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SUMMARY 
 

This study aims to investigate the interaction between the human convective boundary layer 

(CBL) and uniform airflow from two directions and with different velocities. The study has 

two objectives: first, to characterize the velocity field in the breathing zone of a thermal 

manikin under its interaction with opposing flow from above and assisting flow from below; 

and secondly, implication of such a flow interaction on the particle transport from the feet to 

the breathing zone is examined. The results reveal that the human body heat transports the 

pollution to the breathing zone and increases concentration by factor of 5.5. Downward flow 

of 0.175 m/s does not change airflow patterns and pollutant concentration in the breathing 

zone, while the velocity of 0.425 m/s offsets the thermal plume and minimizes the 

concentration. Since the downward flow at 0.30 m/s collides with the CBL at the forehead 

level, it prolongs particle dwell time and consequently, increases the concentration in the 

breathing zone by 106%. Adding the assisting flow dilutes the pollution and reduces the 

concentration compared to case of a pure CBL. Findings that the assisting flow of 0.30 m/s 

and above reduces the velocity in the breathing zone due to the blocking effect of the chair 

suggest that furniture should be carefully considered in numerical results predictions and 

optimal air distribution. 

 

INTRODUCTION 

 

Indoor environment to which building occupants are exposed influences their comfort, 

productivity and health. In the current ventilation design, complex airflow interactions 

between ventilation flows and buoyant flows induced by the building occupants are not taken 

into account which results in inaccurate prediction of human exposure. Understanding this 

complex airflow interaction is important to provide a comfortable environment and prevent 

spread of pollution. 

 

At normal activity levels, human body dissipates about 30% of its total heat loss by means of 

convection (Murakami et al. 2000). Consequently, the convective flow rises around the 

human body, driven by the temperature difference between the warm body and colder 
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ambient air. This flow enveloping the body is known as a human convective boundary layer 

(CBL) which develops into a human thermal plume above the head. The airflow induced by 

the building occupants is important for indoor air quality, occupants’ thermal sensation and 

airborne diseases spread (Craven and Settles, 2006; Zukowska et al. 2008) 

 

Several studies in the past investigated the airflow characteristics around the human body in a 

calm indoor environment (Homma and Yakiyama 1988, Clark and Toy 1975, Licina et al. 

2013). Other studies attempted to examine how the CBL is influenced by the factors such as 

thermal stratification (Craven and Settles, 2006), body posture, clothing insulation, table and 

chair design (Licina et al. 2014, accepted). The disturbance of the CBL caused by the 

surrounding flow generated by the mechanical ventilation has not been studied extensively in 

the past. This is mostly due to a complex interaction between ventilation and buoyant airflows 

and experimental difficulties associated with a point-wise measurement technique. Some 

studies investigated interaction between the CBL and locally supplied airflows (Bolashikov et 

al. 2011a; Bolashikov et al. 2011b). Manikin exposed to a uniform horizontal airstream from 

behind (Melikov and Zhou, 1996) or from front (Heist et al. 2003) have also been studied. 

None of the studies in the past considered airflow interaction between the CBL and assisting 

flow from below nor opposing flow from above. 

 

It has been reported that the human convection flow plays important role in air transport 

around a human body (Rim and Novoselac, 2009). This air may be polluted from 

contaminants at the floor level or and may also carry the bio-effluents produced by the human 

body. Interaction of the CBL flow with the surrounding airflows generated by ventilation 

system will modify the human CBL and thus affect pollutant distribution around the human 

body. It has been known how mixing and stratified indoor environment affect pollutant 

dispersion in the vicinity of a human body (Rim and Novoselac, 2010); however, how 

different airflow patterns affect transport of pollutants and the personal exposure has not been 

studied in details. The first objective of this study is to investigate how the CBL interacts with 

opposing flow from above and assisting flow from below. The second objective is to 

investigate the personal exposure levels under the same airflow interaction in regard to the 

pollution source released from the feet.  

