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An efficient and accurate method for computation of energy releaserates in beam
structures with longitudinal cracks

J. P. Blasques, R. D. Bitsche∗

Department of Wind Energy, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark

Abstract

This paper proposes a novel, efficient, and accurate framework for fracture analysis of beamstructures with longitu-
dinal cracks. The three-dimensional local stress field is determined using a high-fidelity beam model incorporating
a finite element based cross section analysis tool. The Virtual Crack Closure Technique is used for computation of
strain energy release rates. The devised framework was employed for analysis of cracks in beams with different cross
section geometries. The results show that the accuracy of the proposed method is comparable to that of conventional
three-dimensional solid finite element models while using only a fraction of the computation time.

Keywords: Beam finite element, Beam cross section analysis, Energy release rate, Virtual crack closure technique,
Longitudinal cracks in beams

Nomenclature

a Element length next to the crack tip.
a1, a2 Element length behind and in front of crack tip, respectively.
c Element width at crack front.
Eα Elastic modulus of materialα.
f̂, f̂e Global and element load vector for beam finite element model.
f, fe Global and element load vector for 3D solid finite element model.
f, fe Global and element load vector for cross section finite element model.
Fs Cross section compliance matrix.
GI ,II ,III Mode-I, II, and III energy release rates.
H Height of the square cross section.
KIII Mode-III stress intensity factor.
K̂, K̂e Global and element stiffness matrix for beam finite element model.
K,Ke Global and element stiffness matrix for 3D solid finite element model.
K,Ke Global and element stiffness matrix for cross section finite element model.
Ks Cross section stiffness matrix.
L0 Reference evaluation distance for the mode mixity.
Le Length of beam finite elemente.
Mx,y,z Cross section moments around thex, y andzaxis.
nb Number of beam elements in the beam finite element assembly.
ns Number of beam elements in the solid finite element assembly.
r̂e Element internal reaction forces at beam finite elemente.
re Element internal reaction forces at 3D solid finite elemente.
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re Element internal reaction forces at cross section finite elemente.
r Distance from the crack tip.
r1,2,3
i Nodal force at the crack tip in the x1, x2 and x3 direction at nodei.

s Total displacement of a point in the beam cross section.
Tx,y,z Cross section forces in thex, y andzdirections of the cross section coordinate system.
u Displacement of a point in the beam cross section due to warping deformation.
û, ûe Global and element displacement vector for beam finite element model.
u, ue Global and element displacement vector for 3D solid finite element model.
u1,2,3

i Nodal displacement at nodei in the x1, x2 and x3 directions of the crack coordinate system.
∆u1,2,3

i, j Relative nodal displacements between nodei and j in the x1, x2 and x3 directions of the crack coordinate system.
v Displacement of a point in the beam cross section due to rigidbody motion.
w,we Global and element displacement vector for cross section finite element model.
W Width of the square cross section.
x, y, z Axes of the cross section coordinate system.
X, Y, Z Axes of the global coordinate system.
x1, x2, x3 Axes of the crack coordinate system.
β Second Dundurs parameter.
η Bi-material constant.
θ Cross section forces and moments.
κx,y,z Cross section curvatures around thex, y andzdirections of the cross section coordinate system.
κα Generalized plane stress material parameter of materialα.
µα Shear modulus of materialα.
να Poisson’s ratio of materialα.
τx,y,z Cross section shear strains in the xz (τx) and yz (τy) planes, and normal strain in the z direction

(τz) according to the cross section coordinate system.
ψ Mode mixity angle.
ψ Cross section strains and curvatures.
(̂) Quantities associated with the beam finite element model.
() Quantities associated with the 3D solid finite element model.
BECAS BEam Cross section Analysis Software.
ERR Energy Release Rate.
FE Finite Element.
VCCT Virtual Crack Closure Technique.

1. Introduction

This work is motivated by the challenges associated with theanalysis of cracks in wind turbine rotor blades. The
structural analysis of blades is typically performed in a finite element context. For example, Overgaard and Lund [16],
Overgaard et al. [17], and Overgaard et al. [18] presented a solid and shell finite element model for simulating the
collapse of a wind turbine blade under static loading. The fracture analysis is based on the cohesive element approach
(Barenblatt [2]). More recently, Eder and Bitsche [9] presented a similar modeling approach using the Virtual Crack
Closure Technique (VCCT) for the analysis of cracks in trailing edge adhesive joints of a wind turbine rotor blade.
The present paper introduces a novel modeling approach combining a finite element based cross section analysis tool
and VCCT.

The VCCT is a well established method for the computation of the energy release rate (ERR) based on results from
finite element analysis (Rybicki and Kanninen [20], Xie and Waas [22], and Krueger [12] and references therein). The
VCCT is computationally efficient and provides the modal contributions to the total ERR,where the latter is crucial for
mixed mode fracture analysis. This technique is based on linear elastic fracture mechanics and on the assumption that
the energy released during crack propagation equals the work required to close the crack back to its original position.
Based on this assumption, the ERR is computed from the nodal forces at the crack tip and relative nodal displacements
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Figure 1: Schematic description of proposed computationalworkflow based on a high-fidelity beam finite element model foranalysis of beams
featuring a crack that extends along its length.

behind the crack tip. The finite element models providing therequired nodal forces and nodal displacements are
typically based on plane stress or strain, shell, or solid finite elements (see Krueger [12] for an extensive review on
the topic). As a relatively fine mesh must be used in the area surrounding the crack, three-dimensional models of this
kind are often computationally expensive. This is especially true if the location, orientation and size of the crack is
not knowna priori, and a large number of model configurations must be analyzed.

