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An efficient and accurate method for computation of energy reledss in beam

structures with longitudinal cracks

J. P. Blasques, R. D. Bitsche

Department of Wind Energy, Technical University of Denmé&rideriksborgvej 399, 4000 Roskilde, Denmark

Abstract

This paper proposes a noveffieient, and accurate framework for fracture analysis of betoctures with longitu-
dinal cracks. The three-dimensional local stress field isrdeined using a high-fidelity beam model incorporating
a finite element based cross section analysis tool. Theali@uack Closure Technique is used for computation of
strain energy release rates. The devised framework waogetbfor analysis of cracks in beams wittifdrent cross
section geometries. The results show that the accuracyeqfrttposed method is comparable to that of conventional
three-dimensional solid finite element models while usinly @ fraction of the computation time.

Keywords: Beam finite element, Beam cross section analysis, Energgselrate, Virtual crack closure technique,
Longitudinal cracks in beams

Nomenclature

Element length next to the crack tip.

Element length behind and in front of crack tip, respecivel
Element width at crack front.

Elastic modulus of materiat.

Global and element load vector for beam finite element model.
Global and element load vector for 3D solid finite element alod
Global and element load vector for cross section finite efegnmodel.
Cross section compliance matrix.

Mode-I, Il, and Ill energy release rates.

Height of the square cross section.

Mode-Ill stress intensity factor.

Global and element sthess matrix for beam finite element model.
Global and element sthess matrix for 3D solid finite element model.
Global and element sthess matrix for cross section finite element model.
Cross section dfiness matrix.

Reference evaluation distance for the mode mixity.

Length of beam finite elemert

Cross section moments around the andz axis.

Number of beam elements in the beam finite element assembly.
Number of beam elements in the solid finite element assembly.
Element internal reaction forces at beam finite eleneent

Element internal reaction forces at 3D solid finite elenent
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le Element internal reaction forces at cross section finitmelde.

r Distance from the crack tip.

rhs3 Nodal force at the crack tip in the xx, and % direction at node.

S Total displacement of a point in the beam cross section.

Tyy.z Cross section forces in they andz directions of the cross section coordinate system.

u Displacement of a point in the beam cross section due to waugeformation.

a0, Ge Global and element displacement vector for beam finite ebtmedel.

U, Ue Global and element displacement vector for 3D solid finitarednt model.

uil’z’3 Nodal displacement at nodlén the x, X, and % directions of the crack coordinate system.
Auil”jz’3 Relative nodal displacements between nipded j in the X, X, and % directions of the crack coordinate system.
% Displacement of a point in the beam cross section due to ligély motion.

W, We Global and element displacement vector for cross sectide tement model.

W Width of the square cross section.

X, Y, Z Axes of the cross section coordinate system.

X, Y, Z Axes of the global coordinate system.

X1, X2, X3 Axes of the crack coordinate system.

B Second Dundurs parameter.

n Bi-material constant.

0 Cross section forces and moments.

Kxy,z Cross section curvatures around g andz directions of the cross section coordinate system.
K Generalized plane stress material parameter of material

Ha Shear modulus of material

Va Poisson’s ratio of material.

Txyz Cross section shear strains in the xg) @nd yz ¢) planes, and normal strain in the z direction

(r,) according to the cross section coordinate system.

W Mode mixity angle.

7/ Cross section strains and curvatures.

0 Quantities associated with the beam finite element model.
0 Quantities associated with the 3D solid finite element elod
BECAS BEam Cross section Analysis Software.

ERR Energy Release Rate.

FE Finite Element.

VCCT Virtual Crack Closure Technique.

1. Introduction

This work is motivated by the challenges associated withatradysis of cracks in wind turbine rotor blades. The
structural analysis of blades is typically performed in @&dielement context. For example, Overgaard and Lund [16],
Overgaard et al. [17], and Overgaard et al. [18] presentadlid and shell finite element model for simulating the
collapse of a wind turbine blade under static loading. Thetfire analysis is based on the cohesive element approach
(Barenblatt [2]). More recently, Eder and Bitsche [9] praee a similar modeling approach using the Virtual Crack
Closure Technique (VCCT) for the analysis of cracks in itngiledge adhesive joints of a wind turbine rotor blade.
The present paper introduces a novel modeling approachinorgta finite element based cross section analysis tool
and VCCT.

The VCCT is a well established method for the computatiohefnergy release rate (ERR) based on results from
finite element analysis (Rybicki and Kanninen [20], Xie andaa/[22], and Krueger [12] and references therein). The
VCCT is computationallyicient and provides the modal contributions to the total ERIfere the latter is crucial for
mixed mode fracture analysis. This technique is based ealialastic fracture mechanics and on the assumption that
the energy released during crack propagation equals thenequired to close the crack back to its original position.
Based on this assumption, the ERR is computed from the nod=dg at the crack tip and relative nodal displacements
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Figure 1: Schematic description of proposed computatiamakflow based on a high-fidelity beam finite element modelaoalysis of beams
featuring a crack that extends along its length.

behind the crack tip. The finite element models providing bguired nodal forces and nodal displacements are
typically based on plane stress or strain, shell, or solitefielements (see Krueger [12] for an extensive review on
the topic). As a relatively fine mesh must be used in the areawwnding the crack, three-dimensional models of this
kind are often computationally expensive. This is espictale if the location, orientation and size of the crack is
not knowna priori, and a large number of model configurations must be analyzed.

