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Abstract: 

An overview of micromechanical models of strength and deformation behaviour of 

nanostructured and ultrafine grained metallic materials is presented. Composite models of 

nanomaterials, polycrystal plasticity based models, grain boundary sliding, the effect of non-

equilibrium grain boundaries and nanoscale properties are discussed and compared. The 

examples of incorporation of peculiar nanocrystalline effects (like large content of amorphous 

or semi-amorphous grain boundary phase, partial dislocation GB emission/glide/GB absorption 

based deformation mechanism, diffusion deformation, etc.) into continuum mechanical 

approach are given. The possibilities of using micromechanical models to explore the ways of 

the improving the properties of nanocrystalline materials by modifying their structures (e.g., 

dispersion strengthening, creating non-equilibrium grain boundaries, varying the grain size 

distributions and gradients) are discussed.  

 

Keywords: Micromechanics; Finite element modelling; Nanomaterials; Nanocrystalline 

materials 

 

1. Introduction 

 

During recent decades, growing interest of scientific community has been attracted to 

the nanostructured materials. The expectations on nanostructuring as a way to enhance 

material performances and to improve competing materials properties are very high, and 

some of them have been delivered, indeed.  

The extraordinary properties of nanocrystalline and ultrafine grained metallic materials 

(i.e., materials with the grain sizes of the order of several to several hundred 

nanometers) include superductility at room temperature, high hardness and high strength 
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to hardness value (which might be 2…7 times higher than in coarse grained materials), 

lower elastic modulus, negative Hall-Petch slope, enhanced strain rate sensitivity and 

difference between tensile and compression response [1-5]. The yield strength of 

nanocrystalline materials can be up to 5…10 times higher than of coarse-grained 

materials [6]. Other peculiar effect of nanocrystalline materials are the deviation from 

Hall-Petch relation at ultrafine and nanoscale grain sizes (below 100 nm), which goes 

into negative Hall Petch slope at about 10 nm, as well as asymmetry of tensile and 

compressive behaviour and  enhanced diffusion properties [7]. 

In order to predict the service properties of the materials and to explore the potential and 

reserves of their improvement, computational models linking the macroscale (service) 

properties and nanoscale structures are necessary. While the atomistics/molecular 

dynamics seem to be most natural approach to simulate the nanoscale effects and 

behaviour, they are limited in time and size scales [5], and can be hardly linked to real 

service conditions (long term loading of large size parts). That is why the continuum 

mechanical/micromechanics methods attracted the interest of specialists in 

nanomaterials as a tool for the computational analysis of service properties and usability 

of the materials.  

Still, the continuum mechanical/micromechanical models of materials are based on the 

inherent assumptions about the large scale difference between the structural elements 

(atoms, dislocations, polymer chains) and the considered volume, as well as underlying 

physical mechanisms and homogeneity of deformation (role of dislocations, e.g.). Thus, 

micromechanical modelling of nanomaterials in fact pushes the borders of traditional 

continuum mechanics seeking to incorporate non-mechanical, physical effects into the 

purely mechanical concept.  

In some cases, coupling methodologies are employed to combine atomistic and 

continuum models. Among the different approaches which combined continuum 

mechanics approach with atomistic modelling, one may mention FEAt by Kohlhoff and 

collaborators [8], Quasicontinuum (QC) method by Tadmor and colleagues [9-11], 

coarse-grained molecular dynamics (CGMD) by Rudd and Broughton [12], molecular-

atomistic-ab initio dynamics (MAAD) by Broughton et al. [13], and the bridging scale 

decomposition (BSD) by Wagner and Liu [14]. Among the challenges of coupling 
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approaches, one should mention the problem of linking regions and overlap area as well 

as fictitious boundary effects, due to inconsistencies in the formulation of the potential 

energy [15]. The coupled methods make it possible to introduce the physically based 

materials parameters or laws into micromechanical models. 

In this paper, we present an overview of micromechanical models of nanocrystalline and 

ultrafine grained materials, their mechanical behaviour, deformation and strength. 

Composite models, crystal plasticity based models, grain boundary sliding, the effect of 

non-equilibrium grain boundaries, etc. are reviewed. The main constraints and 

challenges in the considered models are discussed.  

 

2. Composite models of nanocrystalline metallic materials 

The main structural feature of nanocrystalline and ultrafine grained materials, apart from 

the small grain sizes, is the high relative volume of grain boundary surface phase. 

According to Gleiter [1], the differences between the properties of nano - and coarse 

structured materials are determined by both the low dimensions of grains and the high 

volume content of the boundary surface phase in nanomaterials. Suryanarayana [16] 

noted in his review that „nanocrystalline metals can be considered to consist of two 

structural components – the numerous small crystallites ... and a network of 

intercrystalline region“(Figure 1a shows a real microstructure of ultrafine grained 

aluminium). 

The relatively thick “grain boundary phase” layers between nanograins led some 

researchers to the idea to use “composite model” to simulate the deformation behaviour 

of nanocrystalline material (e.g., two-phase or even three-phase model of a 

nanocrystalline material, with grains and boundaries, as phases).  The easiest approach 

of micromechanics, based on the rule-of-mixture, has been transferred to the 

nanocrystalline materials [19, 20]. 

