

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

CUDArray: CUDA-based NumPy

Larsen, Anders Boesen Lindbo

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Larsen, A. B. L. (2014). CUDArray: CUDA-based NumPy. Kgs. Lyngby: Technical University of Denmark (DTU).
(DTU Compute-Technical Report-2014; No. 21).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/43245654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/cudarray-cudabased-numpy(1e806793-a31e-4a87-bc14-7d389f0a2d57).html

CUDArray: CUDA-based NumPy

Anders Boesen Lindbo Larsen
Department of Applied Mathematics and Computer Science

Technical University of Denmark
abll@dtu.dk

DTU Compute Technical Report-2014-21

November 8, 2014

Abstract

This technical report introduces CUDArray – a
CUDA-accelerated subset of the NumPy library. The
goal of CUDArray is to combine the ease of develop-
ment from NumPy with the computational power of
Nvidia GPUs in a lightweight and extensible frame-
work.

Since the motivation behind CUDArray is to facili-
tate neural network programming, CUDArray extends
NumPy with a neural network submodule. This mod-
ule has both a CPU and a GPU back-end to allow for
experiments without requiring a GPU.

1 Introduction

Over the last years, Python has grown steadily in pop-
ularity for scientific computing. A wealth of libraries
build upon the NumPy library [15] and its powerful
N -dimensional array class offering high-productivity
and fast CPU-based numerical operations. With its
large user base and time-tested usability, NumPy has
become the de-facto standard for numerical computing
in Python.

With the recent wave of cheap yet massively paral-
lel processing capabilities of GPUs, it is tempting to
combine the popular NumPy interface with a GPU im-
plementation to speed up demanding numerical oper-
ations. At the time of writing, however, there exist no
well-established and mature code base meeting these
criteria. One likely explanation could be the workload
of implementing the entire NumPy library. Moreover,
NumPy allows for elaborate array operations with its
slicing and broadcasting functionality. Such operations
are difficult to implement efficiently on a GPU architec-
ture where e.g. careful memory handling is crucial for
obtaining good performance.

While CUDArray aims at being a drop-in replace-
ment for NumPy, it currently imposes many limitations
in order to span a manageable subset of the NumPy
library. Nonetheless, CUDArray is beyond the proof-
of-concept stage as it supports a state-of-the-art neural
network pipeline [12].

1.1 Related work

There exist several GPU-based numerical Python li-
braries. Each library offers a different approach to
combining high-level Python programming with high-
performance GPU code.

PyCUDA [10] is a Pythonic wrapper around the
CUDA driver API. PyCUDA supports run-time code
generation for flexible CUDA programming through
Python. Moreover, PyCUDA includes an array sub-
module containing NumPy-like functionality without
adhering to the NumPy library interface.

Bohrium [11] is a runtime environment for vectorized
computations with a NumPy front-end (among others).
The front-end uses lazy evaluation to compile NumPy
expressions to the runtime bytecode which is then com-
piled to OpenCL for its GPU target.

ViennaCL [16] is a OpenCL-based linear algebra li-
brary that comes with Python bindings. Like PyCUDA,
ViennaCL does not conform exactly to the NumPy in-
terface making it unsuitable as a drop-in replacement.

Theano [3] is a compiler from NumPy-like array ex-
pressions in Python to either C or CUDA code. Though
array operations in Theano closely resembles those in
NumPy, Theano works quite differently from the user’s
perspective since the array expressions must be explic-
itly compiled before usage.

Finally, CUDAMat [13] combined with Gnumpy [17]
are closely related to the approach taken by CUDArray.
CUDAMat implements common matrix operations and
exposes them through a Python module without adher-

1

ing to the NumPy interface. Gnumpy wraps CUDAMat
operations in the NumPy interface. A notable limita-
tion of CUDAMat is its focus on 2D arrays of data type
float.

2 CUDArray features

CUDArray1 is an open source project under the MIT
license. It implements a subset of NumPy routines
for array creation, array manipulation, mathematical
functions, linear algebra and random sampling. Ap-
pendix A lists the NumPy operations implemented so
far. CUDArray supports both Python 2 and 3.

2.1 Simplicity vs. feature completeness

Compared to libraries like Theano or Bohrium,
CUDArray is a lightweight framework that sim-
ply maps NumPy operations directly to CUDA ker-
nels. Moreover, CUDArray relies on the CUDA SDK-
bundled libraries cuBLAS, cuRAND and cuDNN for
high-performance implementations of critical opera-
tions such as matrix multiplications.

The simplicity of CUDArray makes it easy to extend
with custom functionality since little knowledge about
the framework is needed. Thus, CUDArray encourages
users to rely on NumPy functionality for basic array
operations and supplement these with custom CUDA
kernels for more exotic operations.