In this paper an fficient framework is proposed for the computation of all thceemponents of the ERR. The
method is applicable to beam structures featuring a craaketktends along the length of the structure, as shown in
Fig. 1. In engineering practice a crack that does not exteEmdyahe entire length of the beam, can often conservatively
be assumed to do so. The structural response of the beanyigeshasing a high-fidelity beam model. This model is
composed of two parts —a 2D cross section analysis tool arieabn finite element model. The workflow used in this
paper comprises three steps. The first step entails theaealgtermination of the cross sectiorffatss properties.
This is done using the BEam Cross section Analysis SoftwBECAS' — an implementation by Blasques and Stolpe
[5] and Blasques [4] of the theory originally presented bgvdtto et al. [10]. This tool relies on a 2D finite element
discretization of the beam cross section geometry to atalyreompute its sffness properties. BECAS can correctly
handle sections of arbitrary geometry and account fiiaces of material anisotropy and inhomogeneity. The reader
is referred to Volovoi et al. [21] for a comprehensive assesd of diferent cross section modeling techniques. In
the second step, the cross sectioffratiss properties are integrated along the length of the beaganerate the 3D
beam finite element $fhess matrices. The resulting cross section and beam fieiteeglt matrices are significantly
smaller and therefore computationally faster to evaluatelering this modeling approach afii@gent alternative
to shell or solid finite element models. The proposed modslited for the analysis of long slender beam-like
structures presenting a certain degree of lengthwise maittiof the loads, geometry, and material properties, e.g.
a wind turbine rotor blade. In the third and last step, thesgection forces and moments at the section of interest
are determined for a given load case from the beam finite elepmuations. These are used again in BECAS to
determine the nodal displacements and nodal reactiondancde cross section finite element mesh, namely, at the
crack tip. The resulting values are then used within the V@@inework to determine the ERR.

Note that the analysis problem has two length scales — a beale associated with the length dimension of the
beam and a cross section scale associated with the croemagiotensions. At the beam scale the numerical model
proposed in this paper can be used to evaluate the globigl atat dynamic response with accuracy comparable to
that of 3D finite element models. At the cross section scaedisults — e.g., local stresses or strain energy release
rates — are only a function of the cross section forces and entsn Hence, these results may not be as accurate
as results obtained from 3D finite element models in regiergs, where concentrated loads are applied or close to
boundary conditions where in- and out-of-plane crosssecéeformation is restrained. For the examples investigate
in this paper the accuracy of this approach is comparabletmotf computationally more expensive 3D finite element
models. To the authors’ best knowledge this representsa approach in numerical fracture analysis.

This paper is structured as follows. The structural modeleiscribed first in Section 2. The VCCT formulas
specific for the described structural model are derived icti®e 3. The proposed methodology is consequently
demonstrated and validated for four numerical examplese S¢tup for these numerical experiments and all the

1BECAS is available as a Matl&¥ source code. An academic license is available free of chatrgesvw.becas.dtu.dk.
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Figure 2: Section coordinate system, cross section fofcaad momentdM (left), and corresponding strainsand curvatures (right) (from
Blasques and Stolpe [5]).

relevant results are presented in Section 4. Finally, thelt®are discussed in Section 5 and the main conclusions are
presented in Section 6.

2. Structural model

The structural response of the beam is analyzed using time realel originally presented by Blasques and Stolpe
[5]. The model is based on the assumptions that the materibjaometrical properties present a certain degree of
continuity along the length of the beam. The original beamcstire is represented by a reference line defined along
the length of the beam going through the reference pointssefias of representative cross sections. The reference
line is discretized using beam finite elements whodénstss matrices result from the lengthwise integration of the
cross section dfiness properties.

A brief presentation of the methodology employed in theneation of the cross section ftiess properties is
described first. The beam finite element equations are denggt. Only the most relevant steps of the derivations
are presented here. The reader is referred to Blasques alpe {8] for further details.

2.1. Cross section analysis

The cross section $fhess properties are described by the parameters contaitteeléx 6 cross section gfhess
matrix Ks. This matrix establishes the relation between the sectioces and moments i, and the strains and
curvatures iny (see Fig. 2) through the cross section constitutive relalie= K. The components of the cross

. T . ) T
section forces and momeréts= [TT MT] are the transverse forcég andTy, and axial forcel,in T = [TX Ty TZ] ,
. . . T
and the bending momentd, and My, and torsional momenil, in M = [MX My MZ] .The components of the

generalized strain-curvature vecipl = |7 «7 T are the shear straing andry, and the axial strain; in 7. The
remaining components are the bending curvatdg@sdky, and the twist rate, in . The accuracy of the beam finite
element model depends to a large extent on the ability teectyrpredictk s. The high-fidelity general purpose cross
section analysis technique originally presented by Gtavet al. [10] and implemented by Blasques and Stolpe [5]
addresses this challenge and is employed here.

Consider a beam structure deforming under a given exteoadl (see Fig. 3). It is assumed that the total dis-
placement of an arbitrary point in a cross section of the bisasescribed by the sum of two contributions. The first
contribution consists of the displacements associatdutht rigid body translations and rotations of a referendstpo
in the cross section. The second contribution is associgithdhe displacements stemming from the in- and out-of-
plane deformation of the cross section henceforth refeoad warping displacements. Giavotto et al. [10] proposed
an approach based on this separation of the displacemetitefderivation of the cross section equilibrium equations
and consequently of the ftiess parameters Kis. The approach relies on a 2D finite element representatitmeof
cross section geometry (see, e.g., Fig. 7). Twedent element types are considered in this paper, namehgar|
four node element and a quadratic eight node element hatitceéderred to as Q4 and Q8, respectively. The 3D
material constitutive properties are defined at each elearahmay exhibit any degree of anisotropy. Each node of
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Figure 3: Schematic description of the deformation of aitwer beam subjected to a tip load. The reference line isheeksising beam finite
elements. The deformation of each cross section is desciibéerms of the rigid body motions and warping displacementross section
deformation is analysed using the cross section analysi8®CAS where a finite element discretization of the crossiee geometry is used to
approximate the warping deformation.

the finite element mesh has three displacement degreesdbimewhich approximate the 3D warping displacement
field. The cross section equilibrium equations are thervddrand given in matrix form (Blasques and Stolpe [5]) as

Kz Koo || wi |
0 Kug || w2 |

f1

KW:f@[
fo

1)

where the matricels 11 andK 1, are defined in Blasques and Stolpe [5] and the solution veetew; = [uT u//T /II ]T

T T T
andw, = [% ua a;] . The components of the right hand-side vectorsfare [0 67 O]T andf, = [0 (T#)" O]T

whereT 0 =[00 0T, —Tx0]". The Lagrange multiplier$; and, are associated with the six constraints introduced
to remove the rigid body motions from the warping displacetseThe cross section equilibrium equationsin (1) yield
the warping displacementsand the generalized strains and curvatuyréassociated with the rigid body translations
and rotations) which balance the cross section forces amdents in6.