In this paper an efficient framework is proposed for the computation of all threecomponents of the ERR. The
method is applicable to beam structures featuring a crack that extends along the length of the structure, as shown in
Fig. 1. In engineering practice a crack that does not extend along the entire length of the beam, can often conservatively
be assumed to do so. The structural response of the beam is analyzed using a high-fidelity beam model. This model is
composed of two parts – a 2D cross section analysis tool and 3Dbeam finite element model. The workflow used in this
paper comprises three steps. The first step entails the accurate determination of the cross section stiffness properties.
This is done using the BEam Cross section Analysis Software –BECAS1 – an implementation by Blasques and Stolpe
[5] and Blasques [4] of the theory originally presented by Giavotto et al. [10]. This tool relies on a 2D finite element
discretization of the beam cross section geometry to accurately compute its stiffness properties. BECAS can correctly
handle sections of arbitrary geometry and account for effects of material anisotropy and inhomogeneity. The reader
is referred to Volovoi et al. [21] for a comprehensive assessment of different cross section modeling techniques. In
the second step, the cross section stiffness properties are integrated along the length of the beam to generate the 3D
beam finite element stiffness matrices. The resulting cross section and beam finite element matrices are significantly
smaller and therefore computationally faster to evaluate rendering this modeling approach an efficient alternative
to shell or solid finite element models. The proposed model issuited for the analysis of long slender beam-like
structures presenting a certain degree of lengthwise continuity of the loads, geometry, and material properties, e.g.,
a wind turbine rotor blade. In the third and last step, the cross section forces and moments at the section of interest
are determined for a given load case from the beam finite element equations. These are used again in BECAS to
determine the nodal displacements and nodal reaction forces in the cross section finite element mesh, namely, at the
crack tip. The resulting values are then used within the VCCTframework to determine the ERR.

Note that the analysis problem has two length scales – a beam scale associated with the length dimension of the
beam and a cross section scale associated with the cross section dimensions. At the beam scale the numerical model
proposed in this paper can be used to evaluate the global static and dynamic response with accuracy comparable to
that of 3D finite element models. At the cross section scale the results – e.g., local stresses or strain energy release
rates – are only a function of the cross section forces and moments. Hence, these results may not be as accurate
as results obtained from 3D finite element models in regions,e.g., where concentrated loads are applied or close to
boundary conditions where in- and out-of-plane cross section deformation is restrained. For the examples investigate
in this paper the accuracy of this approach is comparable to that of computationally more expensive 3D finite element
models. To the authors’ best knowledge this represents a novel approach in numerical fracture analysis.

This paper is structured as follows. The structural model isdescribed first in Section 2. The VCCT formulas
specific for the described structural model are derived in Section 3. The proposed methodology is consequently
demonstrated and validated for four numerical examples. The setup for these numerical experiments and all the

1BECAS is available as a MatlabTM source code. An academic license is available free of chargeat www.becas.dtu.dk.
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Figure 2: Section coordinate system, cross section forcesT and momentsM (left), and corresponding strainsτ and curvaturesκ (right) (from
Blasques and Stolpe [5]).

relevant results are presented in Section 4. Finally, the results are discussed in Section 5 and the main conclusions are
presented in Section 6.

2. Structural model

The structural response of the beam is analyzed using the beam model originally presented by Blasques and Stolpe
[5]. The model is based on the assumptions that the material and geometrical properties present a certain degree of
continuity along the length of the beam. The original beam structure is represented by a reference line defined along
the length of the beam going through the reference points of aseries of representative cross sections. The reference
line is discretized using beam finite elements whose stiffness matrices result from the lengthwise integration of the
cross section stiffness properties.

A brief presentation of the methodology employed in the estimation of the cross section stiffness properties is
described first. The beam finite element equations are derived next. Only the most relevant steps of the derivations
are presented here. The reader is referred to Blasques and Stolpe [5] for further details.

2.1. Cross section analysis

The cross section stiffness properties are described by the parameters contained in the 6× 6 cross section stiffness
matrix Ks. This matrix establishes the relation between the section forces and moments inθ, and the strains and
curvatures inψ (see Fig. 2) through the cross section constitutive relation θ = Ksψ. The components of the cross

section forces and momentsθ =
[

TT MT
]T

are the transverse forcesTx andTy, and axial forceTz in T =
[

Tx Ty Tz

]T
,

and the bending momentsMx and My, and torsional momentMz in M =
[

Mx My Mz

]T
.The components of the

generalized strain-curvature vectorψT =
[

τT κT
]T

are the shear strainsτx andτy, and the axial strainτz in τ. The
remaining components are the bending curvaturesκx andκy, and the twist rateκz in κ. The accuracy of the beam finite
element model depends to a large extent on the ability to correctly predictKs. The high-fidelity general purpose cross
section analysis technique originally presented by Giavotto et al. [10] and implemented by Blasques and Stolpe [5]
addresses this challenge and is employed here.

Consider a beam structure deforming under a given external load (see Fig. 3). It is assumed that the total dis-
placement of an arbitrary point in a cross section of the beamis described by the sum of two contributions. The first
contribution consists of the displacements associated with the rigid body translations and rotations of a reference point
in the cross section. The second contribution is associatedwith the displacements stemming from the in- and out-of-
plane deformation of the cross section henceforth referredto as warping displacements. Giavotto et al. [10] proposed
an approach based on this separation of the displacements for the derivation of the cross section equilibrium equations
and consequently of the stiffness parameters inKs. The approach relies on a 2D finite element representation ofthe
cross section geometry (see, e.g., Fig. 7). Two different element types are considered in this paper, namely, a linear
four node element and a quadratic eight node element henceforth referred to as Q4 and Q8, respectively. The 3D
material constitutive properties are defined at each element and may exhibit any degree of anisotropy. Each node of
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Figure 3: Schematic description of the deformation of a cantilever beam subjected to a tip load. The reference line is meshed using beam finite
elements. The deformation of each cross section is described in terms of the rigid body motions and warping displacements. Cross section
deformation is analysed using the cross section analysis tool BECAS where a finite element discretization of the cross section geometry is used to
approximate the warping deformation.

the finite element mesh has three displacement degrees of freedom which approximate the 3D warping displacement
field. The cross section equilibrium equations are then derived and given in matrix form (Blasques and Stolpe [5]) as

Kw = f⇔
[

K11 K12

0 K11

] [

w1

w2

]

=

[

f1

f2

]

(1)

where the matricesK11 andK12 are defined in Blasques and Stolpe [5] and the solution vectors arew1 =
[

uT ψT λT
1

]T

andw2 =

[

∂uT

∂z
∂ψT

∂z λT
2

]T

. The components of the right hand-side vectors aref1 =
[

0 θT 0
]T

andf2 =
[

0 (Trθ)T 0
]T

whereTrθ = [0 0 0Ty −Tx 0]T. The Lagrange multipliersλ1 andλ2 are associated with the six constraints introduced
to remove the rigid body motions from the warping displacements. The cross section equilibrium equations in (1) yield
the warping displacementsu and the generalized strains and curvaturesψ (associated with the rigid body translations
and rotations) which balance the cross section forces and moments inθ.