Arguably, custom CUDA kernel programming is
hard to avoid even with full NumPy library function-
ality since complex NumPy may be hard to compile to
high-performance GPU code. Only very few Python li-
braries address this problem [11]. Instead, libraries typi-
cally allow the user to compose operations through data-
parallel primitives (e.g. scan, stencil and reduce) [2,4–6,8].

2.2 CUDArray/NumPy interface

For transferring arrays from CPU to GPU mem-
ory, CUDArray implements the numpy.array method.
Conversely, CUDArray’s array class implements the
__array__ method that returns a CPU copy of an ar-
ray in GPU memory. These operations comprise the
CUDArray/NumPy interface without introducing new
functions. Thus, developers can conveniently combine
CUDArray with NumPy for any CPU-exclusive parts
of a program as demonstrated in the following.

import numpy as np

import cudarray as ca

Copy from CPU to GPU

1CUDArray source and installation instructions are available at
http://github.com/andersbll/cudarray

a_np = np.zeros(100)

a_ca = ca.array(a_ca)

Copy from GPU to CPU

a_ca = ca.zeros(100)

a_np = np.array(a_ca)

Because many NumPy functions accept objects imple-
menting the __array__ method, it is possible to perform
memory transfers implicitly by passing CUDArray ob-
jects to NumPy. Preferably, though, memory transfers
should be made explicit since they may be expensive.

2.3 GPU synchronization

CUDA kernels are executed asynchronously and run
in parallel with the CPU code. CUDA operations like
memory allocation and freeing are synchronous mean-
ing that they block CPU operation until all previous
kernels have run. CUDArray operation follows this
behavior, and therefore the user should be aware that
array creation and destruction forces CPU/GPU syn-
chronization.

To achieve asynchrony, the user should be careful not
to create or destroy arrays in the middle of a series of ar-
ray operations. Unfortunately, dynamic array allocation
is a key component in the NumPy programming style
as operators consequently returns new arrays. The user
must therefore avoid using operators and rather rely on
the out method parameter as demonstrated below. That
said, asynchronous CUDArray programming is rarely
worth the effort unless the extra CPU resources can be
put to use elsewhere.

import cudarray as ca

a = ca.ones(10)

b = ca.ones(10)

c = ca.empty(10)

Synchronous code

c = a + b

Asynchronous code

ca.add(a, b, out=c)

2.4 Speed

Inevitably, the NumPy logic introduces a computational
overhead. This overhead diminishes typically when
the array operations are computationally demanding.
Moreover, when the user defers from using GPU syn-
chronization operations (array creation and destruc-
tion), the NumPy logic on the CPU can even run in
parallel with the array operations on the GPU.

Note that advanced optimization techniques requir-
ing runtime code generation (e.g. loop fusion) is beyond

2

http://github.com/andersbll/cudarray

the scope of CUDArray because the framework simply
maps NumPy operations directly to CUDA kernels.

For neural networks, a few expensive operations (e.g.
matrix multiplication and convolution) dominate com-
pletely. CUDArray is based on similar CUDA kernels
as other popular neural network libraries [3, 7, 9, 13]
making it very competitive speed-wise.

2.5 NumPy/CPU fall-back

While Nvidia GPUs are popular on the PC market,
CUDA-enabled hardware cannot be assumed available
on all computers. For computers without CUDA sup-
port, CUDArray changes its back-end to NumPy by
simply importing the contents of the NumPy module
into the CUDArray module.

This feature is practical for performing smaller exper-
iments on e.g. a laptop. Moreover, this is beneficial for
neural networks since already trained networks can be
deployed on PCs without GPUs for the prediction phase.
Network prediction is relatively cheap and should run
sufficiently fast on CPUs.

2.6 Data types

CUDArray currently supports numpy.bool, numpy.int32
and numpy.float32. When the CUDA back-end is acti-
vated, CUDArray overrides its default data types with
the above. Boolean values are represented as int (in-
stead of unsigned char as in NumPy) to avoid implicit
type conversions when operating on the values [14],
While double precision support is trivial to implement,
single point precision is sufficient and faster for neural
networks.

2.7 Limitations

The NumPy library is a result of numerous man-years
of effort. It is unrealistic for CUDArray to aim for a
full NumPy implementation. Rather, CUDArray tries
to cover the basics first and expand functionality as it
becomes necessary. Apart from the operations not listed
in Appendix A, CUDArray is currently limited by the
following.

• Binary element-wise operations (‘+‘, ‘<‘, etc.) can
broadcast only along either contiguous inner or
outer axes.

• Reduction operations (‘sum‘, ‘max‘, etc.) is sup-
ported on either leading or trailing axes only.

• Array indexing supports only views to contiguous
memory.

2.8 Neural network module

CUDArray extends NumPy with specialized function-
ality for neural networks. These are found in the sub-
module cudarray.nnet.

