynamic Test (QDT) method 

  The QDT method [20-22] was first developed by Bengt Perers in 1990 and adopted by the European 

standard EN 12975 [5] in 2000 and by the international standard ISO 9806 [4] in 2013. The QDT 

mathematical model is well known as Eq. (1). The left hand side of Eq. (1) is solar collector’s effective 

power gain. While at the right hand side, the irradiance is divided into the beam and the diffuse term 

each with its incident angle modifier and the rest are the detailed heat losses terms. The accuracy of the 

QDT method has been validated by different independent research, see [7]. 
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Compared with the steady state test method, most of the test conditions are loosened in the QDT 

method. But the allowed deviation of the inlet temperature is still strictly restricted within ± 1 K during 

one test sequence and the flowrate should also be constant. The test duration is usually the same with 

the steady state test method and it was reported that the thermal capacity of solar collector may not 

always accurately be identified since the collector reacts under constant inlet temperature condition 

which could not supply enough collector dynamic response information [23].    

1.3 The New Dynamic Method (NDM) 

Amer and Nayak [1, 24] developed a new dynamic method (NDM) which is characterized by using 

the Laplace transformation method for the mathematical model development.  

  The NDM method is summarized as follows [1]. Consider an element of length ∆x along the flow 

direction of the collector. Its width w equals to the length between the axes of two adjacent riser tubes. 

The energy balance equation for the element at any time can be expressed as 
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( , )
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The effective thermal capacitance of the collector is considered to be uniformly distributed over the 

area of the collector, then 
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  Take limit of Eq. (2) can derive 
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  The initial and boundary conditions are 

 0( ,0)fT x T=   (5) 

 (0, ) ( )f fiT t T t=   (6) 

  Eq. (4) is solved by using the Laplace transformation technique which gives the final expression of 

the fluid mean temperature 
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Where 
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and ( )d xu t
L
t

−  is the unit step function.  

As for a transient process from time zero to τd and x equals to L, Eq. (7) can be simplified to express 

the outlet temperature at the end of transient period and can be rewritten as 
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The right hand side of Eq. (10) consists of two terms. The first term represents the environmental 

conditions which can be interpreted as the input influence to the collector. The other term means the 

initial effect to the outlet temperature. The exponential function in both terms means the weighting 

factor of the effect contributing to the dynamic changes of temperature of each time step during 

transient operations.  



  The integral equation can be discretized into Eq. (11) after the response time τd is divided into N 

equal time segments. The environmental inputs at each of ∆τ time step contribute to the final outlet 

temperature. τd is chosen as the response of the collector to any transient input would reach 95% of the 

final steady state value. 
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Eq. (11) is a non-linear equation containing three unknown parameters 𝐹𝐹′(𝜏𝜏𝜏𝜏)𝑒𝑒𝑒𝑒, 𝐹𝐹′𝑈𝑈𝐿𝐿 and(𝑚𝑚𝑚𝑚)𝑒𝑒. 

A standard optimization routine from [25] was recommended to obtain the three collector parameters.  

The experimental method is similar to the time constant test. The solar collector is shielded by an 

opaque or semi-transparent shield for some time and then exposed to the sun for some time. These 

shielding and un-shielding experiments are implemented during all test period and the experimental 

data are then collected during these repeated activities.  

It is shown in the paper [1] that the NDM method can give accurate and stable results and has high 

precision which is comparable with steady state test method. But the paper is still missing information 

on the detailed process for deriving the mathematical model and has no introduction of the 

computational method for the non-linear equation and no specific description of how to select and 

process test data. In addition, the derivation process of the mathematical model of the NDM method is 

relatively complicated and only three collector parameters have no advantage compared to the steady 

state test method.   

  In this paper a new dynamic test method based on the QDT mathematical model and the Laplace 

transformation techniques is developed. The new Laplace method is simpler in mathematical model 

derivation than the NDM method but contains more meaningful collector parameters. Two 

experimental methods and data processing method are specified. TRNSYS [3] simulation and 

experiments verification are also carried out for the two experimental methods. The results comparison 

shows that the new Laplace transformation method can obtain accurate collector parameters under 

transient weather conditions in solar collector testing area.     

2.  The new Laplace transformation method 

 2.1 Mathematical model  



  Considering a transient response process of a solar collector, the basic dynamic energy conservation 

equation Eq. (12) can be used as the governing equation. It has the same mathematical structure as the 

QDT model of Eq. (1). 