The stiffness parameters inKs can now be determined. First the cross section equilibrium equations in eq. (1)
have to be solved for six unit load vectorsθ where each of the entries is set in turn to unity and the remaining to zero.
This corresponds to solving the following linear system of equations

KW = F⇔
[

K11 K12

0 K11

] [

W1

W2

]

=

[

F1

F2

]

(2)

whereW1 =
[

UT
Ψ

T
Λ

T
1

]T
, W2 =

[

∂UT

∂z
∂ΨT

∂z Λ
T
2

]T
, F1 =

[

0T I6 0T
]T

, andF2 =
[

0T Tr 0T
]T

. Essentially, eq. (2) is
obtained from eq. (1) by replacingθ in f1 andf2 with the 6×6 identity matrixI6. The resulting solution matrixW has
six columns yielding the solution for each of the six unit load vectors. Consequently, the solution to eq. (1) can be
obtained asw =Wθ, i.e., as the linear combination of the rows ofW for any givenθ. Consequently, the cross section
compliance matrixFs is given by

Fs =WTGW (3)

where matrixG is defined in Blasques and Stolpe [5]. For most practical applicationsFs is symmetric positive definite
and thus the cross section stiffness matrix is finally obtained fromKs = F−1

s .

2.2. Beam finite element analysis

The cross section stiffness properties provided in the previous section are now integrated to generate the beam
finite element stiffness matrices. The beam finite element static equilibrium equations yielding the nodal translations
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and rotationŝu for a given structure subjected to external loadsf̂ is given by (cf. Bathe [3])

K̂û = f̂ where K̂ =
nb
∑

e=1

K̂e =

nb
∑

e=1

∫ Le

0
B̂

T
e KsB̂e dz (4)

wherenb is the number of elements in the beam finite element assembly,Le is the length of elemente, and the
summation refers to the typical finite element assembly. Thebeam finite element stiffness matrixK̂e is given in
function of the cross section stiffness matrixKs and the strain-displacement matrixB̂e = B(N̂e), whereB is the strain-
displacement relation and̂Ne is the finite element shape function matrix. Herein, four node beam finite elements with
cubic Lagrangean polynomials for interpolation functionsare used. Each node has six degrees of freedom – three
translations and three rotations.

2.3. Remarks

The application of the previously described methodology can be illustrated for, e.g., aeroelastic analysis of wind
turbine blades. Wind turbine aeroelastic simulation toolsoften use beam finite elements to represent the blades of
the turbine (see, .e.g., Larsen and Hansen [13]). In this context, the stiffness parameters inKs can be efficiently and
accurately determined to derive high-fidelity beam finite element models to represent the blades (cf., e.g, Kim et al.
[11]). The instantaneous cross section forces and moments at a given section of the bladeθ(t) can be retrieved from
the aeroelastic simulations. The solutionsw(t) can then be efficiently obtained asw(t) = Wθ(t). Based onw(t) it is
possible, among other, to obtain accurate estimates of instantaneous strains and stresses or, as described in the next
section, the ERR associated with a longitudinal crack.

3. Fracture analysis

The previously described beam model is now employed in the analysis of the energy release rate (ERR) in cracked
beams using the Virtual Crack Closure Technique (VCCT). TheVCCT formulas based on 3D finite element models
are presented first for reference. The formulas are subsequently adapted to use the results from the cross section equi-
librium equations. Finally, other fracture mechanics concepts are introduced which will be used during the validation
work presented in Section 4.

3.1. Virtual crack closure technique – VCCT

Assume that the static equilibrium equationsKu = f for a given 3D solid finite element assembly have been
solved. Herein,K, u, andf are the stiffness matrix, displacement vector, and load vector associated with the 3D solid
finite element assembly, respectively. Assume also that theelement reaction forcesre = Keue, ∀e = 1, ..., ns have
been determined, wherens is the number of elements in the assembly. Furthermore, the nodal reaction forces and
displacements at any node of a given elemente in the assembly are subsets ofre andue. Finally, consider a detail,
cf. Fig. 4, of the same model including a crack where the ERR isto be determined. The crack coordinate system is
defined as a local right-hand coordinate system with its origin at the crack tip. The x1, x3 -axes are aligned with the
crack plane where the x1-axis points into the designated crack extension direction. According to Krueger [12] the
ERRs at the crack tip using 3D eight node solid finite elementswith different length at the crack tip, i.e.,a1 , a2, are
obtained as

GI =
1

2a1c
r2

i ∆u2
j,k, GII =

1
2a1c

r1
i ∆u1

j,k, GIII =
1

2a1c
r3

i ∆u3
j,k (5)

wherec is the crack width. According to the VCCT principle the nodalreaction forcesri =
[

r1
i r2

i r3
i

]

at nodei

multiply the relative displacements∆u j,k = u j − uk whereu j =
[

u1
j u2

j u3
j

]

anduk =
[

u1
k u2

k u3
k

]

are the displacements
of node j andk, respectively. Note thatri is obtained from the sum of the nodal reaction forces evaluated at each of
the four elements associated with nodei situated in the negative x2 side of the x1, x3 plane. The previous quantities
are defined in the crack coordinate system (x1,x2,x3). The equivalent formulation using higher order elements can be
found in Krueger [12].
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Figure 4: VCCT using 8 node solid finite elements (cf. Krueger[12]). The nodal forcesri =
[

r1
i r2

i r3
i

]

at nodei are multiplied by the relative

displacements∆u j,k = u j − uk whereu j =
[

u1
j u2

j u3
j

]

anduk =
[

u1
k u2

k u3
k

]

are the displacements of nodej andk, respectively. The crack coordinate
system is defined by (x1,x2,x3), whereas the global coordinate system is defined by (X, Y, Z).