The stithess parameters ks can now be determined. First the cross section equilibrigoagons in eq. (1)
have to be solved for six unit load vect@svhere each of the entries is set in turn to unity and the reimgio zero.
This corresponds to solving the following linear systemapiaions

_ Kigu K || Wi | | 2
KW =F | K KMHWZ]_[FZ] B
whereW; = [UT YAl ]T, W, = [‘%T ‘9[,)1; A}]T, Fp = [OT lg O T andF, = [OT T, 0" T Essentially, eq. (2) is

obtained from eq. (1) by replacign f; andf, with the 6x 6 identity matrixlg. The resulting solution matriw/ has

six columns yielding the solution for each of the six unitdogectors. Consequently, the solution to eq. (1) can be
obtained asv = W@, i.e., as the linear combination of the rowsWffor any givend. Consequently, the cross section
compliance matrix is given by

Fs=WTGW ©)

where matrixG is defined in Blasques and Stolpe [5]. For most practicaliegiibnsF is symmetric positive definite
and thus the cross sectionfBiess matrix is finally obtained frois = F'.

2.2. Beam finite element analysis

The cross section $fhess properties provided in the previous section are noegiated to generate the beam
finite element stthess matrices. The beam finite element static equilibrivnatgns yielding the nodal translations
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and rotations) for a given structure subjected to external Iofidsgiven by (cf. Bathe [3])
R R R I Ny Le AT R
Ka=f where K= ZKE = Zf B.K<Be dz 4)
=1 =10

wheren, is the number of elements in the beam finite element asserplig the length of elemerd, and the
summation refers to the typical finite element assembly. Bé@m finite element sthess matrixK e is given in
function of the cross section Stiess matriX s and the strain-displacement matfix = 8(Nc), whereB is the strain-
displacement relation aridk is the finite element shape function matrix. Herein, fourebdam finite elements with
cubic Lagrangean polynomials for interpolation functi@me used. Each node has six degrees of freedom — three
translations and three rotations.

2.3. Remarks

The application of the previously described methodologylmaillustrated for, e.g., aeroelastic analysis of wind
turbine blades. Wind turbine aeroelastic simulation tagten use beam finite elements to represent the blades of
the turbine (see, .e.g., Larsen and Hansen [13]). In thisegbrthe stifness parameters Ks can be éiciently and
accurately determined to derive high-fidelity beam finiene¢nt models to represent the blades (cf., e.g, Kim et al.
[11]). The instantaneous cross section forces and momeatgigen section of the blad#t) can be retrieved from
the aeroelastic simulations. The solutian@) can then be fciently obtained asv(t) = W6(t). Based orw(t) it is
possible, among other, to obtain accurate estimates @fritesteous strains and stresses or, as described in the next
section, the ERR associated with a longitudinal crack.

3. Fractureanalysis

The previously described beam model is now employed in théyais of the energy release rate (ERR) in cracked
beams using the Virtual Crack Closure Technique (VCCT). YBET formulas based on 3D finite element models
are presented first for reference. The formulas are subsdygaelapted to use the results from the cross section equi-
librium equations. Finally, other fracture mechanics @apts are introduced which will be used during the validation
work presented in Section 4.

3.1. Virtual crack closure technique — VCCT

Assume that the static equilibrium equatid®d = f for a given 3D solid finite element assembly have been
solved. HereinK, T, andf are the stiness matrix, displacement vector, and load vector assacigith the 3D solid
finite element assembly, respectively. Assume also thaglgr@ent reaction forceg = Kele, Ye = 1,...,ns have
been determined, wherg is the number of elements in the assembly. Furthermore,ddalmeaction forces and
displacements at any node of a given eleneeint the assembly are subsetsrgfandu.. Finally, consider a detalil,
cf. Fig. 4, of the same model including a crack where the ERfR [se determined. The crack coordinate system is
defined as a local right-hand coordinate system with itsim@g the crack tip. The xx3 -axes are aligned with the
crack plane where the;»axis points into the designated crack extension directidocording to Krueger [12] the
ERRs at the crack tip using 3D eight node solid finite elemeiitts different length at the crack tip, i.@, # ap, are
obtained as

1 5 5 1 2.1 1 3.3
G| = chri Auj,k’ G|| = glcri Auj,k’ G||| = glcri Aul‘yk (5)
wherec is the crack width. According to the VCCT principle the nodahction forces; = [F,l 72 F?] at nodei

multiply the relative displacementdl; = Tj — Tx wherel; = [0} T} 0| andTi = |G Ty T are the displacements

of nodej andk, respectively. Note that is obtained from the sum of the nodal reaction forces evatiiat each of
the four elements associated with nadgtuated in the negativeside of the x, x3 plane. The previous quantities
are defined in the crack coordinate systemxxxs). The equivalent formulation using higher order elemeats loe
found in Krueger [12].