 ' '( ) / ( ) ( ) ( ) f
f fo fi p en t L f a e

dT
qu mc T T A F G F U T T mc

dt
ta= − = − − −   (12) 

  All the variables in Eq. (12) are the function of time. For simplicity’s sake, set the equation 

parameters to simple symbols - ṁcf AP⁄ = A, F′(τα)en = B, F′UL = C, (mc)e = D. 

By rearranging Eq. (12), the simplified governing equation is  

 ( ) ( )f
t f a fo fi

dT
D BG C T T A T T

dt
= − − − −   (13) 

  The Laplace transformation technique used for both sides of Eq. (13) gives Eq. (14). 

 ( ) ( ) ( ) ( ) ( ) ( ) (0)f t a fo fi fDs C T s BG s CT s AT s AT s DT+ = + − + +   (14) 

The mean fluid temperature Tf(s) in the Laplace space can be expressed as 
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Then the inverse Laplace transformation technique was applied to Eq. (15) and the final analytical 

solution of the mean fluid temperature Tf(t) in the time space can be obtained as the following 

equation. 
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  Eq. (16) is an integral non-linear equation which has clear mathematical structure and physical 

meaning. It can be explained as the following way. For a period (0-τ), the mean fluid temperature of a 

solar collector at the end time Tf(τ) equals to the initial effect of the mean fluid temperature at the 

beginning time Tf(0) and the summation influence of the environmental parameters (Gt, Ta, Tfo, Tfi, 

ṁ) during the period of (0-τ). Each term has its own exponential function as the weighting factor to 

determine how much it contributes to the final mean temperature.  

  Eq. (16) contains three undetermined collector parameters F′(τα)en, F′UL and(mc)e. But the 

Laplace and the reverse Laplace derivation method can be easily applied to the QDT model because Eq. 



(1) and Eq. (12) have the same mathematical structure. The QDT model contains more meaningful 

collector parameters than Eq. (12). By applying the Laplace and reverse Laplace transformation 

treatment for the QDT model, the L-QDT (Laplace QDT) mathematical model can be obtained as  
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  Where 

 ( ) 2
1 [T (t) T (t)]f aT t = −   (18) 

 ( )2 [T (t) T (t)] w(t)f aT t = − ⋅   (19) 

  In Eq. (17), the beam incident angle modifier Kb is modeled as the b0 equation which is shown in Eq. 

(20). Another alternative is the so called angle by angle method developed by Perers [21]. Or it can be 

called the extended MLR method in [2] . The beam irradiance in the collector plane is sorted into 

different columns based on the average incident angle. For example 10o is chosen as the interval 

between the columns. Using higher angular resolution can get higher accuracy. The multi linear 

regression [12] and the non-linear regression can both use this method to get a set of collector 

efficiencies angle by angle together with the other collector parameters. The efficiencies under 

different incident angles can be obtained without any pre-determined models. 

 0
1( ) 1 [ 1]

cos( )bK bθ
θ

= − −   (20) 

2.2 Discretization of the integral equation 

The integral expression of Eq. (16) should be discrete in the practical use. The period of a dynamic 

response process of solar collector from 0 to τd is considered. τd can be divided into n time intervals. 

Each time interval is Δt, therefore nΔt=τd. 

The discrete format of Eq. (16) is 
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Where  
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The same discrete method can also be used in the mathematical model of the L-QDT method of Eq. 

(17). The theory is the same while the only difference is that the L-QDT model contains more collector 

parameters.  

A simple example will be enough to illustrate the essence of this Laplace method and the discrete 

mathematical model of Eq. (21). A typical dynamic response process of a solar collector can be seen in 

Fig. 1 which shows the collector mean fluid temperature Tf decreases with time. The time interval of 

each point is 2 s. For simplicity, 4 nodes are chosen to represent the whole dynamic process. The first 

node is labeled as t=1 indicating the beginning of the dynamic process while the last node is marked as 

t=4 representing the end. Therefore totally 3Δt time intervals are identified. Then the discrete format of 

Eq. (21) can be expressed as Eq. (23).  

 

Fig. 1. Simplified 4 nodes example of a full response dynamic process of a solar collector 
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The mathematical structure and physical meaning of Eq. (23) is also clear. For a dynamic response 

process, the collector final mean temperature Tf(4) is determined by the initial mean temperature 

Tf(1) and the historical environmental parameters. All the suitable dynamic response process will be 

selected from the raw data and used for identifying the collector parameters.   