3.2. VCCT in BECAS

The expressions for 3D solid finite elements in eq. (5) are nowadapted to use the results from the beam model
presented in Section 2. It is assumed at this point that the beam finite element equilibrium equations in eq. (4)
have been solved. The internal forces at each elemente of the beam finite element assembly are then given by
r̂e = K̂eûe. The cross section forces and momentsθ at any position along the beam element can be determined
through interpolation of the nodal values ofr̂e. Note that for statically determined structures the distribution of cross
section forces and moments along the beam can be easily determined from analytical calculations. It is also assumed
that the cross section equilibrium equations in eq. (2) havebeen previously solved such thatW is known. The cross
section generalized strains and curvaturesψ and 3D warping displacementsu at each node of the cross section finite
element mesh are then obtained from the relationw = Wθ. The nodal reaction forcesre at an elemente of the cross
section finite element mesh are finally given asre = Kewe, whereKe andwe are the components associated with
elemente of K andw, respectively.

Recall that the total displacement of any point in the cross section is described as the sum of the displacements
associated with the rigid body translations and rotations,and the warping displacements. Note however that the rigid
body motions do not induce relative displacements at the crack tip. Hence only the warping displacementsue and
corresponding components ofre need to be taken into account for the evaluation of the ERR at crack the tip. The
components of displacement and force necessary for the VCCTcalculations are described in Fig. 5 for the linear Q4
and quadratic Q8 elements. The components of the ERR determined using Q4 elements are given by (cf. Fig. 5(a))

GI =
1

2a1
r2
i ∆u2

j,k, GII =
1

2a1
r1
i ∆u1

j,k, GIII =
1

2a1
r3
i ∆u3

j,k . (6)

Similarly to the 3D case, the relative displacements∆u j,k = u j − uk whereu j =
[

u1
j u2

j u3
j

]

anduk =
[

u1
k u2

k u3
k

]

are
the nodal warping displacements of nodej andk, respectively. The nodal forces at the crack tip of nodei associated
with the warping displacementsui are given inri =

[

r1
i r2

i r3
i

]

. Also like in the 3D case,ri are sum of the nodal
reaction forces evaluated at each of the two elements associated with nodei situated in the negative x2 side of the
x1, x3 plane. All previous quantities are defined in the crack coordinate system (x1,x2,x3). For ERR computations
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Figure 5: VCCT within the cross section finite element mesh inBECAS. (a) Using the Q4 linear element, the nodal forcesri =
[

r i
1 r i

2 r i
3

]

at node

i are multiplied by the relative displacements∆u j,k = u j − uk, whereu j =
[

uj
1 uj

2 uj
3

]

anduk =
[

uk
1 uk

2 uk
3

]

are the displacements of nodej andk,

respectively. (b) Using the Q8 quadratic element the nodal forcesri =
[

r i
1 r i

2 r i
3

]

andr j =
[

r j
1 r j

2 r j
3

]

at nodei and j, respectively, are multiplied by
the relative displacements∆ul,n = ul − un of nodel andn and∆uk,m = uk − um of nodek andm, respectively. Note that the two-dimensional finite
elements have three displacements per node in order to approximate the in- and out-of-plane deformation of the cross section. The crack coordinate
system is defined by (x1,x2,x3), whereas the global coordinate system is defined by (X, Y, Z).

using Q8 elements the expressions are (cf. Fig. 5(b))

GI =
1

2a1

[

r2
i ∆u2

l,n + r2
j∆u2

k,m

]

, GII =
1

2a1

[

r1
i ∆u1

l,n + r1
j∆u1

k,m

]

, (7)

GIII =
1

2a1

[

r3
i ∆u3

l,n + r3
j∆u3

k,m

]

(8)

where∆ul,n = ul − un and∆uk,m = uk − um. The notation is the same as before so further details are omitted for
brevity. Due to the two dimensional character of the beam andcross section analysis formulation,c = 1 in eq. (6) and
(8).

Finally, note that although the analysis is based on a 2D finite element discretization of the cross section, all 3D
components of the displacements at each node of the cross section finite element mesh are evaluated. As a consequence
it is possible to compute the ERR associated with mode III crack opening.

3.3. Other methods and concepts

This section briefly describes other fracture mechanics methods and concepts which will be invoked throughout
the validation work in Section 4.

3.3.1. Contour integration
A prominent way to obtain the ERR in linear elastic fracture mechanics is the well known J-integral originally

proposed by Rice [19] and further discussed by Budiansky andRice [7]. In this paper J-integral based calculations
of the ERR using 3D finite element models are included in orderto obtain additional reference values which are
independent of the assumptions underlying the analytical solutions or the VCCT. It should be noted that the J-integral
only yields the total energy release rateGtot and does not provide the modal contributionsGI , GII andGIII .

3.3.2. Analytical solutions
Analytical solutions for stress intensity factors of cracks in linear elastic single material cases can be found in

Murakami [14]. Two of the results are presented here which will be used in Section 4.2 for validation. The analytical
solution for the Mode-III stress intensity factor for a cylindrical beam with a radial crack (see Fig. 6(a)) subjected to
a torsional momentMz is given as

KIII =
−0.969274Mz

a2.5
(9)
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(a) B1 (b) B2 (c) B3 (d) B4

Figure 6: Dimensions, material distribution, and cross section coordinate system of the four beam cross sections considered in this study. All
dimensions in [mm]. (a) Circular beam with radial crack, (b)square beam with eccentric edge crack, (c) bi-material square beam with centered
edge crack, and (d) bi-material square beam with crack at thematerial interface.

wherea is the crack length. The solution for the same beam subject toa shear forceTy is given as

KIII =
(1.375776+ 1.354244ν) Ty

(1+ ν) a1.5
(10)

whereν is Poisson’s ratio. The solution for a single edge cracked square beam (see Fig. 6(b)) subjected to a torsional
momentMz is

KIII =
3.22482Mz

W2.5
(11)

whereW is the cross section width. The constants used in these equations are based on the geometrical properties of
the cases presented in Section 4.2. The Mode-III ERR of both aforementioned cases can be obtained from

GIII =
(1+ ν) K2

III

E
(12)

whereE is the Young’s modulus.

