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Abstract 
A problem of vibration suppression in any preassigned region of a bounded structure 
subjected to action of an external time-periodic load which is distributed over its domain is 
considered. A passive control is applied, in that continuous spatially periodic modulations of 
structural parameters are used as a means for vibration suppression. As an example, stationary 
vibrations of a string under action of a distributed time-periodic load are studied. This system 
in a simplified form models such processes as interaction between membranes and colloids, 
oscillations of transmission lines under action of rain and wind, and dynamics of suspension 
bridges and stay cables. Suppression of vibration in predefined regions of the string is 
performed by continuous spatial modulation of its cross-section.   
For analyzing the problem considered a novel approach named the method of varying 
amplitudes is employed. This approach is applicable for solving differential equations without 
a small parameter, and may be considered as a natural continuation of the classical methods of 
harmonic balance and averaging. As a result, optimal parameters for the string cross-sectional 
area modulation are determined for the cases of harmonically, uniformly and arbitrarily 
distributed load, which allows for completely suppressing or considerably reducing vibration 
in the prescribed part of the string (compared to the case without modulation). 
 
vibration suppression; bounded structure; distributed loading; continuous spatially periodic 
modulation; the method of varying amplitudes.   
 
1. Introduction 
The paper is concerned with a problem of vibration suppression in any preassigned region of 
a bounded structure subjected to action of an external time-periodic load which is distributed 
over its domain. Similar problems of sound and vibration isolation gained much attention in 
the recent years (e.g. [1-8]). The approaches proposed for treating such problems may be 
divided in two groups: active control, when structural parameters are varied in time [3, 8-12], 
and passive control, when these parameters are changing only in space [2, 5, 7, 13-15]. In 
most cases behavior is considered in presence of a point load or an excitation source, and 
boundary conditions are not taken into account [2-6, 12-14, 16-17]. Then the problem reduces 
to identifying frequency stop and pass bands, and their subsequent tailoring by 
spatial/temporal modulations of system parameters. In the present paper the problem of 
vibration suppression is considered in a different formulation: behaviour of a bounded 
structure under action of a distributed load is studied. A passive control is applied, in that 
continuous spatially periodic modulations of structural parameters are proposed to be used as 
a means for vibration suppression. We note that the problem under study is closely related to 
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those solved by the method of topology optimization [5], which is a popular method for 
obtaining an optimal layout of one or several material constituents in structures and materials. 
However, the important advantage of the analytical approach employed in the present paper 
over this and other numerical methods is the ability to provide insight into, e.g., explicit 
dependencies of structural dynamic characteristics on parameters. 

As an illustrative example, consider vibrations of a string under action of an external 
distributed time-periodic load. Suppression of vibration in predefined regions of the string is 
performed by continuous spatial modulation of its cross-section. This simple system is a 
generic model for various relevant problems, e.g. interaction between membranes and colloids 
in biochemistry [18], oscillations of transmission lines under action of rain and wind [19], and 
dynamics of suspension bridges and stay cables [20]. Moreover, it serves to reveal general 
effects of continuous spatially periodic modulations on oscillations of bounded structures 
subjected to distributed loading, and illustrates possible advantages and disadvantages of the 
proposed technique of vibration suppression. 

For analyzing the problem considered a novel approach named the method of varying 
amplitudes (MVA) is employed. This approach is inspired by the method of direct separation 
of motions (MDSM) [21, 22], and may be considered a natural continuation of the classical 
methods of harmonic balance [23] and averaging [24-26]. It implies representing a solution in 
the form of harmonic series with varying amplitudes, but in contrast to the averaging methods 
the amplitudes are not required to vary slowly. Thus the MVA does not assume the presence 
of a small parameter in the governing equations, or any restrictions on the sought solution. 
This, in particular, makes it convenient for analysis of the considered problem which implies 
solving differential equations without a small parameter. 

The paper is structured as follows: In Section 2 the equations of motion for the 
inhomogeneous string are presented, and the specific aims of the analysis are outlined. 
Section 3 is concerned with the case of spatially harmonic external load: In Section 3.1 a 
solution of the governing equations by the MVA is provided, and essence of the method is 
briefly described. In Section 3.2 optimal parameters of the string cross-sectional area 
modulation are determined that ensures complete suppression or considerable reduction of 
vibration in predefined regions of the string. Section 4 is concerned with the case of spatially 
uniform external load. In Section 4.1 the corresponding equations are solved by the MVA, 
while Section 4.2 calculates optimal parameters of the string cross-sectional area modulation. 
Finally, Section 5 is concerned with the case of arbitrarily distributed external load. 