Phase mixture models. One of the earliest modelling approaches to the analysis of 

strength of nanomaterials based on the rule-of- mixture was suggested by Carsley et al. 

[21]. A material is considered as consisting of two phases: squared grains with bulk 

properties and the boundary phase, which represent a metallic (amorphous) glass 
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material. With this model, Carsley and colleagues studied the grain size softening in 

nanocrystalline nickel, iron and copper, and observed the change in the Hall-Petch slope 

at small grain sizes. 

Kim, Estrin and colleagues [22-25] applied the rule-of-mixture for two-phase composite 

(crystalline phase and a grain-boundary phase) to study the plastic deformation and grain 

size dependence of nanocrystalline metals.  Kim developed a micromechanical (cubic 

unit cell) model of a nanostructured material [22] consisting of a crystallite, boundary 

phase and triple line junctions. The diffusional (Coble creep and Nabarro-Herring creep) 

deformation mechanisms were taken into account in the model, as well as the non-

crystallographic dislocation glide (only for the grain interior).  The grain boundary 

deformation, controlled by diffusional mechanisms is described as viscous Newtonian 

behaviour. Viscoplastic constitutive laws, including the dislocation density evolution 

and diffusion creep (boundary diffusion and lattice diffusion mechanisms) were used for 

the phases. Inverse Hall-Petch behaviour at low strain rates, when both phases 

deformation is controlled by diffusion mechanisms, was observed. A composite model 

with cubic unit cells with four sides and 2 horizontal layers of GB and the cube of grain 

inside was developed by Zhou et al. [26]. The deformation behaviour of grain interior 

was described by rate independent plasticity with isotropic hardening law. The 

deformation of grain boundaries was described by Drucker constitutive equation. 

Another version of the composite model is based on the presentation of the “grain 

boundary phase” as sharp grain boundary surrounded by “grain boundary affected zone” 

(GBAZ) with varied properties (instead of presenting it as isotropic and homogeneous 

composite matrix). This concept was proposed by Schwaiger et al. [27], who  used a 

model with two-dimensional grains of hexagonal shape separated by the “grain-

boundary affected zone (GBAZ)” (considered as softer “region adjoining the grain 

boundaries in NC (nanocrystalline) metals where the crystalline lattice is elastically 

strained despite the ostensible absence of any point defects”). Assuming GBAZ 

thickness to be 7–10 lattice parameters, and linear hardening constitutive behaviour for 

the grain interior and the GBAZ, Schwaiger and colleagues simulated the strain-rate 

sensitivity of nanocrystalline nickel.  
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On the basis of Schwaiger et al. [27] model, Li and Weng [6] developed a secant-

viscosity composite model, where the phases follow unified viscoplastic constitutive 

law, while the yield stress of grain interior depends on the grain size. The model was 

applied to predict the strain-rate effect and grain-size dependence of a nanocrystalline 

nickel.  

The main achievement of rule-of-mixture models of nanocrystalline materials consists 

in the introduction of physical, dislocation density or diffusion based constitutive law of 

grain boundary phases into the model, and combining it with grain size dependent 

plasticity for grain interior. This allowed to simulate the inverse Hall-Petch effects and 

to determine the critical grain sizes even using very simple, cubic micromechanical 

models.  

 

3. Multi-element composite models and homogenization 

The real structures of nanocrystalline metals are much more complex than the simplistic 

cubic or hexagonal unit cells, described in the section 2. As different from usual coarse 

grained materials, such a complexity has a strongest influence also on the mechanisms 

of deformation and strength of nanocrystalline materials. Such effects as cooperative 

grain boundary sliding, grain boundary sliding as well as the interplay between 

deformation mechanisms of smaller (nanoscale) and ultrafine grain scale grains in the 

same material cannot be taken into account in the framework of simple one-element unit 

cell models. Several groups have been working to incorporate real, or quasi-real 

structural features into micromechanical models of nanocrystalline materials.  

Quasi-real multi-grain structure models. Some groups of researchers used the quasi-

real (e.g., Voronoi tessellation based) representations of structures, with some real 

structure parameters, to represent realistic microstructures of nanometals [28-31] (see an 

example Figure 1c). So, Mercier et al. [32] considered nanocrystalline material as an 

aggregate of spherical grains, with random grain sizes, distributed according to 

lognormal probability distribution.  Using the Taylor–Lin deformation analysis approach 

to include elasticity effects, and dislocation density based constitutive model, the 



  

6 

 

authors analysed the transition from a Hall–Petch regime to the inverse Hall-Petch 

effect.  

Fu et al. [33, 34] and Benson et al. [35] proposed a mantle-core model of 

nanocrystalline materials, in which a monocrystalline core is surrounded by a grain-

boundary region mantle with a high work hardening rate. They calculated plastic flow as 

a function of grain size taking into account the dislocation accumulation rates in grain-

boundary regions and grain interiors. The thickness of the grain boundary zone was 

assumed to be grain size dependent. The model allowed simulating the decrease of the 

Hall–Petch slope in the nanocrystalline domain. 