3.3.3. Bi-material interfaces
For problems featuring a crack at the interface between two linear elastic, isotropic materials the asymptotic

solution for the near crack tip stress field oscillates with increasing amplitude and frequency when approaching the
crack tip – the so-called “oscillating singularity”. The analytical asymptotic solution for the near crack tip stress field
depends on the four elastic constants only through the bi-material constantη defined as

η =
1
2π

ln

(

1+ β
1− β

)

, β =
(µ2/µ1) (κ1 − 1) − (κ2 − 1)
(µ2/µ1) (κ1 + 1) + (κ2 + 1)

, κi =
3− νi

1+ νi
(13)

whereβ is the second Dundurs parameter andκi is a material constant for generalized plane stress (Bogy [6], Dundurs
[8]). µ1 andµ2 are the shear moduli andν1 andν2 are the Poisson’s ratios of material 1 and 2, respectively. The mode
mixity angleψ, defining the ratio of shear to normal traction at the interface, can also be written as

ψ = arctan

√

GII

GI
. (14)

The asymptotic solution near the crack tip yields

ψ = ϕ + η ln(r) (15)

wherer is the distance from the crack tip andϕ is a constant. Note that the mode mixityψ depends on the distance
from the crack tipr and is not defined forr → 0. That is, interface cracks are inherently mixed mode. The value ofψ
at a fixed distancer = L0 is commonly used as a measure of the mode mix (O’Dowd [15]). Equation (15) also applies
to the mode mixity predicted by the VCCT, ifr is replaced by the width of the element next to the crack tipa. Results
independent of the element size can then be obtained by evaluating eq. (15) at a fixed distanceL0 from the crack tip.
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Table 1: Young’s modulus (Eα), Poisson’s ratio (να), number of finite elements (# elem) in the cross section mesh, and near crack tip element size
(∆a) for all numerical experiments (cf. Figure 6). Three different mesh resolutions – coarse, medium, and fine – are considered for case B4.

Case E1 E2 ν1 ν2 # elem. ∆ a
[Pa] [Pa] - - - [mm]

B1 7× 1010 - 0.28 - 880 2.0
B2 7× 1010 - 0.28 - 900 3.33
B3 2× 1010 2× 1011 0.45 0.0 784 3.5

coarse medium fine coarse medium fine
B4 2× 1010 2× 1011 0.45 0.0 784 1444 3364 3.4 2.01 1.1

(a) Case B1, load casefy (b) Case B2, load casemz (c) Case B3, load casefy

x

y

z

(d) Case B4, load casemx

Figure 7: Cross section finite element mesh and warping deformation for selected load cases for the beams considered in the study (cf. Fig. 6).
Note that (d) shows the coarse mesh. The magnitude of the loads is indicated in Table 2. Deformation is scaled for visualization.

4. Numerical experiments

This section describes the setup and presents validation results for a series of numerical examples. The ERR eval-
uated using the proposed approach are compared with analytical solutions and results from detailed three-dimensional
finite element models.

4.1. Setup

Four straight cantilever beams of constant cross section with a length of 2.0 m were considered. All cross sections
feature a single crack that extends along the length of the beam. The geometrical dimensions and material distribution
for each of the beams are schematically described in Fig. 6. Table 1 indicates the mechanical properties of the
materials, number of elements in the cross section finite element mesh, and the element size near the crack tip for each
cross section. The beams were loaded by either forces or moments applied at the free end. The load cases considered
for each of the numerical experiments are presented in Table2. The magnitudes of the loads were chosen such that
the magnitudes of the von Mises stresses at midspan are similar for the different load cases. The 2D finite element
mesh used in BECAS for each of the cross sections is shown in Fig. 7. The near tip element length in the cracked part
a1 and in the uncracked parta2 were chosen to be equal, i.e.,a = a1 = a2 for all cases. In BECAS both linear four
node elements Q4 and quadratic eight node elements Q8 were used.

Beam B1 in Fig. 6(a) corresponds to a single material beam with circular cross section and a radial crack that
extends to its centre. Beam B2 in Fig. 6(b) is a single material beam with square cross section and an eccentric edge
crack. The cross section finite element mesh for both cases ispresented in Figures 7(a) and 7(b). For these two cases
– B1 and B2 – analytical solutions exist for the ERR as given inSection 3.3.2. Figure 6(c) shows the cross section
geometry and material distribution for the bi-material square beam with a centered crack – beam B3. The cross section
finite element mesh is presented in Fig. 7(c). The beam is composed of a soft and almost incompressible core material
– Material 1 – and a compressible and stiffmaterial distributed on the outside – Material 2. The crack tip is located in
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Table 2: Forces –fx, fy, and fz – and moments –mx, my, andmz – considered for each of the four numerical experiments (cf.Fig. 6). All loads are
applied at the free-end of the beam finite element model individually.

Load case fx fy fz mx my mz

[N] [N] [N] [Nm] [Nm] [Nm]
B1 − 1× 104

− − − 1.0× 104

B2 − − − − − −1.0× 104

B3 2.0× 104 2.0× 104 6.0× 105 −2.0× 104 2.0× 104 5.0× 103

B4 − − −6.0× 106
− − 5.2× 104

the core material. Finally, Fig. 6(d) shows the same bi-material square beam cross section although the crack plane is
now placed at the interface between outer rim and core – beam B4. The same material properties as used for beam B3
were adopted. This model was analysed for three different mesh discretisation levels and near crack tip elementsizes
hereafter referred to ascoarse, mediumandfinemesh. The coarse mesh is depicted in Fig. 7(d).

