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Free Material Optimization (FMO) 
FMO is a one of the different approaches to structural optimization. 

In FMO, 

• the design variable is the full material tensor, 

• can vary freely at  each point of the design domain, 

• necessary condition for physical attainability is the only requirement.  
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Optimal solution 
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•  Solution to FMO yields optimal distribution of the material as well as 

optimal local material properties. 

•  The obtained design can be considered as an ultimately best structure. 

•  Conceptual, since it is difficult (or actually impossible) to manufacture a 

structure such that its property varies at each point of the design. 

•  FMO can be used to generate benchmarks and to propose novel ideas for 

new design situations. 
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The FMO problem formulation (solids) 
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Mechanical assumptions 
•  static loads, 
•  linear elasticity, 
•  anisotropic material. 

The basic minimum compliance problem(Discrete) 

2D, 3D structures 
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Constraints on local stresses  

•  
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• Highly nonlinear involving matrix variables. 

• Adding such constraints destroys suitable problem properties, e.g. convexity. 
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Goals 
 

• Propose FMO model for laminated plates and shells. (Such models are 

not available today) 

• Develop special purpose optimization method that can efficiently solve 

FMO problems. (FMO problems lead to large-scale nonlinear SDP 

problems) 
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FMO for laminated plates and shells 
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Based on FSDT 

•  (C,D ), fixed within a layer in the thickness direction. 

•  Slightly violates the idea of FMO. 
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FMO for laminated plates and shells contd… 
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Minimum compliance problem  
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Stress constraints 
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• Linear stress variation across the thickness within a layer. 

• Two stress evaluations in each layer (at the top and lower surfaces) over 

each finite element to capture stress extremities. 
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Optimization method 
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• Primal-dual interior point method (second-order method). 

• Combines standard known interior point methods for nonlinear 

programmings & linear SDPs. 
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Optimization method contd… 
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  Introducing slack variables and barrier paramter µ, the associated barrier 
problem is  

We solve problem (BP) for a sequence of barrier parameter µk→0. 
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FMO problems can be represented by 
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Numerical results 
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Design domain, bc and forces 

4 layers 

• No distinction between layers. 

• Similar to 2D results. 

• No deformation out of the midsurface. 

• No material for D. 

• # 52 iterations. 

 

 

 
Optimal density distribution 
 
 
 

• # FEs 20,000. 

• # 160,000 matrix inequalities. 

• # 720,000 design variables. 
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Numerical results … 
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Design domain, bc and forces 

8 layers 

• Symmetric laminate. 

• High material distribution on top and 

bottom layers, implies sandwich 

structures. ( similar results in DMO) 

• # 25 iterations. 

 

 
Optimal density distribution 
 
 

• 4 load-case. 

• # FEs 10,000. 

• # 160,000 matrix inequalities. 

• # 720,000 design variables. 
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Numerical results contd… 
• Curved surfaces 
• single layer 
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Design domain, bc and 
 forces 

 
Optimal density distribution 
 
 
 

• # FEs 80,000. 

• # 160,000 matrix inequalities. 

• # 720,000 design variables. 

• # FEs 40,000. 

• # 80,000 matrix inequalities. 

• # 360,000 design variables. 

• # 54 iterations. 

• # 51 iterations. 
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Numerical results contd… 
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Design domain, bc and forces 
 

Optimal density 
distribution 

 
 
 

 
Optimal stress 

norms 
 
 
  

Without stress 
constraints 

 
 
 
 

With stress 
constraints 

 
 
 

• # FEs 7,500. 

• # 7,500 matrix inequalities. 

• # 45,000 design variables. 

• # 7,500 stress constraints. 

Stress-constrained FMO problems 
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Numerical results contd… 
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Optimal principal 

stresses 
 
 
 

 
Without stress 

constraints 
 
 
 

 
With stress 
constraints 

 
 
 

Without stress constraints With stress constraints , 60% 
# iterations  30 85 
compliance 1.8951 1.9281 
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Numerical results contd… 
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Design domain, bc and forces 

8 layers  
Optimal density distribution of the top 4 layers 
 
 

 
Without stress 

constraints 
 
 
  

With stress 
constraints 

 
 
 

• # FEs 2,500. 

• # 40,000 matrix inequalities. 

• # 180,000 design variables. 

• # 40,000 stress constraints. 

 
Optimal density distribution – no such a significant 

difference 
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Numerical results contd… 
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Without stress constraints  With stress constraints, 30% 
# iterations  47 115 
compliance 5.4771 5.5624 

 
Without stress constraints 
 
 
 

 
Optimal stress norms at the upper and lower surfaces of the first top four layers 

 
 
 

 
With stress constraints 
 
 
 

Lower 

Upper 
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Conclusions 
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• The developed optimization method solves FMO problems in a reasonable 

number of iterations.   

• Number of iterations is almost independent to problem size. 

• More number of iterations is required for solving the stress constrained 

problems (but expected). 

• FMO has been extended to optimal design of laminated structures. 

• The change of material properties plays main role in reducing high 

stresses in FMO. 

• Reduction of high stresses is achieved at a small increase in compliance. 
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Thank you for your attention ! 
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