Using the Voronoi type composite model, Collini and Bonardi [30] demonstrated that 

the strength of nanometals depend on the strain variability, which in turn is controlled 

by the variation of grain sizes. According to [30], contributions of grains of different 

sizes to deformation are different. They also showed that the GBs carry 10%–20% 

higher stresses than GI. 

Liu and Mishnaevsky Jr. [31] simulated gradient nanocrystalline titanium, with random 

graded distribution of grain sizes and graded Voronoi tesselation. They demonstrated 

that more homogeneous structures ensure higher flow stress and also higher damage 

resistance than highly gradient structures.  

The oversimplified cubic or hexagon unit cell models of nanocrystalline materials do 

not take into account the variability of the grain sizes, orientations of grain boundaries, 

and other random structure effects.  The advantage of the quasi-real, multigrain 

composite models of nanometals is the possibility to take into account the different 

deformation mechanisms of grains with different sizes, which have apparently a strong 

effect on the deformation under the conditions of grain size dependent deformation.   

Homogenization, self-consistent and multilevel composite models. A  series of 

homogenization based models of nanocrystalline materials taking into account various 

deformation mechanisms has been developed by Capolungo, Cherkaoui and their 

colleagues [33-40]. In [33], the authors employed the homogenization method to 

evaluate the grain size effect on the deformation of nanocrystalline materials, assuming 

elastic- perfect plastic behaviour of grain boundaryphase and elastic-viscoplastic 

behaviour of grain core phase. In [37-39], Capolungo and colleagues used secant self-
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consistent model of composite, with grains (whose deformation is controlled by 

dislocation glide) and matrix (including both grain boundaries and triple junctions, 

whose deformation is controlled by grain boundary dislocation emission and 

penetration. A two-step hierarchical scale transition technique was applied to model the 

effect of imperfect interfaces in nanocrystalline copper [40], and their effect on the  

elastoviscoplastic behaviour of the material. The response of the material (considered as 

three-phase material) is determined by homogenization (Mori-Tanaka scheme) (at lower 

scale level) and via field translation method and self-consistent procedure of the 

homogenized inclusion embedded in an equivalent material (at the higher scale level). 

This model allows simulating both the grain boundary sliding effect and grain boundary 

dislocation emission. 

The generalized elastoplastic self-consistent model developed by Jiang and Weng [41] 

is based on Christensen and Lo’s  scheme [42]. For grain interior, the rate-independent 

crystal plasticity model was used. The pressure-dependent Drucker law was used for 

grain boundaries. Also, Ramtani et al [43] used the self-consistent scheme by 

Christensen and Lo model [42], and Drucker constitutive law for grain boundaries.  

In order to obtain effective properties of a nanocrystalline material, Voyiadjis and 

Deliktas [44] employed multilevel Mori–Tanaka averaging scheme. The dislocation-

based deformation model was used for grain interior, and dislocation based nonlocal 

gradient plasticity theory for the grain boundary.  

Apparently, the self-consistent and multiscale models allow taking into account the 

complex structures of nanocrystalline materials in a more rigorous way as compared 

with idealized cubic or “windows” –type models. Still, some important effects (like 

variability of grain sizes or irregularities of grain shapes, both critically influencing the 

deformation mechanisms) can be averaged out in these models, or require some 

additional ways of dealing with.  

Summarizing, one can see that unit cells used have been developed from simplest cubic 

unit cells [22, 26] and spheres [32], to hexagons, Voronoi tessellation, 3D models [48]. 

Also, the homogenization methods have been improved, from easiest rule-of-mixture 

[22], to more complex composite models, like Christensen and Lo self-consistent 

http://www.sciencedirect.com.globalproxy.cvt.dk/science/article/pii/S1359645406005799#bib11
http://www.sciencedirect.com.globalproxy.cvt.dk/science/article/pii/S1359645406005799#bib11
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scheme [43], Mori-Tanaka and hierarchical models [33-40] or real structure models 

with experimentally determined lognormal grain size distribution [28, 29].   

Apart from the large volume content of grain boundaries, the effect of triple joints and 

peculiarities of the grain boundary phases, plastic anisotropy of grains and the size 

effects in grains (also, interaction between statistically stored and geometrically 

necessary dislocations) play an important role for the mechanical behaviour of the 

nanocrystalline materials. They can be modelled with the use of crystal plasticity 

approach [49-51], enhanced to include the size effects. 

 

4. Dislocation mechanisms of deformation and polycrystal 

plasticity models  

Constitutive laws of phases and special deformation mechanisms. Apparently, the 

main challenge of all the composite models of nanocrystalline metals is to determine the 

correct constitutive laws for the grains interior (GI) and grain boundary (GB) phases 

(which is in fact not a solid body but rather amorphous or partially amorphous materials, 

with graded properties and structures), reflecting their real properties and deformation 

mechanisms. In these materials, different deformation mechanisms are active (as 

different from coarse grained metals where plastic accommodation is controlled by the 

activity of dislocation sources and conventional dislocation glide). As discussed above, 

these mechanisms include diffusion controlled deformation (for very small grains), 

sliding and rotation of grains, as well as the different conditions of emission, glide and 

absorption of dislocation nucleation or  partial dislocations (sometimes accompanied by 

twinning) [45, 46]. Many of these mechanisms can be active in parallel, interact and 

interplay and transfer from one to another under some conditions. In order to include 

such interactions into computational micromechanical models of deformation, 

corresponding analytical models should be available.  

