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FMO is a one of the different approaches to structural optimization. 

In FMO, 

• the design variable is the full material tensor, 

• can vary freely at  each point of the design domain, 

• necessary condition for physical attainability is the only requirement.  

 

Free Material Optimization (FMO) 
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Optimal solution   
 

• Solution to FMO yields optimal distribution of the material as well as optimal 

local material properties. 

• The obtained design can be considered as an ultimately best structure. 

• Conceptual, since it is difficult (or actually impossible) to manufacture a 

structure such that its property varies at each point of the design. 

• FMO can be used to generate benchmarks and to propose novel ideas for new 

design situations. 
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The FMO problem formulation 
Mechanical assumptions 
•  static loads, 
•  linear elasticity, 
•  anisotropic material. 
The basic minimum compliance problem(Discrete) 
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2D, 3D structures 
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Additional structural requirements can also be included through constraints 

• on local stresses  

• on local strains 

• on displacement 
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Adding such constraints destroys 
suitable problem properties, e.g. 
convexity. 
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Goals 
• Propose FMO model for laminate structures. 

• Extend existing robust and efficient primal dual interior point method for 

nonlinear programming to FMO problems. ( second order method) 
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FMO for laminate structures 
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Optimization method 
• All FMO problems are SemiDefinite Programs (SDP), an optimization 

problem with many matrix inequalities. 

• On the extension of primal-dual interior point methods for nonlinear 

programming to FMO problems (SDP). 

• FMO problems can be represented by 
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We solve problem (BP) for a sequence of barrier parameter µk→0. 
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Without stress constraints 
• 28800 design variables,  
• ~9600 nonlinear constraints, 
• 4800 matrix inequalities 
 

 
 
 
 
 

Numerical results 

 

 

Design domain, 
bc, forces 
 
 
 

 
Optimal density  
distribution 
 
 
 

 
Optimal strain norms 
 
 
 

 
Optimal stress norms 
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• 43 iterations 
• Higher stress concentration   
  around the re-entrant corner 
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With stress constraints (max stress is 

decreased by 30%) 
• 28800 design variables  
• ~9600 nonlinear constraints 
• 4800 matrix inequalities 
• 4800 additional nonlinear constraints 

(stress constraints) 
 

 
 
 
 
 

Numerical results … 

 
Optimal strain norms 
 
 
 

 
Optimal stress norms 
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• 72 iterations 
• Higher stress concentrations   
  are distributed to negibhour  
  regions 
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Optimal density  
distribution 
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Numerical results … 

Design domain, bc and forces 

4 layers 
Optimal density distribution, Layer=1 Optimal density distribution, Layer=2

Optimal density distribution, Layer=3 Optimal density distribution, Layer=4

• No distinction between layers. 

• Similar to 2D results. 

• No out plane deformation. 

• No material for D,  

       min(trace( C))/max(trace(D))=2.2413 
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Optimal density distribution 
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• 47 iterations 

• Symmetric laminate 

• High material distribution on top and bottom layers 
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Numerical results … 

Optimal density distribution, Layer=1 Optimal density distribution, Layer=2

Optimal density distribution, Layer=3 Optimal density distribution, Layer=4

Design domain, bc and forces 

4 layers 
 
• 129600 design variables  
• 28800 matrix inequalities 
 
 

11 

 
Optimal density distribution 
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In both cases, we have 
• single layer, 
• 90000 design variables, 
• 20000 matrix inequalities. 
 
 

Numerical results … 
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Design domain, bc and forces Optimal density 
distribution  

47 iterations 

44 iterations 
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Conclusion 
• The extended primal dual interior point method solves FMO problems in a 

reasonable number of iterations.   

• Number of iterations is almost independent to problem size. 

• FMO has been extended to optimal design of laminate structures. 
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