The 3D solid finite element models used in the validation werebuilt and analyzed in ABAQUS [1] using 8 node
solid incompatible mode elements (ABAQUS element type C3D8I). The models were discretised using 61 elements
in the axialzdirection for both the VCCT and contour integration analysis. For VCCT calculations the 3D solid finite
element models were extruded versions of the 2D meshes used in BECAS. For the contour integration a fine mesh
was chosen with circular concentric element rings around the crack tip each consisting of 12 elements. In ABAQUS,
the J-integral is calculated by integration along a circular array of elements around the crack tip. For this purpose the
contour integral formulation is reformulated into a domainintegral. The ERR was evaluated along the third ring of
elements.

Currently BECAS cannot account for effects stemming from contact of the crack faces. Consequently, the pre-
sented examples were designed to avoid interpenetration ofthe crack faces and thus ensure that the results are physi-
cally meaningful.

An important motivation for using the BECAS VCCT approach instead of a standard 3D finite element model
for fracture analysis is computational efficiency. Hence, the computational time required by the BECASVCCT
approach for the bi-material square beam with crack at the material interface B4 (Fig. 6 (d)) was compared with the
corresponding 3D finite element model. Three different discretization levels were used for the 2D cross section mesh
employing linear Q4 elements. The 3D finite element models were those used for the VCCT calculations as described
earlier in this section. The 3D finite element analyses were performed in ABAQUS [1] and comprised a single, linear
static analysis procedure using the default direct sparse solver. Both, the ABAQUS and the BECAS analysis, were
executed on a single CPU of a Dell PowerEdge R410 with two Intel Xeon X5650 six-core CPUs at 2.66 GHz and 24
GB memory.

4.2. Results

Five different types of results are referred to throughout the next sections. BECAS VCCT Q4 and BECAS VCCT
Q8 refer to the cases where the ERR was computed using the VCCTbased on linear Q4 and quadratic Q8 elements
in BECAS, respectively. 3D FE VCCT and 3D FE J-int. refers to the cases where the results were computed using
the VCCT and contour integration techniques within a 3D finite element model, respectively. Finally, the “analytical”
results refer to the results that were calculated using the analytical expressions presented in Section 3.3.2.

All ERR results presented in Tables 3 through 5 refer to values evaluated at a section situated at midspan, i.e., at
1.0 m. The aim was to minimize the influence of effects stemming from the boundary conditions enforced at the beam
ends for each of the different modeling approaches. Henceforth the relative differencedr between two quantities A
and B in percent is defined asdr = |1− A/B| × 100.

The ERR values obtained for beam B1 – circular beam with radial crack – and B2 – square beam with eccentric
edge crack – using the VCCT in BECAS are presented in Table 3. The load cases –fy and mz – are those for
which analytical results were available. Results from BECAS were obtained using linear four node Q4 elements and
quadratic eight node Q8 elements. The results are compared with the analytical solutions given in eqs. (10) through
(12). Moreover, the contour integration (3D FE J-int.) and VCCT (3D FE VCCT) calculations performed using a 3D
solid finite element model are presented for reference. The relative difference is given with respect to the analytical
results.
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Table 3: Energy release rates for beam B1 and B2 (cf. Fig. 6). Load cases according to Table 2.Analytical values are given by eq. (10 - 12).
TheBECAS Q4 VCCTandBECAS Q8 VCCTrefer to results obtained using VCCT within the cross section analysis tool BECAS with four and
eight node plane finite elements, respectively. The3D FE J-Int. and3D FE VCCTrefer to numerical results obtained using contour integration
and VCCT within a three-dimensional solid finite element model, respectively. The relative difference (Rel. Err.) reflects the deviation between the
values predicted by numerical simulations and the analytical solutions.

Case B1 (Circular) B2 (Square)
Load case mz fy mz

GI I I Rel. Err. GI I I Rel. Err. GI I I Rel. Err.
Method [J/m2] [%] [J/m2] [%] [J/m2] [%]

Analytical 5497 - 27.50 - 1902 -
BECAS Q4 VCCT 5479 0.3 26.99 1.9 1904 0.1
BECAS Q8 VCCT 5481 0.3 27.24 0.9 1920 1.0

3D FE J-Int. 5607 2.0 28.26 2.8 1921 1.0
3D FE VCCT 5468 0.5 26.97 1.9 1904 0.1

Table 4: Energy release rates for the beam B3 (cf. Fig. 6). Load cases according to Table 2. TheBECAS Q4 VCCTrefers to results obtained using
VCCT within the cross section analysis tool BECAS with four node plane finite elements. The3D FE J-Int. and3D FE VCCTrefer to numerical
results obtained using contour integration and VCCT withina three-dimensional solid finite element model, respectively. The relative difference
(Rel. Err.) reflects the deviation between the values predicted by3D FE VCCTandBECAS Q4 VCCT, and the results obtained using3D FE J-Int..