In the models, listed above, the constitutive behaviour of phases is described by elasto-

plastic or viscoplastic constitutive laws, with hardening, or, at the physical level, by 

dislocation or diffusion based models. Among the constitutive laws used in some 

models, one can list the grain size dependent plasticity (for grain interior/GI) and 



  

9 

 

amorphous glass model (GB) [21], anisotropic elasto-plastic models with different 

orientations (GI) and Voce-hardening law with high work hardening rate. Depending on 

the distance from the closest grain boundary (GB)  [33, 35], isotropic, linear hardening 

behaviour (GI) and isotropic power-law type rate dependent constitutive response (GB) 

[27], dislocation glide model (GI) and diffusional (Coble creep and Nabarro-Herring 

creep) deformation  [22-25], unified viscoplastic constitutive law[6], elastic-viscoplastic 

behaviour and dislocation glide (GI) and elastic perfect plastic behaviour incorporating 

the model of  grain boundary dislocation emission and penetration (GB) [33-40], crystal 

viscoplasticity with Hall Petch grain size dependence (GI) and isotropic viscoplasticity 

and Mohr-Coulomb pressure dependence (GB) [47] . 

 

Size dependent polycrystal plasticity. The misorientation of nanograins and the 

availability of high/low angle grain boundaries have a strong effect on the material 

properties, and can be studied with the use of the crystal plasticity (CP) approach. The 

scale dependent versions of polycrystals plasticity models, which can be generalized to 

the nanomaterials, have been realized by incorporating dislocation-density-based 

constitutive equations [52, 53] and the strain gradient crystal plasticity (SGCP) model in 

the continuum crystal plasticity approach [52-59].  

The model of deformation mechanisms in nanocrystalline metals, describing the 

emission of perfect and partial dislocations, deformation twins from grain boundaries, 

and grain boundary sliding was developed by Asaro, Krysl, and Kad [62] (thus, called 

AKK model). Using this approach, Zhu, Asaro and colleagues [60, 61] developed a 

polycrystalline constitutive model of nanocrystalline materials (electrodeposited Ni), 

and studied the effect of the grain size distribution (taken as lognormal probability 

distribution) on the mechanical behaviour of nanonickel. The model takes into account 

the simultaneous contributions of deformation mechanisms including grain boundary 

emission of dislocations and/or stacking faults, as well as for grain boundary sliding.  

Wei and Gao [63] extended this model by Zhu et al. [60] by including the deformation 

by grain boundary diffusion. Using the developed elastic-viscoplastic model, which 

incorporates all the main deformation mechanisms, grain-boundary sliding, grain-

boundary diffusion, grain-interior diffusion and grain-interior plasticity, they studied the 
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deformation of nCu and showed that the relative contribution of different mechanisms 

depends on both grain size and the applied strain rate.  

Using crystal plasticity approach either in both phases or only in grain interior (with 

GBs described by perfectly plastic isotropic Voce equation) Fu et al. [33] studied the 

grain size effects and deformation mechanisms. The grain boundary was assigned lower 

yield stress and higher work hardening rate than grains. Further, the authors modelled 

the material behaviour with a hardening model related to the dislocation density 

evolution. The authors observed accelerated hardening in the grain-boundary regions, as 

well as shear localization in their simulations. 

Assuming that the plastic deformation is controlled by dislocations which nucleate at a 

GB, travel through the grain, and are absorbed by the next GB, Warner and Molinari 

[65] developed a semi-discrete and non-local crystal plasticity model. Nor dislocation–

dislocation interactions neither partial dislocations are included.   They observed larger 

stress heterogeneities and intragranular plasticity than could be observed with traditional 

crystal plasticity models.  

A micromechanical model developed by Lebensohn et al. [47] is based on fast Fourier 

transforms. Unit cells with self-similar polycrystals of different grain sizes were 

designed, using the crystal viscoplasticity with Hall–Petch grain size dependence for the 

grain interior and isotropic viscoplasticity for the grain boundaries. The authors studied 

the effect of grain size, strain rate and pressure on the local and overall behaviour of nc-

materials under quasi-static and shock loading conditions.  

Gürses and El Sayed [66,67] developed a variational two-phase constitutive model, with 

rate-independent anisotropic crystal plasticity model for grain interior (taking into 

account the transition from the partial to full dislocation based plasticity) and rate-

dependent isotropic porous plasticity model for GBAZ (including the availability of 

voids and void growth in GBAZ). Using the Taylor-type homogenization, the authors 

modelled the observed grain size dependent rate-sensitivity of the behaviour of 

nanocrystalline FCC metals (nCu, nNi) under finite deformations.  

A crystal plasticity model by Aoyagi and colleagues [68] incorporates the effects of 

grain boundaries and dislocation sources (included through hardening law of crystal 
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plasticity). The authors investigated the grain size effect on the yield stress of in UFG 

SPD produced materials. 