 
2. Governing equations 
Consider vibrations of a string with variable cross-section under action of a distributed load 
which are described by the equation 

2 2

2 2( ) ( , )u uS x T f x t
t x

ρ ∂ ∂
− =

∂ ∂
,                                                 (1) 

Where ρ  is density of the string material, T  the tension force (assumed constant), ( , )u x t  the 
lateral deflection of the string, [0; ]x l∈  the axial coordinate, ( )S x  the variable cross-sectional 
area, and ( , )f x t  the external load per unit length. The boundary conditions are: 

(0, ) ( , ) 0u t u l t= = , and l  is length of the string; motion of the string is studied at zero initial 
conditions. Dissipation is assumed to be negligibly small. The case of a time-varying load of 
period Θ  is considered: 

( , ) ( , )f x t f x t= +Θ . 
This is justified and common for most of the abovementioned problems; e.g. impact of rain 
and wind on transmission lines and stay cables [19, 20], and colloids on membranes [18] is 
usually modeled as time-periodic. Expanding f  in a trigonometric Fourier series gives: 

2 
 



0
1

2 2( , ) ( ) ( ) cos ( )sinn n
n

f x t c x c x nt d x ntπ π∞

=

    = + +    Θ Θ    
∑ .                     (2) 

Consequently, since (1) is linear, the problem reduces to analyzing the case  
0( , ) ( ) cos( )f x t f x tω f= + ,                                                  (3) 

where 2 nπω =
Θ

, and 0,
2
πφ = . In this case the solution of (1) may be written in the form 

( , ) ( ) cos( ) ( , )u x t A x t w x twφ = + + ,                                           (4) 
where ( , )w x t  is solution of the homogeneous equation corresponding to (1) at the same 
boundary conditions and the initial conditions: ( ,0) ( ) cosw x A x φ= − , ( ,0) ( ) sinw x A x wφ = . 
Thus, the problem of minimizing the string response ( , )u x t  turns to determining ( )A x , and 
subsequent tailoring of ( )A x  by cross-sectional area modulation. For ( )A x  the following 
equation is composed, by inserting (3)-(4) into (1): 

2 2
0

2

( )( ) f xd A S x A
dx T T

ω ρ
+ = −                                                 (5) 

 The aim is to determine modulations of the string cross-sectional area that would 
enable vibration suppression in predefined string regions for an arbitrarily distributed external 
load. To accomplish this we first expand 0f  in a trigonometric Fourier series: 

 0 0
1

2 2( ) ( cos sin )n n
n

f x a a nx b nx
l l
π π∞

=

= + +∑ ,                                   (6) 

and determine optimal cross-section modulation ( )S x  for 1) the case of a spatially harmonic 
external load, and 2) the case of a spatially uniform external load. The sought modulation for 
an arbitrarily distributed load 0 ( )f x  is proposed to be approximated as the one corresponding 
to dominating spatial harmonic or as a certain superposition of the determined modulations. 
 
3. Spatially harmonic external load 
Consider the case of a spatially harmonic external load:  

0 0( ) cos( )f x F kx ϕ= + ,                                                    (7) 

where 2k n
l
π

= , n  is integer, and the phase ϕ  is arbitrary, so that various load distributions 

are captured. A modulation of the cross-sectional area ( )S x  should be determined such that 
vibration in any predefined region of the string, e.g. near a certain point px , would be 
minimal. The well-known effect of parametric attenuation (e.g. [27]) is proposed to be 
employed for this purpose. Thus the following approximation to the sought modulation is 
used:  

0( ) (1 cos(2 ))nS x S kxc θ= + + ,                                              (8) 
where [0;1)χ ∈  and nθ  are unknown parameters to be determined. Inserting (7) and (8) into 
(5) one obtains 

1 1 1 1 1 1( ) (1 cos(2 )) ( ) cosA x x A x xδ c θ′′ + + + = ,                                    (9) 

where 1x kx ϕ= + , 2nθ θ ϕ= − , 2 2
0S Tkδ ω ρ=  and ( )2

1 1 0 1( ) ( )A x Tk F A x= − , and primes 

denote derivatives with respect to 1x . The boundary conditions for 1 1( )A x  take the form:  

1 1( ) ( ) 0A A klϕ ϕ= + = ,                                                  (10) 
since 0x =  and x l=  correspond to 1x ϕ=  and 1x kl ϕ= + . Our aim is to study (9) in the 
widest possible range of external excitation parameters ω  and k , so that parameter δ  may 
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take any value. However, consideration of such a general case, though possible, leads to very 
complicated expressions, so here we assume (1)Oδ =  (which comprises also the case 

1δ << ); the case of large δ  may be analyzed similarly. 
 
3.1. Solution by the method of varying amplitudes 
To solve (9), which does not contain a small parameter since (1)Oδ =  and 0 1χ≤ < , we 
employ a novel approach here named the method of varying amplitudes (MVA). This 
approach is a development of two modified versions of the method of direct separation of 
motions (MDSM) [21,22]. The first was introduced in [28], where the analysis of free 
vibrations of a string with variable cross-section was carried out, and is useful for studying 
dynamics of spatially periodic structures. The second was proposed in [29] for solving 
equations without an explicit small parameter. However, the latter approach implies a certain 
restriction on the sought solutions: only those which are close to periodic can be determined. 
This manifests itself in introducing an artificial small parameter, and representation of the 
solution in the form of a harmonic series with slowly varying amplitudes. The MVA avoids 
this restriction in that no small parameter is used in the solution process, and amplitudes of 
the solution are not required to vary slowly. Thus, the method does not imply separation of 
variables on slow and fast scales (the main idea of the MDSM) and hence cannot be named as 
a modified MDSM. Avoiding the use of a small parameter significantly broadens the 
applicability range of the MVA in comparison with the conventional MDSM [21,22] and the 
classical asymptotic methods [24-26], in particular the multiple scales method [26]. E.g. the 
solution of equation (9), which will be obtained by it, should be valid in the whole range of 
δ -values considered (1)Oδ = . 