Eq. (23) is a non-linear equation. The non-linear regression or the optimization method can be used 

for identifying the undetermined collector parameters. Standard programs of the two methods can be 

easily found in the math softwares such as Matlab [26] and R [27]. The difference between the 

non-linear regression method and the multi-linear regression method (MLR) is that the non-linear 

regression needs the initial values for the undetermined parameters. But as long as the governing 

equation and the test data are correct, the final results will be the same no matter what kind of 

non-linear regression method or initial values are used.     

 

3. Experimental test method 

  Two experimental test methods are introduced in the following sections. One is an artificial 

intervention method which can be called the shielding method. This method creates dynamic response 

test data by shielding and un-shielding solar collectors. The other is the so called natural test method 

which does not need special manual intervention, just records and selects suitable test data from the 

routine solar collector test.  

 3.1 The shielding and un-shielding experimental test method 

  An opaque or semi-transparent cloth or board is used to shield the solar collector and pyranometer 

from sun light. It is recommended from the literature [1] that the irradiance measured by the shielded 

pyranometer should be less than 20% of total irradiance. Of course the best situation is that the cloth or 

board can block all the irradiance. The shield should be placed in parallel of the collector surface at a 

height of about 0.5 m. The area of the shield is bigger than the collector area such that it extends 

beyond the collector edges by 0.5 m from all four sides.   

The duration of shielding and un-shielding should be longer than two times of the collector time 

constant in order to achieve the full dynamic response data of solar collector. The purpose of shielding 

and un-shielding action is to create the collector dynamic response process artificially. Sufficient long 

shielding and un-shielding duration is the guarantee of a full dynamic reaction for solar collectors. 

According to the shielding theory above and the TRNSYS simulation results in section 4, this artificial 

intervention method can create useful dynamic response process as much as possible. Therefore, this 

shielding and un-shielding method can greatly save time in experiments.  

Another important thing is the varying inlet temperature. It has been found that the inlet temperature 

should present considerable change through testing otherwise the heat loss factor as well as the thermal 



capacity of solar collector will not be properly estimated [23]. It is recommended that the inlet 

temperature varies from ambient temperature to the highest possible collector temperature if the test 

conditions allows. 

Figs. 3-5 show the ideal shielding and un-shielding irradiance conditions which were created by 

TRNSYS. 

3.2 The natural experimental test method 

  The natural experimental test method is free of the shielding and un-shielding actions. The only 

thing is to record all the variations of the collector parameters. The method based on the theory that the 

transient weather conditions can also create natural shielding and un-shielding effects during collector 

test. For example when the clouds pass over a solar collector, the shielding effect will be created while 

when the clouds leave away, the solar collector will react as the un-shielding condition. Then after the 

test, the suitable dynamic test data will be selected according to the following rules. Assume that the 

collector full response time is T. T can be determined by the following test procedure - the collector is 

shielded from the sun in a steady state and then exposed to the sun until it reaches another steady state 

after removing the shielding. Or the collector is exposed to the sun in a steady state and then it is 

shielded until reaching another steady state. The time period between the two steady state conditions is 

the full response time T and the 63.2% T is defined as TC. Therefore the test data in which the collector 

response time lies between TC and T is chosen for identifying collector parameters. The method is 

verified in section 5.  

  The two methods give different lengths of the mathematical model of Eq. (21). The shielding and 

un-shielding actions make fully reacted collector response processes therefore all the dynamic data 

substituted into Eq. (21) has full response time T while the natural experimental test data contains all 

kinds of collector response processes such as steady state data, fully reacted data, and of course most of 

them are partial dynamic response data. Only the data in which the response time lies from Tc to T will 

be selected. 

  A typical schematic diagram of the natural experimental test is shown in Fig. 2. The mean fluid 

temperature Tf varies with time under transient environmental conditions. From Fig. 2 it can be seen 

that the Tf descending region caused by the total irradiance decrease corresponding to the shielding 

process and the Tf  rising region caused by the total irradiance increase corresponding to the 

un-shielding process. 



 
Fig. 2. A typical varying profile of mean fluid temperature under natural weather condition 

   

4 TRNSYS simulation for the shielding experimental method 

  Theoretical calculations by using the shielding test method were carried out in TRNSYS simulation 

studio. The validated Type 832 solar collector model [28] was chosen to simulate the dynamic behavior 

of a flat plate solar collector under the DK-Kobenhavn-Taastrup weather data provided by TRNSYS 17. 