Figure 4: VCCT using 8 node solid finite elements (cf. Kruede]). The nodal forces; = [F,l Fiz F?] at nodei are multiplied by the relative

displacemental;x = U — Ux wherelj = Ell ¢ U] andly = [T} U Uy are the displacements of noglandk, respectively. The crack coordinate
system is defined by {xx2,x3), whereas the global coordinate system is defined by (X, Y, Z)

3.2. VCCT in BECAS

The expressions for 3D solid finite elements in eq. (5) are adapted to use the results from the beam model
presented in Section 2. It is assumed at this point that tlaenbinite element equilibrium equations in eq. (4)
have been solved. The internal forces at each elem@ftthe beam finite element assembly are then given by
fo = Kolle. The cross section forces and momefhtat any position along the beam element can be determined
through interpolation of the nodal valuesfaf Note that for statically determined structures the distibn of cross
section forces and moments along the beam can be easilyrdegel from analytical calculations. It is also assumed
that the cross section equilibrium equations in eq. (2) teen previously solved such that is known. The cross
section generalized strains and curvatwresd 3D warping displacementsat each node of the cross section finite
element mesh are then obtained from the relation W@. The nodal reaction forcas at an elemeng of the cross
section finite element mesh are finally givenras= Kewe, whereK, andw, are the components associated with
element of K andw, respectively.

Recall that the total displacement of any point in the crestien is described as the sum of the displacements
associated with the rigid body translations and rotatiansg, the warping displacements. Note however that the rigid
body motions do not induce relative displacements at thekdip. Hence only the warping displacementsand
corresponding components of need to be taken into account for the evaluation of the ERRaaikahe tip. The
components of displacement and force necessary for the \&&€Tlations are described in Fig. 5 for the linear Q4
and quadratic Q8 elements. The components of the ERR detedmsing Q4 elements are given by (cf. Fig. 5(a))

1, 5 1 .. 1 1 5.3
G':Z_alri Aujy, Gy =2_alri Aujy, - G =2_alriAuj,k' ©)

Similarly to the 3D case, the relative displacemefiigy = u; - ux whereu; = [ul u? 3| anduy = [u} u2 U] are
the nodal warping displacements of nodandk, respectively. The nodal forces at t|1e crack tip of nbdssociated
with the warping displacements are given inr; = [rll r2 r?] Also like in the 3D caset; are sum of the nodal
reaction forces evaluated at each of the two elements asedaivith node situated in the negative,xside of the

X1, X3 plane. All previous quantities are defined in the crack ciatg system (xx2,X3). For ERR computations
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Figure 5: VCCT within the cross section finite element mesBECAS. (a) Using the Q4 linear element, the nodal fordes [r'l ri2 r'3] at node
i are multiplied by the relative displacementsjx = uj — uy, whereul = [qu uj uJ3] anduk = [U‘I uf ug] are the displacements of noglandk,

respectively. (b) Using the Q8 quadratic element the naztaksri = [r'l rh r'3] andri = [r'1 ri ré] at nodei and j, respectively, are multiplied by

the relative displacementsu;, = uj — up of nodel andn andAugm = ux — Uy of nodek andm, respectively. Note that the two-dimensional finite
elements have three displacements per node in order toxapate the in- and out-of-plane deformation of the crossi@ecThe crack coordinate
system is defined by {xx2,x3), whereas the global coordinate system is defined by (X, Y, Z)

using Q8 elements the expressions are (cf. Fig. 5(b))

1 1
G = o [r2Au, +r2adg, |, Gu = 2, [riauly, + rjaug ). 7)
1
G = 28 [Y?Aufn + r?Auim] ®

whereAu;, = U — U, andAugm = Ux — Um. The notation is the same as before so further details argeshior
brevity. Due to the two dimensional character of the beamcaosk section analysis formulatians 1 in eq. (6) and
(8).

Finally, note that although the analysis is based on a 2Defelgment discretization of the cross section, all 3D
components of the displacements at each node of the cragedftte element mesh are evaluated. As a consequence
it is possible to compute the ERR associated with mode Iidlcopening.

3.3. Other methods and concepts

This section briefly describes other fracture mechanichaust and concepts which will be invoked throughout
the validation work in Section 4.

3.3.1. Contour integration

A prominent way to obtain the ERR in linear elastic fracturecmanics is the well known J-integral originally
proposed by Rice [19] and further discussed by BudianskyRiod [7]. In this paper J-integral based calculations
of the ERR using 3D finite element models are included in otdesbtain additional reference values which are
independent of the assumptions underlying the analytidations or the VCCT. It should be noted that the J-integral
only yields the total energy release r&g; and does not provide the modal contributi@)sG;, andG,, .

3.3.2. Analytical solutions

Analytical solutions for stress intensity factors of cradh linear elastic single material cases can be found in
Murakami [14]. Two of the results are presented here whidhb&iused in Section 4.2 for validation. The analytical
solution for the Mode-llI stress intensity factor for a eydrical beam with a radial crack (see Fig. 6(a)) subjected to
a torsional momeni; is given as

—-0.969274M
K = TZ 9)
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Figure 6: Dimensions, material distribution, and crosdiseccoordinate system of the four beam cross sections @eresi in this study. All
dimensions in [mm]. (a) Circular beam with radial crack, gouare beam with eccentric edge crack, (c) bi-materialredoeam with centered
edge crack, and (d) bi-material square beam with crack ahtterial interface.

wherea is the crack length. The solution for the same beam subjexsteear forcdy is given as
_ (1.375776+ 1.354244) T,
" (1+v)als

wherey is Poisson’s ratio. The solution for a single edge crackesgibeam (see Fig. 6(b)) subjected to a torsional
momentM; is

(10)

3.22482M,
W25
whereW is the cross section width. The constants used in theseiegsaire based on the geometrical properties of
the cases presented in Section 4.2. The Mode-1ll ERR of Hotlementioned cases can be obtained from
(1+v)K3,
E

Ky = (11)

Gy = (12)

whereE is the Young’'s modulus.