So, a solution of (9) is sought in the form of harmonic series with varying amplitudes: 
1 1 11 1 1 12 1 1 21 1 1 22 1 1( ) ( ) cos ( )sin ( ) cos3 ( )sin 3 ...A x B x x B x x B x x B x x= + + + + ,             (11) 

where the amplitudes 1 1( )jB x , 2 1( )jB x , 1, 2,...j m= , are not required to vary slowly in 
comparison with 1cos x , 1cos3x  etc. The shift from the original dependent variable 1 1( )A x  to 
2m  new variables 1 1( )jB x , 2 1( )jB x  implies that 2m  equations for these variables are needed. 
This can be accomplished by introducing constraints on these variables in the form of 2 1m −  
additional equations. With the MVA the constraints are introduced in the following way: 
substitute (11) into (9), and require 2 1m −  groups of terms to equal zero. The last 2m th 
equation will include all the remaining terms of the original equation. These 2 1m −  groups of 
terms are proposed to be the coefficients of the involved spatial harmonics 1cos x , 1sin x , 

1cos3x  etc. Taking into account only the written terms in (11), one obtains four equations for 
the amplitudes 11 1( )B x , 12 1( )B x , 21 1( )B x , 22 1( )B x : 

( )11 12 11 11 21 12 222 ( 1) ( ) cos ( )sin 1
2

B B B B B B Bδcδ θ θ′′ ′+ + − + + − + = ,              (12) 

( )12 11 12 12 22 11 212 ( 1) ( ) cos ( )sin 0
2

B B B B B B Bδcδ θ θ′′ ′− + − − − + − = ,             (13) 

21 22 21 11 126 ( 9) ( cos sin ) 0
2

B B B B Bδcδ θ θ′′ ′+ + − + + = ,                                   (14) 

( )

22 21 22 12 11 1

21 1 22 1

6 ( 9) ( cos sin

cos(5 ) sin(5

) sin 3

) .

2

2
B x

B

B

B B

x

B B xδcδ

θ

θ

δc θ

θ ′′ ′− + − + −

+ += − +


                         (15) 
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So, we have restated the original equation (9) in the form of four equations (12)-(15), 
with 11B , 12B , 21B , 22B  as the dependent variables instead of 1A ; no approximations are 
involved so far.  
 Now we introduce approximations by neglecting the right-hand side of (15), so that: 

 22 21 22 12 116 ( 9) ( cos sin ) 0
2

B B B B Bδcδ θ θ′′ ′− + − + − = .                          (16) 

This simplification is valid when 2 9δχ δ<< − , i.e. the right-hand side of (15) is small in 
comparison with the leading term. In the present paper the case (1)Oδ = , [0;1)χ ∈  is 
considered, so this condition holds true. When 1δ >> , more harmonics should be taken into 
account in series (11), so that it will be justified to neglect the right-hand side of the last 2m th 
equation for amplitudes 1 1( )mB x , 2 1( )mB x . As is seen, the approximation implied in the MVA 
is quite similar to the one of the classical method of harmonic balance [23], i.e. the influence 
of higher harmonics is neglected.  

Note that the classical averaging methods [24,25] also imply a shift of variables from 
the original dependent variable to new variables, typically amplitude and phase. But the 
corresponding constraint on the new variables in common practice takes the form of the Van 
der Pol condition [24,25]. The constraint employed in the MVA is closer to the one used in 
the conventional MDSM [21,22]; this method also requires a certain group of terms in the 
initial equation, describing “fast motions” [21,22], to equal zero. 

So, the original equation (9) for 1A  is replaced by four equations (12)-(14), (16) for the 

amplitudes { }11 12 21 22B B B B= TB . This system of equations has eight eigenvalues and 
corresponding eigenvectors. Its general solution may be written in the form: 

0 1 1 1 2 2 1 8 8 1exp exp ... expC x C x C xλ λ λ= + + + +1 2 8B B B B B                       (17) 
Here 0B  is a particular solution of (12)-(14), (16), jB  and jλ  ( 1,...,8j = ) are eigenvectors 
and corresponding eigenvalues, and 1C , …, 8C  arbitrary constants. Consequently, returning 
to the original variable 1 1( )A x  using (11), obtain that it should depend on these constants 

1 1 1 1 1 8( ) ( , ,..., )A x A x C C= ,                                                  (18) 
 When 0χ = , the right-hand side of equation (15) equals zero, so solution of (12)-(14), 
(16) will give us an exact solution 1 1( )A x  of the initial equation (9). The eigenvalues and 
eigenvectors of (12)-(14), (16) in this case are the following: 

1 4 ( 1)iλ δ− = ± ± , 5 8 ( 3)iλ δ− = ± ±                                         (19) 