The dislocation–density grain boundary interaction (DDGBI) model between GBs and 

adjacent grain interiors, developed by Shi and Zikry [69], includes dislocation–density 

absorption, emission and transmission and allows modelling the grain size effect. The 

constitutive formulation for the finite deformation of rate dependent multiple-slip crystal 

plasticity is used. The GB misorientation dependent dislocation–density relation is taken 

into account. The yield stress as a function of the grain size was obtained.  

Li et al. [70] implemented quantized crystal plasticity (QCP) into FE model of 1000 

grain polycrystals. Based on the results of MD simulations, the authors studied the 

plastic deformation and strain evolution and localization in nanometals, and observed  

the grain size dependent jumps in the plastic strains.  

Segurado and LLorca [71] developed the 3D crystal plasticity (CP) model of 

nanocrystalline titanium taking into account the real grain orientation distribution. They 

used two different representations of the microstructure were used: a voxel-based model 

from cubic finite elements (each of them representing a Ti grain), and a model where 

each crystal is represented with many elements. In either RVE of the polycrystal, the 

orientation of each grain was determined from the input orientation distribution function 

(ODF) which describes the initial texture using a Monte Carlo method.  

Size dependent polycrystal plasticity models, incorporating real deformation 

mechanisms of nanocrystalline metals (partials, diffusion deformation, other effects and 

interplay between them) make it possible to reflect both polycrystalline structure and 

nanocrystalline effects in the materials deformation.  

 

5. Grain boundary sliding 

The grain boundary sliding and grain rotation are important mechanisms of deformation 

of nanocrystalline and ultrafine grained materials. It is quite often assumed that the grain 

boundary sliding is co-responsible for the superductility of nanocrystalline materials 

[72]. The GBS in nanocrystalline materials can be accommodated by dislocation (e.g., 

emission of lattice dislocations from triple junctions into GI, glide and absorption at 
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GBs [74]), or diffusion mechanisms (e.g., GB diffusion in the vicinity of triple 

junctions) [75-77], but also by rotational deformation [78]. The grain boundary sliding 

which accommodates the local strains (so called Rachinger grain boundary sliding) does 

not increase the number of grains along the length of the specimen, while the GBS 

accommodating the diffusion (so called Lifshitz grain boundary sliding) leads to the 

increase of grain number. 

Plastic deformation with crystal lattice rotation inside grains is more active at later 

stages of GBS, when many GBS processes occur in many grain boundaries. The 

cooperative grain boundary sliding (CGBS) occurs as sliding and rotation of groups of 

grains [79], and is one of the mechanisms for superplasticity in nanocrystalline 

materials. 

Ashby and Verrall described and modeled a mechanism of deformation of 

polycrystalline materials when “grains switch their neighbors and do not elongate 

significantly” [73]. They presented a “four grain model” of grains switching neighbors 

and derived the constitutive law for diffusion accommodated flow. 

Raj and Ashby [72] considered the problem of sliding of nonplanar periodically waved 

or stepped grain boundary analytically, and obtained interrelationships between the 

sliding rate, rate of diffusion creep and the grain boundary shapes. Their equations have 

been used in a number of following works.  Figure 2 shows a schema of GBS path 

accommodated by diffusion flow, as assumed in [33, 72]. 

Representing grains as rhombic dodecahedrons and considering rate controlled flow of 

grain boundaries, Hahn and Padmanabhan [80, 81] derived an equation for the threshold 

stress needed for mesoscopic grain boundary sliding and studied the inverse Hall-Petch 

effect in nanomaterials.  

A number of computational models of the nanomaterial deformation are based on the 

analytical models from [72, 73, 80].  

In their elastic–viscoplastic model of deformation, which takes into account the 

competition among various deformation mechanisms, Wei and Gao [63] considered 

GBS as consisting of thermally activated sliding and rate-independent athermal 

components (relative sliding of two grain boundaries when the resolved shear stress 
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overcomes a threshold resistance), and employed the Conrad-Narayan model [64] to 

determine the macroscopic shearing rate of GBS. They determined fractions of plastic 

strain due to different mechanisms. Also, Zhu et al.  [60] modelled grain boundary 

sliding using the phenomenological kinetic relations by Conrad and Narayan and 

analyzed the transition between dislocations based deformation and GBS. They 

concluded that GBS starts to contribute to the deformation at the grain size below 15 

nm.  

Shi and Zikry [69] incorporated the Raj–Ashby model of GBS in their dislocation–

density grain boundary interaction (DDGBI) based model, and simulated the GBS 

displacement for random low angle aggregates with various grain sizes. They observed 

that GBS increases when grain size decreases, and that GBS can change the direction of 

crack growth or even cause intergranular crack. 

Yang and Wang [82] developed of a constitutive model of cooperative GBS (in 9-grain 

cluster) based on Ashby and Verall approach [73]. They considered nanograins in 9-

grain cluster sliding pass one another, taking into account two mechanisms (rotation of 

grain pairs and varying inter-grain distance) considered as cooperative deformation 

mechanisms. They observed linear relation between applied stress and creep rate in 

their simulations. 