Three test days are chosen arbitrarily and the solar irradiance was processed by equation module to 

simulate the shielding and un-shielding effect. The weather conditions are plotted in Fig. 3 to Fig. 5. 

The setting values of the collector parameters are listed in Table 1. The duration of shielding and 

un-shielding action is 7.5 min which is long enough for the dynamic response of the solar collector. 

Two data acquisition time of 5 s and 10 s with 72 kg/h constant flow rate was set for the simulation test. 

The inlet temperature was designed to vary in sine profile between the ambient temperature and 90 °C. 
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Table 1 The setting values of collector parameters in TRNSYS 

Symbol Collector parameter Value Unit 

AP Collector aperture area  1 m2 

F’(τα)en Zero loss efficiency 0.7 - 

b0 IAM parameter for beam radiation  0.2 - 

Kd IAM for diffuse radiation 0.9 - 

F’UL Linear heat loss coefficient 3 W/m2K 

F’U1 Quadra heat loss coefficient 0.01 W/m2K2 

F’Uw wind loss coefficient 0.1 J/m3K 

(mc)d thermal capacity for the solid part 5000 J/m2K 

(mc)f thermal capacity for the fluid part 1500 J/m2K 

 
Fig. 3 The test condition of 1st of May 



 
Fig. 4 The test condition of 2nd of May 

 
Fig. 5 The test condition of 3rd of May 

 
 
 
 
 
 



 

Table 2 Comparison of collector parameters under different test conditions 

Parameters Setting value 
Data acquisition time interval 

5 s 10 s 

F’(τα)en 0.7 0.66(5.7%) 0.67(4.3%) 

b0 0.2 0.20(0%) 0.25(25%) 

Kd 0.9 0.90(0%) 0.92(2.2%) 

F’UL 3 2.80(6.7%) 2.90(3.3%) 

F’U1 0.01 0.02(100%) 0.013(30%) 

F’Uw 0.1 0.08(20%) 0.09(10%) 

(mc)e 6500 6740(3.7%) 6701(3.1%) 

  The collector parameters are identified by using the simulated test data and compared with the 

setting values which are shown in Table 2. The relative error of each collector parameter is illustrated 

in the bracket which is defined as |Pcalculated − Psetting|/Psetting. It can be seen from Table 2 that all 

the collector parameters are successfully obtained and the results are close to the setting values except 

the quadratic heat loss coefficient F′U1. The relative error of the zero loss coefficient  F′(τα)en , the 

heat loss coefficient F′UL and the collector thermal capacity (mc)e are all under 7%. The largest 

relative error comes from the quadratic heat loss coefficient F′U1. But the value of itself is very small 

and won’t significantly affect the efficiency and energy output. Therefore the regression process can be 

considered successful. 

 

5. Experimental verification for the natural test method 

5.1 Test platform and solar collector 

  A flat plate solar collector was tested at the Technical University of Denmark on 18 June and 02-04 

July 2014. The solar collector is designed for medium and large solar heating system with the gross 

area of 13.53 m2 and the aperture area of 12.56 m2. There is a transparent ETFE (Ethylene 

tetrafluoroethylene) foil equipped between the absorber and the surface glass with the aim to reduce the 

convection heat loss. Water was used as the working fluid.  

The solar collector photograph and schematic diagram of the test rig are shown in Fig. 6 and Fig. 7 



respectively. Data of the test rig facilities are listed in Table 3. The slope of the test solar collector is 

45°. The collector fluid is pumped through the solar collector with the fluid flow rate of 25 l/min during 

the whole test period. The fluid inlet temperature was controlled by the electrical heating and water 

cooling devices to make sure that it can vary during test. There were no requirements for weather 

conditions. All the data including the total irradiance (Gt), the diffuse irradiance (Gd), the ambient 

temperature (Ta), the fluid inlet and outlet temperature (Tfi and Tfo) and the fluid flow rate (ṁ) were 

recorded by the data logger. The time interval of data acquisition is 10 s. 