{ }1-4 1 0 0i= TB  , { }5 8 0 0 1 i= T
-B  .                                  (20) 

The particular solution of (12)-(14), (16) is { }1
0 ( 1) 0 0 0δ −= −

T
B . As is seen, for any 

values of constants 1C , …, 8C  the corresponding expression for 1 1( )A x  is an exact solution of 

the initial equation (9). E.g. if 1 1C =  ( 1 ( 1)iλ δ= + , { }1 0 0i= − T
1B ) and 

2 3 8... 0C C C= = = = , one finds: 

( ) ( ) ( )1 1 1 1 1 1 1 1
1 1( ) exp ( 1) cos exp ( 1) sin cos exp

1 1
A x i x x i i x x x i xδ δ δ

δ δ
 = + + − + = + − − 

(21) 

On the other hand, if 1 2 7... 0C C C= = = =  and 8 1C =  ( 8 ( 3)iλ δ= − − , { }8 0 0 1 i= − TB ), 
we get: 
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( ) ( ) ( )1 1 1 8 1 1 8 1 1 1 1
1 1( ) cos exp cos3 exp sin 3 cos exp

1 1
A x x x x i x x x i xλ λ δ

δ δ
= + − = + −

− −
  (22) 

 So, expression (18) will be the solution of (9) for any values of constants 1C , …, 8C . 
However, there are only two boundary conditions (10) to satisfy. Thus, we can force six of 
these constants to equal zero, and confine ourselves to determining only two eigenvalues of 
the system (12)-(14), (16), e.g. the lowest eigenvalues. This significantly simplifies the 
application procedure of the MVA and the resulting expressions. 

When 0χ ≠ , the particular solution of (12)-(14), (16) takes the form 

{ }0 110 120 210 220B B B B= TB  where 
2 2

3 2 2 2 4 2 4

2

3 2 2 2 4

110

12 40 2

4( 9)( 36 40 ( 4) 2( 9) cos ) ,
1296 2880 8 (19 40) 4 (99 472) (16 12 )

8( 9) sin .
1296 2880 8 (19 40) 4 (99 472) (16 12 )

B

B

δ δ δ c δ δc θ
δ δ c δ c δ c c

δ δc θ
δ δ c δ c δ c c

− − + + − + −
−

− + − − − + − +

−
− + − − − + − +

=

=
    (23) 

The corresponding values of 210B  and 220B  are much smaller than 110B  and 120B  at (1)Oδ = , 
and thus not given here. As follows from (23), the minimal value of the particular solution 
amplitude 2 2

10 110 120B B B= +  will be achieved at θ π=  if 1δ < , and at 0θ =  if 1δ > . So, 
with the assigned task of vibration suppression, and confining ourselves to considering only 
the first case 1δ < , we let θ π= ; the case 1δ >  can be studied in a similar way. 

Now determine the lowest two eigenvalues of (12)-(14), (16). To simplify the resulting 
expressions we employ the approximate relations between amplitudes 21B , 22B  and 11B , 12B  
which may be obtained from (14), (16):       

21 112( 9)
B Bδχ

δ
≈

−
, 22 122( 9)

B Bδχ
δ

≈
−

.                                        (24)                                                

 These approximations are justified by the fact that for eigenvectors corresponding to 
the lowest eigenvalues 21 22 11 12( , ) ( , )B B B B<< , and thus 21B , 22B  may be taken into account 
only approximately. Substituting (24) into (12)-(13) we get 

2 2

11 12 112 1 1
2 4( 9)

B B Bδχ δ χδ
δ

 
′′ ′+ + − − − = − 

,                                    (25) 

2 2

12 11 122 1 0
2 4( 9)

B B Bδχ δ χδ
δ

 
′′ ′− + − + − = − 

.                                   (26) 

Differentiating (25) with respect to 1x , and substituting 11B′  from (26) we get:  
2 22 2 2 2

12 12 122 1 1 0
4( 9) 4( 9) 2

B B Bδ χ δ χ δχδ δ
δ δ

      ′′′′ ′′+ + − + − − − =      − −       
.               (27) 

The eigenvalues of (27) are governed by 
22 2 2 2

2
1 4 1 4

4( 9) 4( 9) 2
δ χ δ χ δχλ δ δ
δ δ−

     = − + − ± − +     − −     
                         (28) 

Thus the lowest two eigenvalues of (12)-(14), (16) are defined by the following 
approximate relation: 

22 2 2 2
2 1 4

4( 9) 4( 9) 2
δ χ δ χ δχλ δ δ
δ δ

     = − + − + − +     − −     
.                          (29) 
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The resulting expressions for the amplitudes 11B  and 12B  take the form 

( )
12 1 1 2 1

11 1 1 2 12 2 2 2
2

sinh cosh ,
1 2 cosh sinh .

1 1
2 4( 9) 2 4( 9)

B C x C x

B C x C x

λ λ
λ λ λ

δc δ c δc δ cδ δ λ
δ δ

= +

= − +
− − − − − − +

− −

    (30) 

Note that 1λ <<  when ( ) ( )2 21 2δ δχ− ≈ ,  in which case 11B , 12B , 21B , 22B  vary slowly 
with respect to 1x . 