Load case fx fy fz mx my mz

Method
3D FE J-Int. Gtot [J/m2] 167.2 22.3 20.7 21.7 10.5 1070.1

BECAS Q4

GI [J/m2] 0.0 21.0 21.0 21.0 0.0 0.0
GI I [J/m2] 10.2 0.0 0.0 0.0 10.2 0.0
GI I I [J/m2] 155.0 0.0 0.0 0.0 0.0 1064.2

VCCT Gtot [J/m2] 165.2 21.0 21.0 21.0 10.2 1064.2
Rel. Err. [%] 1.2 5.6 1.4 3.3 3.1 0.6

3D FE

GI [J/m2] 0.0 20.9 20.5 20.9 0.0 0.0
GI I [J/m2] 10.3 0.0 0.0 0.0 10.3 0.0
GI I I [J/m2] 155.9 0.0 0.0 0.0 0.0 1064.6

VCCT Gtot [J/m2] 166.1 20.9 20.5 20.9 10.3 1064.6
Rel. Err. [%] 0.6 6.0 1.3 3.7 1.8 0.5

Table 5: Element size independent energy release rates for beam B4 (cf. Fig. 6) evaluated at a distanceL0 = 0.1mm (cf. Fig. 8). Load cases
according to Table 2. TheBECAS Q4 VCCTrefers to results obtained using VCCT within the cross section analysis tool BECAS with four node
plane finite elements Q4. The3D FE J-Int. and3D FE VCCTrefer to numerical results obtained using contour integration and VCCT within a
three-dimensional solid finite element model, respectively. The relative difference (Rel. Err.) reflects the deviation between3D FE VCCTand
BECAS Q4 VCCTfor three different finite element mesh discretizations (cf. Table 1), andthe values predicted by3D FE J-Int..

Load case fz mz

Method
3D FE J-Int. Gtot [J/m2] 5152 44545

Coarse Medium Fine Coarse Medium Fine

BECAS Q4

GI [J/m2] 2787 2767 2793 0 0 0
GI I [J/m2] 2646 2605 2545 0 0 0
GI I I [J/m2] 0 0 0 44505 44559 44567

VCCT Gtot [J/m2] 5433 5371 5338 44505 44559 44567
Rel. Err. [%] 5.5 4.3 3.6 0.1 0.0 0.1

3D FE

GI [J/m2] 2547 2475 2473 0 0 0
GI I [J/m2] 2715 2753 2731 0 0 0
GI I I [J/m2] 0 0 0 44505 44570 44570

VCCT Gtot [J/m2] 5262 5228 5204 44505 44570 44570
Rel. Err. [%] 2.1 1.5 1 0.1 0.1 0.1
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Figure 8: Mode mixityψ as a function of element sizea for the bi-material square beam with crack at the material interface B4. Square and triangle
markers refer to BECAS and 3D FE results, respectively. Solid markers are results obtained from VCCT. Hollow markers arethe corresponding
element size independent results for an evaluation distance L0 = 0.1mm.
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Figure 9: Selected results showing the variation of the strain energy release rates along the lengthwise directionz for beam B3 (see Fig. 6) for
different load cases (see Table 2). Values computed using VCCT within the beam finite element model based on the cross section analysis tool
BECAS, and 3D solid finite element model in ABAQUS. The originof the coordinate system is at the clamped end of the beam.

The resulting ERR values for beam B3 – bi-material square beam with centered crack – are presented in Table 4
for six different load cases –fx, fy, fz, mx, my, andmz. This combination of material lay-out and load cases makes it
possible to trigger and compare each ERR component individually. The ERR results for beam B4 – bi-material square
beam with crack at the material interface for two load cases –fz andmz – and three different mesh refinements are
presented in Table 5. The results in this table were made element size independent using an evaluation distance of
L0 = 0.1 mm as explained in Section 3.3.3 and illustrated in Fig. 8. In both Table 4 and 5 the ERR obtained using
VCCT in BECAS and the 3D finite element model for each of the different fracture modes –GI , GII , andGIII – are
presented for comparison. The total ERR valuesGtot obtained using VCCT in both BECAS and 3D finite element
model are compared against the values computed using contour integration in the 3D solid finite element model.

The variation of the ERR measured along the length of the beamis analysed in Fig. 9. Illustrative results obtained
using VCCT in BECAS and 3D finite element models are presentedfor beam B3 for selected load cases.

Finally, Table 6 lists the number of degrees of freedom and the total execution time for the BECAS and 3D finite
element models of beam B4. It can be observed that the BECAS models execute between 50 times (coarse mesh) and
173 times (fine mesh) faster than the corresponding ABAQUS models.
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Table 6: Total computation time (assembly and solution) forcomputation of energy release rate using VCCT within the cross section analysis tool
BECAS and three-dimensional finite element model in ABAQUS.Three different finite element mesh discretizations are considered cf. Table 1.

BECAS 3D FE
Mesh density Degrees of freedom CPU time Degrees of freedom CPU time

- [s] [s]
Coarse 2.565× 103 1.34 1.590× 105 67.52

Medium 4.620× 103 2.24 2.864× 105 177.10
Fine 1.053× 104 4.95 6.529× 105 858.60

5. Discussion

In the B1 and B2 cases, the results (see Table 3) computed using BECAS agree very well with the analytical
results, the largest relative difference being 1.9%. Note also that the relative differences between the 3D FE (VCCT
and J-int.) and analytical values is of the same order.

Results for the bi-material square beam with centered crackB3 show that theGtot values agree well, the largest
relative difference being 5.6% (see Table 4). The values are within the same range as the results obtained based on the
3D FE VCCT. Evaluating the relative differences between the individual componentsGI , GII andGIII from BECAS
VCCT and the 3D FE VCCT shows that the results are in even better agreement. In this case the largest relative
difference between each of the values is 2.8%. The BECAS VCCT results for beam B3 were also obtained using
quadratic eight node elements (Q8). In this case the maximumrelative difference between BECAS VCCT and 3D FE
VCCT for each of the individual components was 1.6%. These results are omitted for brevity.

Unlike the previous examples, the crack in beam B4 was placedat the interface between two materials. From
Table 5 it is visible that the results agree well with the 3D FEJ int. in terms of the total energy release rate, the largest
relative difference being 5.5%. In this case the relative error values are slightly larger than those resulting from the
comparison between the 3D FE VCCT and the 3D FE J-int. Comparing the BECAS VCCT and 3D FE VCCT results
for each individual componentGI , GII andGIII yields a maximum relative error of 13%. However, comparing the
total energy release ratesGtot results in a maximum relative difference of only 3.2%. Moreover, the mode mixity angle
ψ for this two cases – BECAS VCCT and 3D FE VCCT – also agrees verywell with the largest absolute difference
being 2.7◦. The relatively small difference in mode mixity angles can also be observed in Figure 8.