Ovid'ko and Sheinerman [78] modelled the grain boundary sliding accommodated by 

the rotational deformation of nanocrystalline nickel, which is in turn realized visa 

diffusion controlled climb of GB dislocations as well as GBS, using the dislocation 

dynamics approach incorporates dislocation climb over GB. They observed strong strain 

hardening at the initial stages of deformation, but constant flaw stress at later stages of 

deformation.  

With view on the possibility of additional diffusion routes in triple junctions 

contributing to the accommodation of GB sliding, Rabkin and colleagues [2] derived 

equations for the strain rate of nanocrystalline material due to GB sliding which take 

into account the triple junction diffusion controlled sliding. They have shown that 

dependence of deformation rate on the grain size is stronger in the case of triple junction 

diffusion controlled sliding than in the case when GB sliding is controlled by the GB 

diffusion. They also investigated the GB dislocation nucleation (e.g., partial dislocation) 
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accompanied by atomic shuffles and stress-assisted free volume migration at the GB 

using the developed "toy model" of the GB sliding.  

In several works, variational and kinematic approaches and cohesive/interface finite 

elements were employed to analyse the grain boundary sliding in nanocrystalline 

materials. So, Voyiadjis and Deliktas [44] characterized the grain boundary sliding and 

separation by energetic and dissipative state variables (taking into account internal 

contact surfaces) in their multilevel Mori-Tanaka/strain gradient plasticity model.  

A 3D continuum model of nanometals with tetrakaidecahedra-shaped grains and grain 

boundaries presented as discontinuity layers of finite thickness  was developed by 

Jerusalem et al. [48]. Grain-boundary sliding and accommodation are described with the 

use of variational constitutive laws, and simulated with the use of interface elements. 

The model allowed simulating the reverse Hall–Petch size relationship in 

nanocrystalline copper. In [83], Jerusalem and colleagues developed a 

phenomenological model of grain boundary sliding including Mohr-Coulomb friction 

reflecting the decrease of sliding resistance at higher applied stress. 

Warner and colleagues [84] studied the grain boundary sliding using FE model based on 

atomistic analysis (quasicontinuum method). The grain interior was modelled using the 

classical rate dependent CP model, while the GB cohesive law parameters were obtained 

from atomistic simulations.  The Voronoi tessellation based model with lognormal 

distribution of grain sizes was used. The authors investigated the interaction between 

GB sliding and intragranular plasticity, 

In their homogenization model, Barai and Weng [85] incorporated the grain-boundary 

sliding at the interface between the grain and GB zone as the Newtonian flow. Studying 

the effect of interfacial sliding viscosity on the material strength, they observed a 

transition from the low to higher (saturation) strength with increasing the sliding 

viscosity. 

Grain boundary sliding represents a large deformation process, interacting with and 

being influenced by atomistic processes, like diffusion and dislocation evolution. Thus, 

the directions of modelling GBS range from the variational continuum and 

phenomenological models, on the one side, to the atomistic based physical models, on 
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the other side. The promising directions of modelling lie in combining continuum and 

physical models of the process.  

 

6. Non-equilibrium grain boundaries and GB defects in 

nanocrystalline materials 

The potential of grain boundaries as a source of the material improvement has been 

demonstrated in a number of works, e.g. on “grain boundary engineering” [86, 87], on 

dispersion strengthening of nanomaterials [88] and also discussed in previous sections. 

The viscosity, deformation behavior, dislocation density, deformation mechanisms, 

shapes and structures of grain boundaries determine the strength and deformation of 

nanocrystalline materials.  

Non-equilibrium grain boundaries. One of the interesting solutions of the materials 

property enhancement lies in the concept of non-equilibrium grain boundaries (NEGB) 

[87]. Recently, several works appeared which show that the mechanical properties of 

nanomaterials can be potentially improved by using non-equilibrium state of the grain 

boundaries [87, 90-91].   

Typical features of non-equilibrium grain boundaries are the higher energies in GBs, 

large amount of GB dislocations, higher diffusion coefficient, larger free volume, 

concentration of alloying elements and formation of precipitates near boundaries [37, 

92-96]. However, there are still different views and approaches both on how to 

characterize the degree of non-equilibrium in grain boundaries and also on the effect of 

the non-equilibrium state on the mechanical properties. Apart from indirect 

experiments, atomistic simulations have been used to clarify the role of “non-

equilibrium” state for the materials properties. So, Tucker and McDowell [93] used the 

excess GB free volume as a measure of the degree of ‘non-equilibrium’ state of grain 

boundaries. On the basis of atomistic simulations, they have shown that for NEGBs 

(non-equilibrium grain boundaries), the peak shear stress is lower than that of the 

corresponding EGBs (equilibrium grain boundaries). Under uniaxial tension, the peak 

stress (tensile strength) is lowered as a function of increasing NE state. Under shear, 

resistances to GB sliding and migration decrease with increasing the excess interfacial 

free volume. Hasnaoui et al. [94] concluded that annealed samples (with ordered, 
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equilibrium GBs) impede GBS and show reduced plastic strain and increased strength. 

In disordered GB, the increase in plastic strain occurs at earlier stages of deformation, 

but later the strain rates converge for EQ and NE samples (roughly, 40% increase in 

strain). 