To determine 1C , 2C  we employ the boundary conditions (10) for 1 1( )A x . The 
corresponding expressions for these constants are lengthy, and thus not given here. So, the 
solution 1 1( )A x  of the considered problem is composed in the form (11), where amplitudes 

11B , 12B  are defined by (30), and amplitudes 21B , 22B  by (24). 
 
3.2. Vibration suppression in predefined regions of the string 
The stationary vibrations near a certain point px  of the string will be maximally suppressed if 

the amplitude 2 2
1 11 12B B B= +  in this point is minimized, i.e. if 

2 2
1 1 11 12( ) ( ) ( ) min

p
p p px x

B B kx B kx B kxϕ ϕ ϕ
=

= + = + + + → .                       (31) 

The size of the region near px  in which vibration is minimized depends on the rate of change 
of 1B  with respect to the spatial coordinate 1x . As noted above, 1B  varies slowly with 1x  for a 
broad range of system parameters, so the region will be wide in most cases. 
 The effect of cross-section modulation turns out to be most pronounced when 1δ ≈ , 
where it is possible to completely suppress or substantially reduce vibration near px . As an 
illustration, consider string vibrations at 10n = , 0.25ϕ = , 0.9δ = . The corresponding 
dependency of the normalized vibration amplitude 1A  on /x l  in the absence of cross-section 
modulation ( 0χ = ) is shown in Figure 1(a), where dashed line corresponds to the analytical 
solution of equation (9), and solid line to numerical solution (Wolfram Mathematica, 
NDSolve). Now employ (31), and determine the value of modulation amplitude χ  that will 
minimize 1A  near the string end ( px l= ). This gives 0.26χ = , and the corresponding 
dependency of 1A  on /x l  as shown in Figure 1(b). As appears, vibration is completely 
suppressed near px l= , and is substantially reduced in the whole string. Dashed and solid 
lines almost coincide in Figures 1 (a)-(b), demonstrating good agreement between numerical 
and analytical solutions. This agreement is present for a wide range of system parameters 
tested, so further only the dependencies obtained analytically will be presented.  

Considering a non-resonant case, e.g. 3n = , 2.5ϕ = , 0.95δ = , and minimizing 
vibration near point 0px = , one obtains 0.5χ = , with corresponding dependencies as shown 
in Figure 1(c); here solid line corresponds to 0χ = , and dashed line to 0.5χ = . Another 
example is shown in Figure 1 (d), where vibration is minimized near the middle of the string.  
Note that since 2k n lπ=  the value of string length l  does not affect 1A  and the dependencies 
presented in Figure 1.  
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Figure 1. Axial variation of 1A  for (a)-(b) 10n = , 0.25ϕ = , 0.9δ = ; 

(c) 3n = , 2.5ϕ = , 0.95δ = ; (d) 7n = , 0ϕ = , 0.8δ = . 
 
 The proposed technique of vibration suppression turns out to be effective with a broad 
range of external excitation parameters ϕ  and n . As an illustration, Figure 2(a) shows the 
dependency of the ratio 1 10

p px x x x
B B

= =
 on the phase ϕ  for 10n = , 0.9δ = , and px l= ; here 

1
px x

B
=

 is the minimized value of the string vibration amplitude at point px , and 10
px x

B
=

 is 

value of this amplitude at 0χ = . As is seen, vibration in the prescribed part of the string is 
less than 5% of its value without cross-section modulation for almost all ϕ . The optimal 
modulation amplitude χ  strongly depends on ϕ , e.g. 0.25ϕ =  gives 0.26χ = , whereas 

1.25ϕ =  gives 0.99χ = . Figure 2(b) shows the dependency of the amplitude ratio on the 
number n  of the external excitation harmonic for 2.5ϕ = , 0.95δ = , and 0px = . As appears, 
vibrations can be substantially reduced for all harmonics. 

The effectiveness of the proposed technique of vibration suppression varies with px . 
There may be regions in which vibrations can be completely suppressed, and regions in which 
it can be reduced only by 50%. As an illustration, Figure 2(c) shows the dependency of the 
amplitude ratio on px  when 7n = , 0.8δ = , and 0ϕ = . As is seen, vibration near the string 
ends can be reduced only by 50 %, whereas in the middle of the string it can be completely 
suppressed. This is due to the fact that vibration amplitudes near the string ends in the absence 
of cross-section modulation are comparatively low, and thus the value of 10

px x
B

=
 is small. 

Also, at large modulation amplitudes, e.g. 0.95χ = , vibrations turns out to be considerably 
reduced in the whole string for almost all values of system parameters. 
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Figure 2. Dependencies of 1 10

p px x x x
B B

= =
 on the system parameters: (a) phase ϕ  of the 

external excitation; (b) number n  of the external excitation harmonic; (c) point px  near which 

vibration is minimized; and (d) parameter δ . Here 1
px x

B
=

 is the minimized value of the string 

vibration amplitude at point px , and 10
px x

B
=

 is value of this amplitude when 0χ = . 