The proposed beam model allows for the precise definition of the warping displacements – the only contribution
to crack deformation – in terms of the cross section forces and moments. Consequently it is possible to gain an insight
into the relation between the beam and cross section loadingand the different ERR components. The deformed shape
considering only the warping displacements is presented inFigure 7 for each of the cross sections. For the load cases
considered in case B1 and B2,GIII is the only non-zero component of the ERR. The mode III crack opening visible
in Fig. 7(a) and 7(b) is a result of the out-of-plane warping deformation induced by the transverse forces and torsional
moment at the cross section of interest, respectively. It was further observed that in these cases – B1 and B2 – the
in-plane warping displacements resulting from the bendingmoment induced by the tip loading do not induce mode I
or II deformation which explains whyGI andGII are null. In the case of beam B3 note that the ERR values for load
casefy andmx are the same. This is due to the fact that the mode I crack opening depicted in Fig. 7(c) is a function of
the in-plane warping displacements induced by the cross section bending momentMx only, which is the same in both
load cases. Finally, unlike the cases of beam B1 and B2, in beam B4 the bending moment will induce deformation at
the crack tip (see Fig. 7(d)) as a result of the interaction between the two materials.

All results in Tables 3 through 5 refer to the beam mid-section values atz= 1 m. The variation of the strain energy
release rates along the length directionz are presented Fig. 9. The results are for beam B3 as computed by BECAS
VCCT and 3D FE VCCT where the relative difference is computed using the 3D FE results as reference values. The
quadratic lengthwise variation of the ERR in Fig. 9 (a) and (b) is a result of the linear lengthwise variation of the
bending moment induced by the transverse tips loadsfx and fy, respectively. The constant ERR value in Fig. 9 (c) is
a consequence of the constant torsional moment induced by the torque applied at the tip of the beam. For all three
cases there is a good agreement between the ERR results from BECAS VCCT and 3D FE VCCT in the central region
of the beam. However, the results present considerable deviations closer to the ends of the beam where the loads
and clamped constraints are applied. This is a consequence of the different assumptions associated with the warping
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Figure 10: Schematic description of a crack in the trailing edge adhesive joint of a wind turbine rotor blade.

deformation at the ends of the beam in both models. The 3D FE model was conceived to approximate the free
warping boundary conditions which are assumed in the proposed beam model. The boundary conditions (fixed end
of the cantilever) and loads (free end of the cantilever) areapplied in the 3D model using the so-called ”distributing
coupling constraints” [1]. In this case, nodal forces are distributed in such a way that the resultants of these forces
are equivalent to the forces and moments at a specified reference node. Although this technique allows for warping
deformation of the end sections it does not ensure that the 3DFE and BECAS warping fields are the same. The large
variations in the results suggest that the ERR is very sensitive to the warping deformation. Future work will focus on
further numerical experimentation to analyze the influenceof beam slenderness and crack length in the decay length
of the effects stemming from the boundary conditions. It is likely that an increase in beam slenderness and relatively
smaller crack lengths will contribute to a decrease of the relative decay length of the boundary effects.

Illustrative results comparing the computation times usedby BECAS and 3D FE are presented in Table 6. The
CPU time refers to assembly and solution of the finite elementequations. From the point of view of the 3D finite
element model note that the comparison is not entirely consistent. Factors like the discretization in the axial direction,
the element type, the equation solver, the adoption of sub-modeling techniques, or the use of parallel computing
strategies, among other, will have an impact on the execution time. From the point of view of the BECAS model
it should be noted that the execution times presented in Table 6 only hold for beams with constant cross section.
Nevertheless, the data in Table 6 gives an indication that the BECAS VCCT approach is computationally very efficient.
Moreover, while the memory usage of the different models was not investigated, it is evident based on thenumber of
degrees of freedom that the BECAS VCCT models require considerably less memory.

The academic examples presented here illustrate the potential of the framework. Future work will focus on ap-
plying the proposed framework to the analysis of cracks and delaminations in wind turbine blades. Figure 10 shows
an example of a crack in the trailing edge adhesive bond of a wind turbine blade. As the crack length is in the or-
der of centimeters and the length of the largest existing blades is in the order of 80 meters, three dimensional finite
element shell or solid models including the crack can be computationally expensive. If it is conservatively assumed
that the crack has a large extension in the blade’s lengthwise direction, the energy release rates at the crack tip can be
computed very efficiently using the framework proposed in this paper.

6. Conclusions

A methodology has been presented for the efficient and accurate evaluation of energy release rates (ERR)in long
and slender beam structures with longitudinal cracks. The structural response is analyzed based on a beam finite
element model comprising a finite element based cross section analysis tool. The cross section analysis tool computes
the cross section stiffness and mass properties while accounting for effects stemming from material inhomogeneity
and anisotropy in beams with arbitrary section geometry. The ERR is determined based on an implementation of the
Virtual Crack Closure Technique (VCCT) in the cross sectionanalysis framework. A series of validation examples
with different cross section geometries and material distributions, including a case with a crack at a bi-material in-
terface, were analyzed. The ERR for modes I, II and III were compared against analytical values, and VCCT and
contour integration results obtained from 3D solid finite element models. All results showed very good agreement.
Furthermore, for the bi-material interface case the observed behavior matched well the expected behavior based on
the asymptotic solution for the near crack tip stress field. Furthermore, the effect of the boundary conditions on the
ERR values along the length of the beam were studied and theirinfluence was established. Finally, it is shown that
the devised methodology uses only a fraction of the computational time required by 3D finite element models.

In sum, the results suggest that the proposed framework can be used to efficiently and accurately compute the
mode I, II, and III energy release rates in a general class of beam structures with longitudinal cracks. Consequently,
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it is now possible to analyze a large number of model configurations (varying crack location, orientation and size) or
instead consider levels of mesh refinement which are computationally prohibitive within 3D finite element models.

Future work will focus on the application of this methodology to the analysis wind turbine blades, namely, in the
fatigue crack growth analysis of adhesive bonds.
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