Neuron activations Sigmoid, hyperbolic tangent and
rectified linear functions.

One-hot encoding For encoding/decoding class labels
(numbers) to the one-hot representation, aka. one-of-
k.

Multinomial logistic regression Softmax and categor-
ical cross entropy functions.

Convnet operations Convolution, pooling and local re-
sponse normalization.

These operations are also implemented on the CPU to
support NumPy fall-back.

3 Library design

Taking a pragmatic approach, CUDArray combines ef-
ficient array operation primitives in a lightweight C++
library. Functionality not provided by the libraries
cuBLAS, cuRAND and cuDNN are implemented from
scratch. The C++ library operations are then glued to-
gether in Python to imitate NumPy. The implementa-
tion of CUDArray is divided into the three parts:

C++ library The C++ library (named libcudarray) pro-
vides CUDA-based array operations. The library
interface is based on pointers to device memory
together with array dimensions rather than defin-
ing a separate array class. In the library interface,
C++ features are used only for 1) template data
types and 2) classes in rare situations where state
is beneficial for an operation.

C++ wrapper In the C++ wrapper, Cython [1] is used
to expose libcudarray functionality to Python.
Cython is preferred over ctypes as it supports C++
templates and classes which simplifies the wrapper
code.

NumPy logic The NumPy interface is implemented in
Python on top of the C++ wrapper. Alternatively,
both the C++ wrapper and the NumPy logic could
have been written in Cython in order to save CPU
cycles. However, Python is favored over Cython
to keep the implementation simple and extensible
without requiring considerable Cython knowledge.

3

3.1 Extending CUDArray

In order to add new functionality to CUDArray, the
library components above should be extended. Admit-
tedly, updating three components is a bit cumbersome
but necessary in order to keep a clear separation of con-
cerns.

In comparison with a larger framework such as
Theano [3], CUDArray is easily extensible because it
does not impose elaborate abstractions such as Theano’s
expression graph. Additionally, dynamic code genera-
tion makes debugging hard because compiler errors are
wrapped by the library adding extra complexity and
slowing down the development process.

Note that when implementing missing NumPy fea-
tures, one should keep in mind that not all NumPy op-
erations (e.g. advanced indexing) are easily mapped to
high-performance CUDA code and that custom CUDA
kernels may be more appropriate to solve the task at
hand (cf. Section 2.1).

4 Usage examples

The following examples demonstrate the basic func-
tionality of CUDArray. The CUDArray-based neural
network in [12] serves as a more complete example.

4.1 Softmax

The softmax function is used in neural networks for
classification tasks. It operates on a batch of vectors
stored as a 2D array x:

softmax(x)ij =
exp(xij)∑
k exp(xik)

. (1)

The NumPy/CUDArray-based implementation takes
the form:

import cudarray as ca

def softmax(x):

e = ca.exp(x)

return e/ca.sum(e, axis=1, keepdims=True)

4.2 Data type handling

Data types in CUDArray works similar to NumPy:

import cudarray as ca

Returns array of ca.float_

ca.ones(10)

Returns array of ca.int_

ca.ones(10, dtype=ca.int_)

The user should be careful about data types when
combining NumPy and CUDArray. CUDArray au-
tomatically converts NumPy’s default datatypes to
CUDArray’s default data types. To avoid this conver-
sion, the user should tell NumPy to use CUDArray’s
data types:

import numpy as np

import cudarray as ca

Returns array of ca.float_ converted from np.float_

ca.array(np.ones(10))

Returns array of ca.float_ without conversion

ca.array(np.ones(10, dtype=ca.float_))

4.3 Profiling

This example demonstrates simple profiling of a
CUDArray program that calls the previously defined
softmax method:

import cudarray as ca

a = ca.random.uniform(size=(100, 10))

for _ in range(1000):

softmax(a)

Use nvprof to profile the performance of the CUDA
code:

nvprof python <filename>

Use Python to profile the performance of the NumPy
logic (including calls to CUDA):

python -m cProfile -s cumtime t <filename>

4.4 Back-end selection

CUDArray checks automatically on module import if
the CUDA back-end is available. If not, CUDArray
falls back on its NumPy back-end by importing ev-
erything from numpy into cudarray. The user can over-
rule this behavior by setting the environment variable
CUDARRAY_BACKEND to either ’numpy’ or ’cuda’ before im-
porting CUDArray:

import os

Force NumPy back-end

os.environ[’CUDARRAY_BACKEND’] = ’numpy’

Force CUDArray back-end

os.environ[’CUDARRAY_BACKEND’] = ’cuda’

import cudarray as ca

5 Conclusion

This work introduces CUDArray – a library combin-
ing the high-productivity of NumPy with the pro-
cessing power of CUDA-enabled GPUs. Although

4

CUDArray implements only a subset of the NumPy
library, it has already shown a viable approach to build-
ing high-performance neural networks. Moreover, be-
cause CUDArray imitates NumPy, it can offer a CPU
back-end almost trivially. In recognition of the fact that
NumPy is too comprehensive to be implemented effi-
ciently in its entirety, CUDArray seeks to strike a bal-
ance by providing basic functionality that can easily
be mapped to high-performance code. For more exotic
operations, the user is encouraged to provide custom
CUDA kernels, which is relatively easy thanks to the
lightweight framework.