3.3.3. Bi-material interfaces

For problems featuring a crack at the interface between imeat elastic, isotropic materials the asymptotic
solution for the near crack tip stress field oscillates wittréasing amplitude and frequency when approaching the
crack tip — the so-called “oscillating singularity”. Theaytical asymptotic solution for the near crack tip streskfi
depends on the four elastic constants only through the émahconstang defined as

1 In(1+’8) CB= (2/m1) (k1 — 1) — (k2 - 1) 33—

T 2r \1-8 C (u2/p1) (kK + 1) + (k2 + 1) O Ty

whereg is the second Dundurs parameter anid a material constant for generalized plane stress (Bdgpighdurs
[8]). u1 anduy are the shear moduli and andy, are the Poisson’s ratios of material 1 and 2, respectivédig. mode
mixity angley, defining the ratio of shear to normal traction at the intsgfacan also be written as

3 |G
Y = arctan G (14)

The asymptotic solution near the crack tip yields

Y =¢+nin(r) (15)

wherer is the distance from the crack tip apds a constant. Note that the mode mixitydepends on the distance
from the crack tipr and is not defined far — 0. That is, interface cracks are inherently mixed mode. &ieevofy

at a fixed distance = Ly is commonly used as a measure of the mode mix (O’Dowd [15])align (15) also applies
to the mode mixity predicted by the VCCT rifis replaced by the width of the element next to the cracktiResults
independent of the element size can then be obtained byatvajieq. (15) at a fixed distantg from the crack tip.

9
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Table 1: Young's modulusH,), Poisson’s ratiox,), number of finite elements (# elem) in the cross section pesthnear crack tip element size
(Aa) for all numerical experiments (cf. Figure 6). Threéelient mesh resolutions — coarse, medium, and fine — are eoeditbr case B4.

Case E; E, V1 Vo # elem. Aa
[Pa] [Pa] - - - [mm]
Bl 7x109 - 0.28 - 880 2.0
B2 7 x 1010 - 0.28 - 900 3.33
B3 2x10° 2x10" 045 0.0 784 35
coarse medium fine coarse medium fine
B4 2x 1019 2x10% 045 0.0 784 1444 3364 3.4 2.01 1.1
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(a) Case B1, load casig (b) Case B2, load cassg, (c) Case B3, load casl (d) Case B4, load cagey

Figure 7: Cross section finite element mesh and warping oheftion for selected load cases for the beams considerea isttidy (cf. Fig. 6).
Note that (d) shows the coarse mesh. The magnitude of the Isauldicated in Table 2. Deformation is scaled for visuslon.

4. Numerical experiments

This section describes the setup and presents validasoftsdor a series of numerical examples. The ERR eval-
uated using the proposed approach are compared with arglgtiutions and results from detailed three-dimensional
finite element models.

4.1. Setup

Four straight cantilever beams of constant cross sectitmaniength of 20 m were considered. All cross sections
feature a single crack that extends along the length of tamb&he geometrical dimensions and material distribution
for each of the beams are schematically described in Fig. @leTl indicates the mechanical properties of the
materials, number of elements in the cross section finitaefe mesh, and the element size near the crack tip for each
cross section. The beams were loaded by either forces or ntermpplied at the free end. The load cases considered
for each of the numerical experiments are presented in Tablehe magnitudes of the loads were chosen such that
the magnitudes of the von Mises stresses at midspan areasiimilthe diferent load cases. The 2D finite element
mesh used in BECAS for each of the cross sections is showmyiry FThe near tip element length in the cracked part
a; and in the uncracked pasp were chosen to be equal, i.e.= a; = a; for all cases. In BECAS both linear four
node elements Q4 and quadratic eight node elements Q8 wate us

Beam B1 in Fig. 6(a) corresponds to a single material beain ewtular cross section and a radial crack that
extends to its centre. Beam B2 in Fig. 6(b) is a single mdtedgam with square cross section and an eccentric edge
crack. The cross section finite element mesh for both caggesented in Figures 7(a) and 7(b). For these two cases
— B1 and B2 — analytical solutions exist for the ERR as giveSéation 3.3.2. Figure 6(c) shows the cross section
geometry and material distribution for the bi-material@egibeam with a centered crack —beam B3. The cross section
finite element mesh is presented in Fig. 7(c). The beam is ogetpof a soft and almost incompressible core material
— Material 1 — and a compressible andfstiaterial distributed on the outside — Material 2. The crgistlocated in
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Table 2: Forces %, fy, andf; —and moments #y, my, andm;, — considered for each of the four numerical experimentsHigi. 6). All loads are
applied at the free-end of the beam finite element model iichaally.

Load case fy fy f, my my m,
[N] [N] [N] [Nm] [Nm] [Nm]
B1 - 1x 10 - - - 1.0x 10
B2 - - - - - -1.0x 10
B3 20x10* 20x10* 6.0x10° -20x10* 20x10* 50x1C°
B4 - - -6.0x 1P - - 5.2x 10

the core material. Finally, Fig. 6(d) shows the same bi-ngtsquare beam cross section although the crack plane is
now placed at the interface between outer rim and core — belarfte same material properties as used for beam B3
were adopted. This model was analysed for thr&edint mesh discretisation levels and near crack tip elepizes
hereafter referred to amarse mediumandfinemesh. The coarse mesh is depicted in Fig. 7(d).

The 3D solid finite element models used in the validation vierié# and analyzed in ABAQUS [1] using 8 node
solid incompatible mode elements (ABAQUS element type A30@®he models were discretised using 61 elements
in the axialz direction for both the VCCT and contour integration anaysior VCCT calculations the 3D solid finite
element models were extruded versions of the 2D meshes ndHCAS. For the contour integration a fine mesh
was chosen with circular concentric element rings arourdthck tip each consisting of 12 elements. In ABAQUS,
the J-integral is calculated by integration along a circalaay of elements around the crack tip. For this purpose the
contour integral formulation is reformulated into a domaitegral. The ERR was evaluated along the third ring of
elements.