 
The positive effect of cross-section modulation reduces with decreasing δ , as 

illustrated by Figure 2(d) for 4n = , 1.5ϕ = , and / 3px l= . When 1δ << , the best way to 
suppress vibration in any region of the string is to impose the largest possible modulation 
( 1χ → ). However, the effect of the modulation on the system response in this case is much 
less pronounced than when 1δ ≈ . 
 
4. Spatially uniform external load 
Next we consider the case of spatially uniform external load: 0 0( )f x F= . As an 
approximation to the sought modulation we employ, similarly to (8): 

0 1 1( ) (1 cos( ))S x S k xc θ= + + ,                                             (32) 
where [0;1)χ ∈ , 1θ  and 1k  are unknown parameters to be determined. So, the effect of 
parametric attenuation of a uniform load is examined and employed here. Note the difference 
between the case studied in Section 3, where k  was the external excitation parameter, and the 
one considered here, where 1k  is an optimization parameter. Inserting (32) and 0 ( )f x  into (5) 
one obtains 

( )2 2 1 2 2 1 2 2( ) 1 cos( ) ( ) 1A x k x A xδ c θ′′ + + + = ,                                   (33) 

where 2 /x x l= , 2 2
1 0S l Tδ ω ρ= , 2 1k k l= , and 2 2 2 0( ) ( )A x T A x F= − , and now primes 

denote derivatives with respect to 2x . The boundary conditions for 2 2( )A x  are  
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2 2(0) (1) 0A A= = .                                                         (34) 
To simplify the analysis the restriction 2

1 2kδ <<  on the optimization parameter 2k  is imposed. 
Other cases, e.g. 2

1 2kδ >> , can be treated similarly, but the MVA procedure will be more 
cumbersome.  
 
4.1. Solution by the method of varying amplitudes 
Employing the MVA for solving equation (33) we search for a solution in the form  

( ) ( )2 2 2 11 2 2 2 1 12 2 2 2 1( ) ( ) ( ) cos ( )sin ...A x x B x k x B x k xα θ θ= + + + + +               (35) 
This form differs from (11), employed in Section 3, e.g. here the zeroth harmonic is 

taken into account, making (35) more convenient for solving (33) since constant is present in 
the right-hand side of this equation. New dependent variables implied in the MVA, e.g. α , 

11B  and 12B  here, or 11B , 12B , 21B  and 22B   in Section 3, are not subjected to any artificial 
restrictions, e.g. are not required to vary slowly etc. Thus, they can be chosen in any 
appropriate manner complying the general rules of shifting of variables when solving ordinary 
differential equations [30].   

Taking into account only the written terms in series (35) we obtain the following 
equations for 2( )xα , 11 2( )B x , 12 2( )B x : 

1 11( ) 1
2

Bχα δ α′′ + + = ,                                                                    (36) 
2

11 2 12 1 2 11 12 ( )B k B k Bδ δ χα′′ ′+ + − = − ,                                                (37) 

( ) ( )

( ) ( )( )

2
12 2 11 1 2 12 2 2 1

1
11 2 2 1 12 2 2 1

2 ( ) sin

cos 2( ) .s n 2
2

i ( )

B k B k B k x

B k x B k x

δ θ

δ c θ θ

′′ ′− + − +

++= − +
              (38) 

  The right-hand side of (38) will be small in comparison with the leading terms of 
(37)-(38) if 2

1 2 1 2k χδ δ− >> . Here the case 2
1 2kδ <<  is considered, so this condition is 

fulfilled. Thus (38) can be approximated by: 
2

12 2 11 1 2 122 ( 0)B k B k Bδ′′ ′− + − = .                                                 (39) 
A particular solution of equations (36), (37), (39) has the form: 

2
2 1

2 2 2 2
1 2

0 110 12
1 1 2 1

0
2( ) 2, , 0

(2 2 ) 2 ( 2)
k

k k
B Bδ χ

δ δ δ χ δ χ
α −

− + + −
= = =                       (40) 

Next we determine the lowest two eigenvalues corresponding to the homogeneous part of 
(36), (37), (39). From (37): 

( )( )2
12 1 1 2 11 11

2

1
2

B k B B
k

δ χα δ′ ′′= − + − +                                         (41) 

Differentiating (39) with respect to 2x  and employing (41) gives:  

( ) ( ) ( )( )2 2 2
11 1 1 2 11 1 2 1 1 2 112 0B k B k k Bδ χα δ δ δ χα δ′′′′ ′′ ′′+ + + + − + − =                   (42) 

From (36) we have: 

( )11
1

2 21B α α
χδ χ

′′= − − ,                                                  (43) 

which substituted into (42) gives: 
4

2 2
2 2

(6) 2 2 2 2 21 1
1 1 2 2 1 2 12

( ( 6) 2 )(2 3 ) ( )(2 ( 2) ( )
2

)
2

kk k k kδ χ δα δ α α δ δ χ α δ− −′′′′ ′′+ − − − + − −+ =   (44) 

10 
 



Consequently, six eigenvalues of (44) are determined; the lengthy expressions for 
them are not given here. The resulting relations for α , 11B  and 12B  are: 

( )