A CUDArray interface

At the time of writing, the CUDArray module contains
the following functionality. Note that Python’s standard
operators are mapped to their equivalent binary/unary
operations if listed below.

Core array, bool_, clip, copyto, empty, empty_like,
float_, int_, ones, ones_like, reshape, transpose,
zeros, zeros_like

Mathematical functions abs, absolute, add, amax, amin,
argmax, argmin, cos, divide, dot, equal, exp, fabs,
greater, greater_equal, inner, less, less_equal,
log, maximum, mean, minimum, multiply, negative,
not_equal, power, sin, sqrt, subtract, sum, tanh

Random module random.normal, random.seed,
random.uniform

Neural network module nnet.ConvBC01,
nnet.PoolB01, nnet.categorical_cross_entropy,
nnet.one_hot_decode, nnet.one_hot_encode,
nnet.relu, nnet.relu_d, nnet.sigmoid,
nnet.sigmoid_d, nnet.softmax, nnet.tanh_d

Bibliography

[1] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn,
and K. Smith. Cython: The best of both worlds. Computing
in Science & Engineering, 13(2):31–39, 2011.

[2] N. Bell and J. Hoberock. Thrust: A productivity-oriented
library for CUDA. GPU Computing Gems, October 2011.

[3] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu,
G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio.
Theano: a CPU and GPU math expression compiler. In
Proceedings of the Python for Scientific Computing Conference
(SciPy), June 2010.

[4] B. Catanzaro, M. Garland, and K. Keutzer. Copperhead:
Compiling an embedded data parallel language. Techni-
cal Report UCB/EECS-2010-124, EECS Department, Uni-
versity of California, Berkeley, Sep 2010.

[5] B. Catanzaro, S. A. Kamil, Y. Lee, K. Asanovi, J. Demmel,
K. Keutzer, J. Shalf, K. A. Yelick, and A. Fox. Sejits: Getting
productivity and performance with selective embedded
jit specialization. Technical Report UCB/EECS-2010-23,
EECS Department, University of California, Berkeley, Mar
2010.

[6] M. M. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and
V. Grover. Accelerating Haskell Array Codes with Multi-
core GPUs. In Proceedings of the Sixth Workshop on Declar-
ative Aspects of Multicore Programming, DAMP ’11, pages
3–14, New York, NY, USA, 2011. ACM.

[7] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7:
A matlab-like environment for machine learning. In
BigLearn, NIPS Workshop, 2011.

[8] M. Harris, S. Sengupta, and J. D. Owens. Parallel Prefix
Sum (Scan) with CUDA. In H. Nguyen, editor, GPU Gems
3. Addison Wesley, Aug. 2007.

[9] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Con-
volutional architecture for fast feature embedding. arXiv
preprint arXiv:1408.5093, 2014.

[10] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and
A. Fasih. PyCUDA and PyOpenCL: A Scripting-Based
Approach to GPU Run-Time Code Generation. Parallel
Computing, 38(3):157–174, 2012.

[11] M. R. B. Kristensen, S. A. F. Lund, T. Blum, K. Skovhede,
and B. Vinter. Bohrium: unmodified NumPy code on
CPU, GPU, and cluster. In Python for High Performance and
Scientific Computing, November 2013.

[12] A. B. L. Larsen. deeppy: Deep learning in Python. http:
//github.com/andersbll/deeppy, 2014.

[13] V. Mnih. CUDAMat: a CUDA-based matrix class for
python. Technical Report UTML TR 2009-004, Depart-
ment of Computer Science, University of Toronto, Novem-
ber 2009.

[14] NVIDIA Corporation. CUDA C Programming Guide,
PG-02829-001_v6.5 edition, August 2014.

[15] T. E. Oliphant. Python for scientific computing. Computing
in Science & Engineering, 9(3):10–20, 2007.

[16] K. Rupp, F. Rudolf, and J. Weinbub. ViennaCL - A High
Level Linear Algebra Library for GPUs and Multi-Core
CPUs. In Intl. Workshop on GPUs and Scientific Applications,
pages 51–56, 2010.

[17] T. Tieleman. Gnumpy: an easy way to use GPU boards in
Python. Technical Report UTML TR 2010-002, University
of Toronto, Department of Computer Science, 2010.

5

http://github.com/andersbll/deeppy
http://github.com/andersbll/deeppy