Currently BECAS cannot account foffects stemming from contact of the crack faces. Consequehéypre-
sented examples were designed to avoid interpenetratiheafrack faces and thus ensure that the results are physi-
cally meaningful.

An important motivation for using the BECAS VCCT approachktéad of a standard 3D finite element model
for fracture analysis is computationdfieiency. Hence, the computational time required by the BEGASCT
approach for the bi-material square beam with crack at thtenaainterface B4 (Fig. 6 (d)) was compared with the
corresponding 3D finite element model. Threffetient discretization levels were used for the 2D crossaeatiesh
employing linear Q4 elements. The 3D finite element modelewwwse used for the VCCT calculations as described
earlier in this section. The 3D finite element analyses weréopmed in ABAQUS [1] and comprised a single, linear
static analysis procedure using the default direct sparisers Both, the ABAQUS and the BECAS analysis, were
executed on a single CPU of a Dell PowerEdge R410 with twd Xeen X5650 six-core CPUs at 2.66 GHz and 24
GB memory.

4.2. Results

Five different types of results are referred to throughout the nexitsess. BECAS VCCT Q4 and BECAS VCCT
Q8 refer to the cases where the ERR was computed using the \6@€3d on linear Q4 and quadratic Q8 elements
in BECAS, respectively. 3D FE VCCT and 3D FE J-int. refershe tases where the results were computed using
the VCCT and contour integration techniques within a 3D dirliement model, respectively. Finally, the “analytical”
results refer to the results that were calculated usingrhéy/tcal expressions presented in Section 3.3.2.

All ERR results presented in Tables 3 through 5 refer to \safwaluated at a section situated at midspan, i.e., at
1.0m. The aim was to minimize the influence difexts stemming from the boundary conditions enforced at¢aeb
ends for each of the fferent modeling approaches. Henceforth the relatitferdinced, between two quantities A
and B in percent is defined ds = |1 — A/B| x 100.

The ERR values obtained for beam B1 — circular beam with radéck — and B2 — square beam with eccentric
edge crack — using the VCCT in BECAS are presented in Table!8 |dad cases 4, andm, — are those for
which analytical results were available. Results from BE3#ere obtained using linear four node Q4 elements and
guadratic eight node Q8 elements. The results are compatiedhe analytical solutions given in egs. (10) through
(12). Moreover, the contour integration (3D FE J-int.) ar@dG/T (3D FE VCCT) calculations performed using a 3D
solid finite element model are presented for reference. @laive diference is given with respect to the analytical
results.
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Table 3: Energy release rates for beam B1 and B2 (cf. Fig. 6adlcases according to Table Rnalytical values are given by eq. (10 - 12).
TheBECAS Q4 VCCERndBECAS Q8 VCCTefer to results obtained using VCCT within the cross sectinalysis tool BECAS with four and
eight node plane finite elements, respectively. BBeFE J-Int. and3D FE VCCTrefer to numerical results obtained using contour intégnat
and VCCT within a three-dimensional solid finite element elptespectively. The relative fiierence Rel. Err) reflects the deviation between the
values predicted by numerical simulations and the anallysiolutions.

Case B1 (Circular) B2 (Square)
Load case m, fy m,

G Rel. Err. G Rel. Err. G Rel. Err.

Method [Jm?] [%0] [J/m?] [%0] [3/m?] [%0]

Analytical 5497 - 27.50 - 1902 -
BECAS Q4 VCCT 5479 0.3 26.99 1.9 1904 0.1
BECAS Q8 VCCT 5481 0.3 27.24 0.9 1920 1.0
3D FE J-Int. 5607 2.0 28.26 2.8 1921 1.0
3D FE VCCT 5468 0.5 26.97 1.9 1904 0.1

Table 4: Energy release rates for the beam B3 (cf. Fig. 6)dloaaes according to Table 2. TRECAS Q4 VCCTefers to results obtained using
VCCT within the cross section analysis tool BECAS with foode plane finite elements. TB® FE J-Int. and3D FE VCCTrefer to numerical
results obtained using contour integration and VCCT withitree-dimensional solid finite element model, respdgtivehe relative diference
(Rel. Err) reflects the deviation between the values predicte8y¥E VCCTandBECAS Q4 VCCiTand the results obtained usi8B® FE J-Int.

Load case fy fy f, my my m,
Method

3D FE J-Int. Giot [?] 167.2 223 207 21.7 105 1070.1

G, [I/?] 0.0 21.0 21.0 21.0 0.0 0.0

Gy [Jm?]  10.2 0.0 0.0 0.0 10.2 0.0
BECAS Q4 G [J/?] 155.0 0.0 0.0 0.0 0.0 1064.2
VCCT Giot [Jm?] 1652 21.0 21.0 21.0 10.2 1064.2

Rel. Err. [%0] 1.2 5.6 1.4 3.3 3.1 0.6

G, [I/m?] 0.0 209 205 209 0.0 0.0

Gy [Jm?]  10.3 0.0 0.0 0.0 10.3 0.0
3D FE G [J?] 155.9 0.0 0.0 0.0 0.0 1064.6
VCCT Giot [Jm?] 166.1 20.9 20.5 20.9 10.3 1064.6

Rel. Err. [%0] 0.6 6.0 13 3.7 18 0.5

Table 5: Element size independent energy release rategéon B4 (cf. Fig. 6) evaluated at a distarige= 0.1mm (cf. Fig. 8). Load cases
according to Table 2. ThBECAS Q4 VCCTefers to results obtained using VCCT within the cross eactinalysis tool BECAS with four node
plane finite elements Q4. TI8D FE J-Int. and3D FE VCCTrefer to numerical results obtained using contour intégmaand VCCT within a
three-dimensional solid finite element model, respedtivalhe relative dierence Rel. Err) reflects the deviation betwe&D FE VCCTand
BECAS Q4 VCCTor three diferent finite element mesh discretizations (cf. Table 1),taed/alues predicted 83D FE J-Int.