2
2 1

2 2
1 2 1 1

2
1

2 2
2 1 1

2 2 2

1 2 2 2

11 1 2 2 2

12

2 2 2
2 1 1 1

2 2 1 2
2 1

2( )
(2 2 )

2( )2 (
2 ( 2)

2 ( ) 2(

cosh sinh ,

cosh sinh ),

cosh sinh .
2

)

k
k

k
k

C x C x

B C x C x

B C x C x
k

δ
δ δ δ c

δ λc
δ c δ

δ λ δ

α λ λ

λ λ
c

λ λ
δ

λ c
cλ

δ

−
+

− +

+
+

+ −

+

= +

= −

+ +
= − +

−

            (45) 

where λ  is the lowest eigenvalue of (44). To determine constants 1C , 2C  we employ the 
boundary conditions (34) for 2A . Thus, the solution of (33) is composed in the form (35), 
where α , 11B , and 12B  are defined by (45). 
 
4.2. Vibration suppression in predefined regions of the string 
Here the case of uniformly distributed external load is considered, and component 2( )xα  is 
present in the solution (35), so, instead of minimization criterion (31) the following one will 
be employed: 

2 min
px x

A
=

→ .                                                           (46) 

This criterion is a “direct” one; it is chosen due to the fact that, by contrast to Section 3, λ  
here is of the same order as 2k  for a broad range of system parameters, so the amplitudes in 
(35) are not slowly varying in comparison with ( )2 2 1cos k x θ+  and ( )2 2 1sin k x θ+ . The 
fulfilment of (46) ensures that vibration near a certain point px  of the string is maximally 
suppressed. The size of the region in which vibration is minimized depends on the rate of the 
system’s response variation with respect to the spatial coordinate x , i.e. on values of the 
parameters λ  and 2k . We note that, due to the boundary conditions, criterion (46) is of no use 
when px l=  or 0px = , so in order to minimize vibration near the string ends it should be 
applied for px  close to 0  or l , e.g. / 20px l=  or 19 / 20px l= . 

When 1δ  is comparatively small 1 2δ π< , the proposed technique of vibration 
suppression allows for considerable vibration reduction in the prescribed part of string. As an 
illustration, consider the case 1 8δ =  and suppressing vibration near / 2px l= . Using (46) the 
optimal parameter values become 2 5k = , 1χ → , and 1 0.6θ = . The corresponding 
dependencies of 2A  on 2x  are shown in Figure 3(a), where dashed lines represent the 
analytical solution of equation (33), and solid lines a numerical solution (Wolfram 
Mathematica, NDSolve). Note that for comparatively small 1δ , vibration in any predefined 
region of the string will be maximally suppressed when the largest possible modulation is 
imposed ( 1χ → ). The optimal values of parameters 2k  and 1θ , however, depend strongly on 

1δ  and px . 
For larger 1δ  a multitude of parameter values χ , 2k  and 1θ  exist that enables 

complete suppression of vibration at the predefined point px  of the string. However, the size 
of the region near this point, in which vibration is minimized, reduces with increasing 1δ  
(since λ  and 2k  become larger). Considering the example case 1 100δ =  and minimizing 
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vibration near the string end px l= , one finds 2 23k = , 0.8χ = , and 1 2θ = . The 
corresponding dependencies of 2A  on 2x  in the absence ( 0χ = ) and presence ( 0.8χ = ) of 

cross-section modulation are shown in Figure 3(b). When 1δ  is very large ( 1 10δ π> ), the 
proposed technique of vibration suppression becomes less efficient, since the region near px  
in which vibration is minimized becomes very narrow; see, e.g. Figure 3(c), where the 
dependencies of 2A  on 2x  are presented for 1 1100δ =  in the absence (solid line) and presence 
(dashed line) of cross-section modulation with parameters optimal for / 2px l= . 

 
Figure 3. Dependencies of 2A  on 2x  for (a) 1 8δ = , / 2px l= ; (b) 1 100δ = , px l= ; 

(c) 1 1100δ = , / 2px l= .  
 

5. Arbitrarily distributed external load. 
Finally we consider the case of arbitrarily distributed external load. In Section 2 it was 
proposed to expand the load distribution function 0 ( )f x  in a trigonometric Fourier series (6), 
and approximate the sought cross-section modulation as the one corresponding to the 
dominating spatial harmonic, or as a certain superposition of the modulations. In order to 
reveal the optimal way of introducing modulation, consider a simplified case where 0f  is a 
sum of a constant and two harmonics: 

0 01 1 1 02 2 2 03( ) cos( ) cos( )f x F k x F k x Fϕ ϕ= + + + +  .                             (47) 
Studying this simplified case we will obtain results which will be valid for any distribution of 
the external load. The corresponding equation for ( )A x  takes the form: 

2 1 1 1 2 2 2 3( ) cos( ) cos( )A x A k x k xδ µ s ϕ s ϕ s′′ + = + + + +  ,                        (48) 
where 2

