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Why?
• Asses general purpose 2nd order optimization methods in topology optimization

problems.

Main results from the Benchmarking

• GCMMA outperforms MMA.
• GCMMA and MMA tend to obtain a design with large KKT

error.
• The performance of GCMMA and MMA do not highlight

respect to other solvers.
• The interior-point solver IPOPT in the SAND formulation

produces the best designs using few number of iterations
• IPOPT SAND is the most robust solver in the study.
• The SAND formulation requires lot of memory and

computational time.
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• GCMMA and MMA tend to obtain a design with large KKT

error.
• The performance of GCMMA and MMA do not highlight

respect to other solvers.
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number of iterations
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Topology optimization problems
• Goal: Obtain optimal design of a structure with given loads.

• Model as an optimization problem

minimize
x

f (x)

subject to g(x)  0
h(x) = 0.
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Topology optimization formulations

SAND formulation:
• Minimum compliance

minimize
t,u

fTu

subject to aTt  V

K(t)u � f = 0
0  t  1.

• Minimum volume

minimize
t,u

aTt

subject to fTu  C

K(t)u � f = 0
0  t  1.

• Compliant mechanism design

minimize
t,u

lTu

subject to aTt  V

K(t)u � f = 0
0  t  1.

• f 2 Rd the force vector.

• a 2 Rn the volume vector.

•
V > 0 is the upper volume fraction.

•
C > 0 the upper bound of the compliance.

• l 2 Rd vector that indicates the output displacement.
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Topology optimization formulations

NESTED formulation:
• Minimum compliance

minimize
t

uT(t)K(t)u(t)

subject to aTt  V

0  t  1.

• Minimum volume

minimize
t

aTt

subject to uT(t)K(t)u(t)  C

0  t  1.

• Compliant mechanism design

minimize
t

lTu(t)

subject to aTt  V

0  t  1.

• u(t) = K�1(t)f.
• f 2 Rd the force vector.

• a 2 Rn the volume vector.

•
V > 0 is the upper volume fraction.

•
C > 0 the upper bound of the compliance.

• l 2 Rd vector that indicates the output displacement.
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Considerations on the problem formulation

• Use only one external static load.
• Linear elasticity in the equilibrium equation.
• Assume K(t) � 0 to avoid ill-conditioning.
• Use continuous density variables.
• Use SIMP penalization and a density filter.

Bendsøe, M. P and Sigmund, O. Material interpolation schemes in topology optimization. Archive of Applied
Mechanics,69:635–654,1999.

Bourdin, B. Filters in topology optimization. International Journal for Numerical Methods in
Engineering,50(9):2143–2158, 2001.
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Optimization methods

Topology

optimization

problem

+
non-linear

problem

• OC: Optimality criteria method.
• MMA: Sequential convex approximations.
• GCMMA: Global convergence MMA.

• FMINCON: Interior-point MATLAB. Use exact Hessian.
• SNOPT: Sequential quadratic programming. BFGS approximations.
• IPOPT: Interior-point software. Exact Hessian in the SAND

formulation, BFGS in the NESTED formulation.

Andreassen, E and Clausen, A and Schevenels, M and Lazarov, B. S and Sigmund, O. Efficient topology optimization
in MATLAB using 88 lines of code. Structural and Multidisciplinary Optimization, 43(1): 1–16, 2011.

Svanberg, K. The method of moving asymptotes a new method for structural optimization. International Journal for
Numerical Methods in Engineering, 24(2): 359–373. 1987.

Svanberg, K. A class of globally convergent optimization methods based on conservative convex separable
approximations. SIAM Journal on Optimization, 12(2): 555-573, 2002.

Gill, P. E and Murray, W and Saunders, M. A. SNOPT: An SQP Algorithm for Large -Scale Constrained Optimization.
SIAM Journal on Optimization, 47(4):99–131, 2005.

Wächter, A and Biegler, L. T. On the implementation of an interior point filter line-search algorithm for large-scale
nonlinear programming. Mathematical Programming, 106(1):25–57, 2006.
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Benchmarking in topology optimization

• How? Using performance profiles.
• Evaluate the cumulative ratio for a performance metric.
• Represent for each solver, the percentage of instances that achieve a criterion

for different ratio values.

r
s

(t) = 1
n

size{p 2 P : r

p,s  t},

r

p,s =
iter

p,s

min{iter
p,s : s 2 S} .
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Dolan, E. D and Moré, J. J. Benchmarking optimization software with performance profiles. Mathematical
Programming,91:201–213, 2002.
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Benchmark set of topology optimization problems

Minimum compliance /minimum volume
• Michell, Cantilever and MBB domains, respectively.

• Length ratio: Michell: 1 ⇥ 1, 2 ⇥ 1, and 3 ⇥ 1. Cantilever: 2 ⇥ 1, and 4 ⇥ 1. MBB: 1 ⇥ 2,
1 ⇥ 4, 2 ⇥ 1, and 4 ⇥ 1.

• Discretization: 20, 40, 60, 80, 100 elements per ratio.
• Volume constraint: 0.1 � 0.5.
• Compliance constraint: 1, 1.25, 1.5 ⇥ C. Where C = fTK�1(t0)f.
• Total Problems Compliance: 225.
• Total Problems Volume: 135.
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Benchmark set of topology optimization problems
Compliant mechanism design
• Force inverter, Compliant gripper, Amplifier, Compliant lever, and Crimper domain

examples, respectively.

• Length ratio: 1 ⇥ 1 and 2 ⇥ 1.
• Volume constraint: 0.2 � 0.4
• Discretization: 20, 40, 60, 80, 100 elements per ratio.
• Total Problems Mechanism Design: 150.
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Performance profiles for minimum compliance
problems

Objective function value
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Performance profiles in a reduce test set of 121 instances.

Penalization of problems with KKT error higher than w = 1e � 3.
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Performance profiles for compliant mechanism design
problems

Objective function value
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Performance profiles in a reduce test set of 124 instances.

Penalization of problems with KKT error higher than w = 1e � 3.
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Performance profiles for compliant mechanism design
problems
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Performance profiles for minimum volume problems

Objective function value
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Performance profiles in a reduce test set of 64 instances.

Penalization of problems with KKT error higher than w = 1e � 3.
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Performance profiles for minimum volume problems

Objective function value
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Penalization of problems with KKT error higher than w = 1e � 3.
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Conclusions
• Important contributions.

• Develop a large topology optimization test set.
• Introduction to performance profiles in topology optimization.
• First extensive comparative study of the performance of the state-of-art topology

optimization methods with general non-linear optimization solvers.

• What is missing?
• Large-scale problems, 3D domains, advance elements,...
• Other regularization schemes.
• Different formulations: Displacement constraint, stress constraints,...
• More optimization solvers.
• ...

• What can we conclude from the performance profiles?

• GCMMA outperforms MMA.
• GCMMA and MMA tend to obtain a design with large

KKT error.
• IPOPT-S produces better designs using few number

of iterations
• IPOPT-S is the most robust solver in the study.
• The SAND formulation requires lot of memory and

computational time.
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