Load case f, m,
Method
3DFEJ-Int. Gy [ym3] 5152 44545
Coarse Medium Fine Coarse Medium Fine
G, [I/m?] 2787 2767 2793 0 0 0
Gy [J/mz] 2646 2605 2545 0 0 0
BECASQ4 Gy, [I/m?] 0 0 0 44505 44559 44567
VCCT Giot [3/m?] 5433 5371 5338 44505 44559 44567
Rel. Err. [%] 5.5 4.3 3.6 0.1 0.0 0.1
G [Jm3] 2547 2475 2473 0 0 0
Gy [J/mz] 2715 2753 2731 0 0 0
3D FE G [J/mz] 0 0 0 44505 44570 44570
VCCT Grot [Jm3 5262 5228 5204 44505 44570 44570
Rel. Err. [%] 2.1 1.5 1 0.1 0.1 0.1
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Figure 8: Mode mixityy as a function of element sizgfor the bi-material square beam with crack at the matertetiace B4. Square and triangle
markers refer to BECAS and 3D FE results, respectively. dSufirkers are results obtained from VCCT. Hollow markerstlaeecorresponding
element size independent results for an evaluation distiafie 0.1mm.
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Figure 9: Selected results showing the variation of thars&aergy release rates along the lengthwise directifor beam B3 (see Fig. 6) for
different load cases (see Table 2). Values computed using VC@&iinvihe beam finite element model based on the cross sectagsis tool
BECAS, and 3D solid finite element model in ABAQUS. The origiithe coordinate system is at the clamped end of the beam.

The resulting ERR values for beam B3 — bi-material squarenbeith centered crack — are presented in Table 4
for six different load cases %, fy, f,, my, my, andm,. This combination of material lay-out and load cases makes i
possible to trigger and compare each ERR component indilid he ERR results for beam B4 — bi-material square
beam with crack at the material interface for two load casésandm, — and three dferent mesh refinements are
presented in Table 5. The results in this table were madeegiesize independent using an evaluation distance of
Lo = 0.1 mm as explained in Section 3.3.3 and illustrated in Fig.r8bdth Table 4 and 5 the ERR obtained using
VCCT in BECAS and the 3D finite element model for each of thféedént fracture modesG,, G, andG,; — are
presented for comparison. The total ERR valGgs obtained using VCCT in both BECAS and 3D finite element
model are compared against the values computed using gontegration in the 3D solid finite element model.

The variation of the ERR measured along the length of the heamalysed in Fig. 9. lllustrative results obtained
using VCCT in BECAS and 3D finite element models are presefiotedeam B3 for selected load cases.

Finally, Table 6 lists the number of degrees of freedom arddtal execution time for the BECAS and 3D finite
element models of beam B4. It can be observed that the BECARImexecute between 50 times (coarse mesh) and
173 times (fine mesh) faster than the corresponding ABAQUS8atso
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Table 6: Total computation time (assembly and solution)cfanputation of energy release rate using VCCT within thessection analysis tool
BECAS and three-dimensional finite element model in ABAQUSree diterent finite element mesh discretizations are considerethble 1.

BECAS 3D FE
Mesh density Degrees of freedom CPUtime Degrees of freedonU t@ne
- [s] [s]
Coarse 565x% 10° 1.34 1590x 10° 67.52
Medium 4620x 10° 2.24 2864 x 10° 177.10
Fine 1053x 10* 4.95 6529x 10° 858.60

5. Discussion

In the B1 and B2 cases, the results (see Table 3) computed B&ERGAS agree very well with the analytical
results, the largest relativeftirence being.9%. Note also that the relativeftirences between the 3D FE (VCCT
and J-int.) and analytical values is of the same order.

Results for the bi-material square beam with centered dB&ckhow that thés,y; values agree well, the largest
relative diference being 5% (see Table 4). The values are within the same range assthlésrebtained based on the
3D FE VCCT. Evaluating the relativeftierences between the individual componé&itsG,, andGy,, from BECAS
VCCT and the 3D FE VCCT shows that the results are in evenrbatpeeement. In this case the largest relative
difference between each of the values.B¥2 The BECAS VCCT results for beam B3 were also obtainedgusin
guadratic eight node elements (Q8). In this case the maxirelative diterence between BECAS VCCT and 3D FE
VCCT for each of the individual components waé%. These results are omitted for brevity.

Unlike the previous examples, the crack in beam B4 was platélde interface between two materials. From
Table 5itis visible that the results agree well with the 3DJHRt. in terms of the total energy release rate, the largest
relative diference being 5%. In this case the relative error values are slightly lathan those resulting from the
comparison between the 3D FE VCCT and the 3D FE J-int. Comgahnie BECAS VCCT and 3D FE VCCT results
for each individual componel@,, G, andG;, yields a maximum relative error of 13%. However, comparimg t
total energy release rat€g,; results in a maximum relativefiiérence of only 2%. Moreover, the mode mixity angle
y for this two cases — BECAS VCCT and 3D FE VCCT - also agrees wetlywith the largest absolute fierence
being 27°. The relatively small dference in mode mixity angles can also be observed in Figure 8.