Due to the relative novelty of the concept, and limited information of the acting physical 

mechanisms, only a few micromechanical studies on non-equilibrium grain boundaries 

have been carried out. So, Liu et al. [31, 97] studied the influence of NEGB on materials 

deformation, including varied diffusion coefficient and high initial dislocation density in 

GB with their micromechanical models.  They used a hexagonal and Voronoi-based 

composite model, and the ABAQUS subroutine VUMAT based on the dislocation 

density evolution model of GB deformation. It was demonstrated that the non-

equilibrium of GBs leads to the increase in the yield stress with decreasing the diffusion 

coefficient and increasing the initial dislocation density (DD). 

Péron-Lührs et al. [98] developed a multiscale model to analyze the effect of the grain 

boundary character distribution (i.e., high angle and low angle boundaries distribution) 

on the mechanical behavior. The mechanical responses of the grain boundary (including 

sliding and decohesion) and grain were obtained using quasicontinuum method (QC), 

and introduced into the continuum FE model. The two scale model takes into account 

the grain GB network crystallographic orientation. 

While the formation of nanocrystalline materials with disordered, non-equilibrium grain 

boundaries has a potential for the improvement of material properties, further 

investigations view on the non-equilibrium effects and their mechanisms are required, to 

provide input data for the reliable modelling of NEGB effects.  

 

Secondary phases, foreign inclusions and precipitates in grain boundaries. The 

effect of non-equilibrium grain boundaries is also related to the concentration of 

alloying elements and formation of precipitates and segregations near grain boundaries, 

which might increase the critical stresses necessary for nucleation of new dislocations at 

the boundaries and/or for their motion, and have also a potential for the property 

enhancement [88, 89].  
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In their classical paper [72], Raj and Ashby discussed the effect of GB precipitations on 

the deformation and GBS, and noticed that the precipitates can restrict the grain 

boundary sliding, by influencing the diffusional creep and the ability of GBs to 

absorb/emit vacancies.  

Using the approach developed in [29] (multigrain Voronoi based composite model), 

Dobosz et al. [99] studied numerically the effect of second phase particles at grain 

boundaries.  They concluded that the particles located at GBS may lead to the material 

strengthening, if the material is deformed by GBS mechanism; otherwise, their effect is 

negligible. They lead also to the higher work hardening rate.  

Liu et al. [97] and Liu and Mishnaevsky Jr. [31] studied the influence of foreign 

inclusions (which might represent physically dispersoids or precipitates caused by 

foreign atoms) on the mechanical behavior and damage initiation in ultrafine grained 

(UFG) titanium numerically, using their Voronoi-based model. They compared 

precipitates located randomly in the grain boundary (GB) layer, on the “interface” 

between grain interior (GI) and GB and inside grains. It was observed that precipitation 

has quite a significant effect on the mechanical behavior of UFG Ti. Precipitates/foreign 

atoms (e.g., oxygen and carbon precipitates) in the GB lead to the increased yield stress, 

with roughly 2 times stronger effect of  precipitations on GB/GI border than randomly 

arranged in GB. Precipitates located on the GB/GI interface lead to a higher mechanical 

strength than precipitates located randomly inside the GBs. 

Precipitates and dispersions located in grain boundaries but also in grains of 

nanocrystalline materials represent a promising way to enhance and control the strength 

and mechanical properties of the materials. The computational studies of the dispersion 

and precipitate effects listed above are based on the assumption about dislocation 

mechanisms of precipitate-metal interaction. In order to explore the potential of 

precipitates for nanomaterials with diffusion based or other deformation mechanisms, 

additional studies of precipitate-diffusion interaction might be needed.  

 

Defect role and defect evolution in grain boundary phases. The structure of grain 

boundaries evolves during the deformation, among others, by formation of voids and 

microcracks. Given the lack of clarity about mechanisms of deformation of 
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nanomaterials and complex interplay of many interacting mechanisms, the modelling of 

damage and degradation of nanomaterials remains still a challenge.  

Still, there are a number of investigations of damage mechanisms in nanocrystalline 

materials [5].  Meyers et al. [5] noticed that the damage initiates “at discrete sites, that 

are, most often, triple junctions and grain boundaries”.  Analyzing the void initiation in 

nanonickel, Kumar et al. [100, 101] listed the following mechanisms: existing voids at 

grain boundaries and triple points, voids created by dislocation emission from grain 

boundaries, voids created by grain-boundary sliding which leaves wedges at triple 

junction, cavities created by the action of grain-boundary sliding on the ledges. Cizek et 

al. [102] observed microvoids (formed as clusters of vacancies on the grain boundaries 

created during SPD) in different UFG metals. The fracture surfaces in UFG and 

nanostructured metals are characterized by dimples which can be however larger than 

the grain sizes [103]. Chuvil’deev [104] wrote that the damage in nanomaterials is due 

to the disclination type defect formation at triple grain junctions (these defects can be 

presented as biaxial disclination dipoles). 

In order to simulate the damage initiation and evolution in nanocrystalline and UFG 

materials, a number of models based on cohesive interface approach [105-107], void 

growth analysis [109] and various damage criteria [27, 31] have been developed. 