 

Fig. 6 Photograph of solar collector 
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Fig. 7 Test rig schematic 

 
 
 
 



 

Table 3 Test rig facilities 

No. Facility No. Facility 

1 Solar collector 9 Flow control valve 

2 Primary temperature regulator 10 Flow meter 

3 Pressure gauge 11 Inlet temperature sensor 

4 Expansion tank 12 Outlet temperature sensor 

5 Pump 13 Pyranometer with shadow band 

6 Filter 14 Pyranometer 

7 Electric heater 15 Anemometer 

8 Secondary temperature regulator 16 Ambient temperature sensor 

 

5.2 Test conditions 

  The measurement data of the test period is shown below. The total and diffuse irradiance is 

illustrated in Fig. 8. The profile of the fluid inlet temperature and the ambient temperature can be seen 

in Fig. 9.  

 
Fig. 8 The total and diffuse irradiance on collector surface during test period 



 
Fig. 9 The inlet temperature and ambient temperature during test period 

  It can be seen from Fig. 8 that the weather condition was unstable most of time. The drastic changing 

irradiance indicates that there were lots of crossing clouds during the test period. Actually, this 

cloud-crossing weather condition has similar effect as the collector shielding and un-shielding actions. 

Therefore the test data contains the collector’s dynamic response information which can be used to 

calculate the collector’s parameters.  

5.3 Results and discussion 

  The suitable L-QDT test data were selected from the raw data to identify the collector parameters. 

All the data processing, non-linear regression and statistics analysis were carried out at the R platform 

[27]. The steady state test data and the QDT test data are chosen from the test data of June and July 

2014 based on the criteria of EN 12975-2 [5].  

The full dynamic response time of the tested solar collector is 108 s and the time constant is 68 s. 

The data acquisition time interval is 10 s. Then the suitable dynamic data length of the L-QDT method 

can be determined between 70 s and 110 s. Therefore the test data in which the dynamic response time 

is larger than 70 s and less than 110 s are chosen as useful data. In addition, the pretreatment for the 

raw data is also important for obtaining accurate results, such as the bad points removing and data filter 

technique [29]. It is noted that during the test period the shadow ring for measuring the diffuse 

irradiance was not well adjusted in the morning and the afternoon. Therefore the test data were filtered 

by the condition that the beam irradiance should be larger than 30 W/m2 in order to remove the 

inaccurate diffuse irradiance. 

 The results of the model parameters with statistics are shown in Table 4. The collector parameters 



calculated from Table 4 are shown in Table 5. The steady state test results, the QDT test results are also 

listed in the same table. The relative errors of the QDT and L-QDT method compared with the steady 

state results are present in the brackets.   

It can be seen from Table 4 that the angle by angle method was used to describe the incident angle 

modifier (IAM) with the resolution of 15°. Fig. 10 shows the IAM comparison modelled by the L-QDT 

and the QDT angle by angle method and the b0 equation of the steady state method. The b0 value is 

obtained by modeling the efficiencies in Table 4 under different incident angles into the b0 equation. 

  All the t values in Table 4 are larger than 2 indicates that the non-linear regression is valid and the 

estimated results are statistic reasonable. 

  From the results comparison of Table 5 it can be seen that the collector parameters identified by the 

L-QDT method are close to those obtained by the steady state method, especially the most important 

two collector parameters - the zero loss efficiency  F′(τα)en and the heat loss coefficient F′UL . Both 

the  F′(τα)en and the F′UL have the relative errors less than 2%. The QDT method also gives close 

results compared to the steady state test method. But the relative errors of   F′(τα)en and F′UL are a 

little bit larger than that of the L-QDT method. The linear efficiency curves obtained by the steady state 

method, the QDT method and the L-QDT method can be seen in Fig. 11 which shows the instantaneous 

efficiencies curves of the L-QDT method and the steady state method are very close.  

  The quadratic heat loss coefficient F′U1has relative large difference by the two test methods 

compared with the steady state method. But it is due to the relatively “stable” inlet temperature which 

is lack of the information of the whole Tm∗  region, especially the high inlet temperature. The limited 

test data gives a higher value of the F′U1 which is reflected in the comparison of the quadratic 

efficiency curves in Fig. 12. 

  The b0 value of the two methods also has relative large difference which is mainly caused by the 

filter condition of Gb>30 W/m2. The filter condition is intended to eliminate the incorrect diffuse 

irradiance with the consequence of reducing the information of the high incident angle data which 

usually exist in the low beam irradiance condition. It is believed that the L-QDT and angle by angle 

method can give more accurate IAM results as long as sufficient test data provided. 

In general the comparison shows that the natural experimental method can obtain reasonable 

collector parameters.  