The proposed beam model allows for the precise definitioh@fitarping displacements — the only contribution
to crack deformation — in terms of the cross section forcdsaoments. Consequently it is possible to gain an insight
into the relation between the beam and cross section loadidghe diferent ERR components. The deformed shape
considering only the warping displacements is presenté&itjare 7 for each of the cross sections. For the load cases
considered in case B1 and B3y, is the only non-zero component of the ERR. The mode Il crguning visible
in Fig. 7(a) and 7(b) is a result of the out-of-plane warpiefpdmation induced by the transverse forces and torsional
moment at the cross section of interest, respectively. # fuather observed that in these cases — B1 and B2 — the
in-plane warping displacements resulting from the bendiognent induced by the tip loading do not induce mode |
or Il deformation which explains wh§, andG,, are null. In the case of beam B3 note that the ERR values far loa
casefy, andmy are the same. This is due to the fact that the mode | crack ogeeipicted in Fig. 7(c) is a function of
the in-plane warping displacements induced by the crog®sdaending momenti, only, which is the same in both
load cases. Finally, unlike the cases of beam B1 and B2, imiathe bending moment will induce deformation at
the crack tip (see Fig. 7(d)) as a result of the interactidween the two materials.

All results in Tables 3 through 5 refer to the beam mid-sect@ues az = 1 m. The variation of the strain energy
release rates along the length directioere presented Fig. 9. The results are for beam B3 as computBEGAS
VCCT and 3D FE VCCT where the relativefidirence is computed using the 3D FE results as referencesvaibe
guadratic lengthwise variation of the ERR in Fig. 9 (a) angdigba result of the linear lengthwise variation of the
bending moment induced by the transverse tips Idadsd f,, respectively. The constant ERR value in Fig. 9 (c) is
a consequence of the constant torsional moment inducedebiptfjue applied at the tip of the beam. For all three
cases there is a good agreement between the ERR results EQABVCCT and 3D FE VCCT in the central region
of the beam. However, the results present considerablatitavs closer to the ends of the beam where the loads
and clamped constraints are applied. This is a consequéive different assumptions associated with the warping
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Figure 10: Schematic description of a crack in the trailidgeeadhesive joint of a wind turbine rotor blade.

deformation at the ends of the beam in both models. The 3D Femmas conceived to approximate the free
warping boundary conditions which are assumed in the pexpbeam model. The boundary conditions (fixed end
of the cantilever) and loads (free end of the cantileverjagaied in the 3D model using the so-called "distributing
coupling constraints” [1]. In this case, nodal forces ardbuted in such a way that the resultants of these forces
are equivalent to the forces and moments at a specified nefereode. Although this technique allows for warping
deformation of the end sections it does not ensure that theEBBnd BECAS warping fields are the same. The large
variations in the results suggest that the ERR is very deasd the warping deformation. Future work will focus on
further numerical experimentation to analyze the influesfdeeam slenderness and crack length in the decay length
of the dfects stemming from the boundary conditions. It is likelytta increase in beam slenderness and relatively
smaller crack lengths will contribute to a decrease of thegike decay length of the boundarffects.

lllustrative results comparing the computation times usg@ECAS and 3D FE are presented in Table 6. The
CPU time refers to assembly and solution of the finite elenegoiations. From the point of view of the 3D finite
element model note that the comparison is not entirely stersi. Factors like the discretization in the axial directi
the element type, the equation solver, the adoption of sabeting techniques, or the use of parallel computing
strategies, among other, will have an impact on the exettitive. From the point of view of the BECAS model
it should be noted that the execution times presented ineTatdnly hold for beams with constant cross section.
Nevertheless, the data in Table 6 gives an indication teeBHCAS VCCT approach is computationally vefii@ent.
Moreover, while the memory usage of théfdient models was not investigated, it is evident based onuheer of
degrees of freedom that the BECAS VCCT models require censiidy less memory.

The academic examples presented here illustrate the ptehthe framework. Future work will focus on ap-
plying the proposed framework to the analysis of cracks aidmdinations in wind turbine blades. Figure 10 shows
an example of a crack in the trailing edge adhesive bond ofnal wirbine blade. As the crack length is in the or-
der of centimeters and the length of the largest existingdsds in the order of 80 meters, three dimensional finite
element shell or solid models including the crack can be edatfpnally expensive. If it is conservatively assumed
that the crack has a large extension in the blade’s lengéhairection, the energy release rates at the crack tip can be
computed very ficiently using the framework proposed in this paper.

6. Conclusions

A methodology has been presented for theent and accurate evaluation of energy release rates (ER&)g
and slender beam structures with longitudinal cracks. Thestsiral response is analyzed based on a beam finite
element model comprising a finite element based cross semtialysis tool. The cross section analysis tool computes
the cross section $fhess and mass properties while accounting fteots stemming from material inhomogeneity
and anisotropy in beams with arbitrary section geometrg ERR is determined based on an implementation of the
Virtual Crack Closure Technique (VCCT) in the cross sectoalysis framework. A series of validation examples
with different cross section geometries and material distributiockiding a case with a crack at a bi-material in-
terface, were analyzed. The ERR for modes I, Il and Il wenmpared against analytical values, and VCCT and
contour integration results obtained from 3D solid finitereént models. All results showed very good agreement.
Furthermore, for the bi-material interface case the oleskbehavior matched well the expected behavior based on
the asymptotic solution for the near crack tip stress fielagrtermore, the féect of the boundary conditions on the
ERR values along the length of the beam were studied andittikience was established. Finally, it is shown that
the devised methodology uses only a fraction of the comiaumalttime required by 3D finite element models.

In sum, the results suggest that the proposed framework earséd to fiiciently and accurately compute the
mode |, Il, and 1l energy release rates in a general clas®afrbstructures with longitudinal cracks. Consequently,
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it is now possible to analyze a large number of model confifpma (varying crack location, orientation and size) or
instead consider levels of mesh refinement which are cortipngdly prohibitive within 3D finite element models.

Future work will focus on the application of this methodojdg the analysis wind turbine blades, namely, in the
fatigue crack growth analysis of adhesive bonds.
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