2 0S Tδ ω ρ= , p opF Tσ = − , 1, 2,3p = , ( )xµ  describes modulation of the cross-
section, and now primes denote derivatives with respect to x . In Section 3 it was found that 
the modulation optimal for maximum suppression of a harmonic load 0 cos( )F kx ϕ+  is 
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( )( )0 1 cos 2( )S kxc ϕ− + . Taking into account these results, as well as those of Section 4, we 
examine the effect of modulation introduced in various manners defined by: 

( ) ( )1 1 1 2 2 2 3 3 3( ) 1 cos 2( ) cos 2( ) cos( )x k x k x k xµ c ϕ c ϕ c θ= − + − + + +  ,            (49) 

where 1 2 3, ,χχχ    take either optimal values, determined in Sections 3-4, or equal zero. Values 
of parameters 3 3,k θ  provide maximum suppression with a spatially uniform load 3σ . The 
following restriction is added to prevent vanishing of the string cross-sectional area: if 

min 0( )S x c S< , then min 0( )S x c S= , where minc  determines the minimal possible value of the 
cross-sectional area. 
 Numerical experiments show that cross-section modulation corresponding to one of 
the involved spatial harmonics is more effective than a superposition of the modulations, that 
is, in most cases modulations reduce the positive effect of each other. As an illustration, 
consider sting vibrations under action of a spatially harmonic plus uniform load with 

1 3 0.1σσ = =  1cm− , 2 0σ = , and 2 1.5δ = 2cm− , 5cml = , min 0.01c = , 1 2 /k lπ=  1cm− , 

1 3ϕ = . Vibration is minimized near point 0px = . Employing criterion (31), the optimal 
modulation corresponding to spatially harmonic load has 1 0.29χ = . Using (46) then gives 

3 2.2k = 1cm− , 3 3.3θ = , and 3 0.99χ = . The corresponding dependencies of A  on x  are 
shown in Figure 4(a). As appears, the most effective modulation is the one corresponding to 
the spatially harmonic load. Note that 2

2 1 1kδ δ= ≈  for this harmonic; here δ  has the same 
meaning as in Section 3. It turns out that the modulation corresponding to spatial harmonic for 
which 1δ ≈  will always be the most effective one (see also Section 3). So, if such a harmonic 
is present in the external excitation, then a modulation corresponding to this harmonic should 
be imposed. Note that this result is valid for any distribution of the external load. 

If there is no such harmonics, or they are small in comparison with the uniform load, 
then modulation corresponding to the uniform load should be imposed. As an illustration, 
consider string vibrations at the same values of system parameters as above, but under action 
of a different spatially harmonic load: 1 4 /k lπ=  1cm− , 1 0ϕ = . For / 2px l=  optimal 

modulation parameters are: 1 0.99χ = , 3 2.4k = 1cm− , 3 3.4θ = , and 3 0.99χ = . The 
corresponding dependencies of A  on x  are shown in Figure 4(b). As is seen, in this case the 
modulation corresponding to the spatially uniform load is the most effective one; it 
considerably suppresses vibration in the prescribed part of the string. 

If only spatial harmonics for which 1δ ≈/  are present in the external excitation, then 
modulation corresponding to the one with the largest δ  should be imposed (note that only the 
case 1δ <  is considered here). As an illustration, in Figure 4(c) the dependencies of A  on x  
are presented for a string under action of two spatially harmonic loads: 1 2 0.1σσ = =  1cm− , 

3 0σ = , and with 1 0.45δ = 2cm− , 1 2 /k lπ= 1cm− , 1 0ϕ = , 2 4 /k lπ= 1cm− , 2 2ϕ = . Optimal 
for all px  modulation amplitudes in this case become 1 0.99χ = , 2 0.99χ = . 

The abovementioned numerical experiments show that almost in all cases the 
modulation considerably suppresses vibration in prescribed region of the string. So, the 
proposed technique of vibration suppression turns out to be effective also in the case of 
arbitrarily distributed external load. 
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Figure 4. Dependencies of A  on x  for 5cml = , min 0.01c =  and values of other parameters 

specified in the text. 
 
6. Conclusions 
A problem of vibration suppression in a bounded structure subjected to action of an external 
distributed load by using continuous spatial modulations of its parameters is considered. As 
an example, stationary vibrations of a string under action of a distributed time-periodic force 
are studied. This system in a simplified form models such processes as interaction between 
membranes and colloids, oscillations of transmission lines under action of rain and wind, and 
dynamics of suspension bridges and stay cables. Suppression of vibration in predefined 
regions of the string is carried out by continuous spatial modulation of its cross-section.   
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A novel approach, named the method of varying amplitudes, is employed in the 
analysis. This approach is applicable for solving differential equations without a small 
parameter, and may be considered as a natural continuation of the classical methods of 
harmonic balance and averaging. As a result, optimal parameters for the string cross-sectional 
area modulation are determined for the cases of harmonically, uniformly and arbitrarily 
distributed load, which allows for completely suppressing or considerably reducing vibration 
in the prescribed part of the string (compared to the case without modulation). Conditions 
where the proposed technique of vibration suppression is most effective are determined. The 
analytical results are validated by a series of numerical experiments, in all cases showing 
good agreement. Extension of the proposed technique of vibration suppression to cases of 
temporally random external load is reserved for future work. 
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