Wei and Anand [105] developed a composite model with single-crystal plasticity 

constitutive model for the grain interior, and cohesive interface model for grain 

boundary (accounting for elastic deformation and irreversible sliding and separation). 

Further, using the new strain-rate-dependent continuum-plasticity theory for amorphous 

metals, Wei and colleagues [106] developed a modified version of the model of the 

deformation and failure of NC FCC metals, describing the grain boundary behavior with 

this theory.  They used a rate-dependent amorphous plasticity model incorporating 

cavitation and damage for the grain boundaries phase, and CP approach for the grain 

interior in their FE model of nNi. In the grain interiors the slip system resistances were 

assumed to be inversely proportional to the grain size. They observed the transition of 

deformation mechanism from intragranular shearing to GB shears when the grain size 

approaches 10 nm. They also observed the cavitation at triple-junctions as a result of 

grain-boundary shearing in the simulations.  
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Chen and Wei [107] employed the mixed-mode cohesive interface model to simulate 

the grain boundary damage evolutions.  The strain gradient plasticity theory is used for 

grain interior. The authors simulated the overall mechanical response and damage 

evolution in nCu and nNi, and confirmed the decisive role of GB strength and damage 

behavior for overall material response.  

To analyse the void growth and coalescence in the grain boundaries, Siddiq and Sayed 

[109] proposed a variational multiscale constitutive model of nanocrystalline material, 

represented as grain/GBAZ composite. The model includes the anisotropic crystal 

plasticity approach (taking into account partial dislocations) for GI, and isotropic rate-

independent porous plasticity model with deviatoric and volumetric plasticity as well as 

void coalescence for GBAZ.  

In their GBAZ composite model, Schwaiger et al. [27], postulated a strain-based 

material damage criterion and employed it to model onset and progression of failure in 

nanonickel. Liu and Mishnaevsky Jr. [31] employed Voronoi based composite models 

and dislocation density based constitutive laws in grain interior and grain boundary 

phases, and inverse modelling, to determine the most appropriate damage initiation 

criteria in grain boundaries. Comparing several damage criteria for ductile materials 

(critical plastic strain, Rice-Tracey void formation, etc. [110, 111]), the demonstrated 

the dislocation based creep damage model developed by Li and colleagues [112, 113] 

allows describing the damage initiation in nanocrystalline titanium well. Figure 3 shows 

the damage distribution in the multigrain model of ultrafine grained titanium with 

precipitates in grains and grain boundaries, obtained using this model [31].  

 

7. Conclusions 

In this paper, a short overview of micromechanical models of strength and deformation 

of nanocrystalline and ultrafine grained metallic materials is given. The methods based 

on composite/phase mixture models, quasi-real Voronoi based, self-consistent and 

multiscale composite models of nanomaterials, polycrystals plasticity models, as well as 

micromechanical models of grain boundary sliding, non-equilibrium grain boundaries 

and damage initiation in nanomaterials are reviewed. 
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In the framework of micromechanics, peculiarities of nanomaterials structures and 

deformation (large content of amorphous or semi-amorphous grain boundary phase, 

partial dislocation GB emission/glide/GB absorption based deformation mechanism, 

diffusion deformation, no dislocations in grain interior, and size dependent interplay of 

all these mechanisms, combined crystal plasticity/dislocation/grain boundaries effects) 

can be incorporated into continuum mechanical approach. Using the models, parameter 

studies can be carried out, to clarify various effects controlling the strength of the 

materials. 

The main challenge of the computational modeling of nanocrystalline and ultrafine 

grained materials is the limited knowledge about the real mechanisms of deformation 

and strength for given materials and loading conditions. The information about the 

deformation mechanisms comes in most cases from indirect experiments, inverse 

analysis (formulation of model, fitting its parameters, comparing to experiments), 

atomistic/MD simulations, and seldom from direct experiments.  

Micromechanical models make it possible to explore the potential of the properties 

enhancement of nanocrystalline and UFG materials by varying their structures, e.g. in 

the framework of numerical experiments. In micromechanical studies, it was shown that 

dispersion strengthening, creating non-equilibrium grain boundaries, varying the grain 

size distributions and gradients, controlling the deformation mechanisms can be 

exploited to improve the properties of nanocrystalline materials.  
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 Voronoi tessellation multigrain unit cell 

 
(c) 

 

  

 

Figure  1. Real microstructure and unit cell models: (a) Microstructure of 

heavily deformed commercial purity aluminum [9] revealed using 

gallium enhanced microscopy [10] (courtesy of O.V.Mishin). (b) 

Hexagonal unit cell idealization, with finite thickness grain 

boundaries, (c) Voronoi tessellation unit cell, with finite thicjness 

grain boundaries [26, 88] 

 
  

Figure  2. A model of GBS path according to Fu et al. [14] 
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Figure  3. Examples of unit cell models of nanocrystalline materials: Cubic unit cell 

model by Kim [17](a) and self-consistent polycrystal model by Jiang and 

Weng [33] presented as superposition of two linear problems. Reprinted with 

kind permission from Elsevier. 
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Figure  4. Precipitates in grain interior (A) and  GB (B) of UFG titanium: Computational 

study of the precipitate effect on damage distribution. Reprinted from [26] 

with kind permission from Elsevier.  

 