 



Table 4 Model parameters and statistics based on the L-QDT method 

Coefficients Estimate Standard error t value P(>|t|) 

F’(τα)( 0°-15°) 8.175×10-1 1.753×10-2 46.643 <2×10-16 

F’(τα)(15°-30°) 7.946×10-1 9.849×10-3 80.675 <2×10-16 

F’(τα)( 30°-45°) 7.948×10-1 9.741×10-3 81.591 <2×10-16 

F’(τα)( 45°-60°) 7.354×10-1 1.426×10-2 51.560 <2×10-16 

F’(τα)( 60°-75°) 5.628×10-1 2.797×10-2 20.123 <2×10-16 

F’(τα)( 75°-90°) 3.368×10-1 7.609×10-2 4.427 1.28×10-5 

F’UL 2.241 4.399×10-1 5.095 5.74×10-7 

F’(τα)en· Kd 8.099×10-1 3.751×10-2 21.591 <2×10-16 

F’U1 2.202×10-2 5.983×10-3 3.681 2.69×10-3 

(mc)e 5.405×103 2.086×102 25.913 <2×10-16 

 
Table 5 Collector parameters comparison based on the steady state, the QDT and the L-QDT method 

Coefficients F’(τα)en b0 Kd F’UL F’U1 (mc)e 

SST Estimate 0.817 0.14 - 2.210 0.014 - 

QDT Estimate 0.800(2.1%) 0.18(28.6%) 0.97 2.155(2.5%) 0.022(57%) 4092 

L-QDT Estimate 0.818(0.12%) 0.19(35.7%) 0.99 2.241(1.4%) 0.022(57%) 5405 



 

Fig. 10 The comparison of incident angle modifier by using the steady state, the QDT and the L-QDT 

method 

 

 

Fig. 11 The comparison of the linear efficiency curves by using the steady state, the QDT and the 

L-QDT method 
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Fig. 12 The comparison of the quadratic efficiency curves by using the steady state, the QDT and the 

L-QDT method 

 

6.  Conclusion 

  A brand new dynamic test method for solar collectors under transient weather conditions is 

developed. This new dynamic test method was characterized by using the Laplace transformation 

technique to solve the differential governing equation. This new Laplace transformation method can be 

easily expanded to combine with the QDT method. The L-QDT mathematical model is an analytical 

non-linear equation which describes the dynamic response process of solar collector and contains the 

same collector parameters as the QDT model. Two experimental methods are introduced. One is the 

shielding test method which needs to shield and un-shield the solar collector continuously during test 

period. The other is the so called natural experimental method which doesn’t need manual intervention. 

The useful data need to be selected from the recorded test raw data. The natural test method is 

developed based on the theory that the unstable weather condition has the similar effect of shielding 

and un-shielding actions for solar collectors. The method of how to select and process data and the 

non-linear computation strategy are then specified.  

  TRNSYS simulation calculations are carried out to test the L-QDT method and the shielding 

experimental method. The test data was created by TRNSTS under different test conditions and used to 

identify the collector parameters. The results are then compared with the setting values defined by 

TRNSYS which show that the L-QDT mathematical model and the shielding experimental method can 

give accurate collector parameters under 5 or 10 s acquisition time interval. 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Ef
fic

ie
nc

y [
-]

 

Reduced temperature T*m [K·m2/W] 

The steady state mehod
The QDT method
The L-QDT method
The upper error band of L-QDT method
The lower error band of L-QDT method



The natural experiments were carried out on 18 June and 02-04 July 2014 at the Technical 

University of Denmark. A flat plate solar collector equipped with the ETFE foil was tested. The 

collector parameters are identified by using the L-QDT model and the selected dynamic test data and 

then compared with the steady state and the QDT results. The results obtained from the three test 

methods are statistic analyzed and compared. The close results show that the L-QDT model and the 

natural experimental method can be used for collector dynamic testing. 

The shielding and un-shielding method is a fast test method but needs manual intervention actions. 

The natural experimental method can be easily carried out and save workload but needs relatively 

longer time. The drastic changing weather is the best condition for the natural experimental method to 

select suitable dynamic test data.  

  Above all, it can be concluded that the new Laplace test method can achieve the function of 

evaluating solar collector by identifying accurate collector parameters under transient weather 

conditions. But for a complete test method, further studies are still needed on the investigation of the 

behavior of the method for the complete range of the acceptable testing conditions and for different 

collector types, in order to obtain safe conclusions regarding the repeatability, accuracy and robustness 

of the method. 
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