 

METHODOLOGIES 

 

An environmental chamber (11.1 x 8 x 2.6 m) equipped with displacement air distribution 

system was used in this study. Air was introduced to the chamber via 6 low momentum 

diffusers and exhausted via 6 ceiling mounted grills located at sufficient distance from the 

manikin to minimize interference between ventilation flow and the CBL (Figure 1, left). A 

calibrated non-breathing thermal manikin with female body shape of 1.23 m height in the 

sitting posture was positioned in the centre of the chamber. The manikin was dressed in the 

summer attire (t-shirt, trousers, underwear, socks and shoes) with a total heat output of 65 

W/m
2
. The room was kept at constant temperature of 23 ˚C and the minimum ventilation rate 

to provide calm conditions close to the manikin. The velocity measured (Dantec 

omnidirectional thermal anemometers; ±0.02 m/s accuracy) at 1.2 m distance from the 

manikin was below 0.05 m/s which indicated calm indoor conditions (Murakami et al. 2000). 

 

An airflow generator with dimensions 1.8 x 1 x 0.2 m (L x W x H) was designed to provide a 

uniform airflow that interacts with the manikin’s CBL. Within the airflow generator, 66 fans 

were installed and controlled via frequency regulator with a fine tuning. Airflow generator 

was mounted in two ways: (i) at the ceiling to generate a uniform forced-convection of 0.175, 
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0.3 and 0.425 m/s that opposes the convection flow of the manikin, and (ii) placed below the 

manikin to generate a uniform convection of 0.175, 0.3 and 0.425 m/s that assists the 

manikin’s convection flow (Figure 1, right). Prior to experiments the flow uniformity test was 

performed at 0.7 and 1 m distance from the outlet of the airflow generator and the velocities 

measured had a low discrepancy, below 10%. 

 

 
Figure 1. The Environmental chamber (left) and experimental setup (right). 

 

Airflow interaction in the breathing zone of the manikin was examined using Particle Image 

Velocimetry (PIV). The PIV equipment includes dual laser (190 mJ and wavelength 532 nm), 

synchronizer, 2MP CCD camera (1600 x 1200 pixels) and the computer. The laser sheet was 

aligned with a central vertical axis of the manikin to illuminate seeding particles that were 

discharged from the airflow generator. Seeding particles were generated in Six Jet Atomizer 

(TSI Inc.) with extra virgin olive oil (Bertolli) as an aerosol generating material. To obtain 

instantaneous images of the flow field, the camera (28 mm lens) was positioned 

perpendicularly to the laser sheet at 0.48 m distance, which yielded target image area of 20 x 

15 cm. In total, 540 image pairs were averaged and analyzed that corresponds to 54 s of the 

flow. More details about experimental setup and procedure are presented in the separate paper 

(Licina et al. 2014, accepted). 

 

Atomizing the same olive oil generated passive pollution with zero initial momentum released 

between the feet of the manikin to simulate particles re-suspended from the floor or pollution 

due to smelly feet. Pollutant release time was set to 2 min. A calibrated aerosol spectrometer 

(Grimm 1.108) with 16 size channels (from 0.3 μm to 20 μm) was used to measure a real-time 

aerosol concentration in the breathing zone of the manikin. Aerosol spectrometer had a 

sampling rate of 1.2 L/min and a sampling frequency of 1 Hz. Analysed particle size was 

within a range 0.5-0.65 μm because particles smaller in size are proven to be more severe 

compared to larger particles. Sampling time was 2 min during the pollutant release, plus 1 

min after termination of release (in total 3 min). Pollution source generated concentration 

level several orders of magnitude above the initial background concentration. Nevertheless, 

one minute prior to pollutant release the background concentration was recorded and 

subsequently deducted from results to minimize measurement inaccuracy duo to initial 

background concentration. 
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RESULTS AND DISCUSSION 

 

The results of the PIV measurements describe the CBL in a calm indoor environment and its 

interaction with mutually opposing and assisting flow at three different velocities. The results 

are presented in the form of averaged velocity contours with vectors where the length of an 

arrow is proportional to the velocity magnitude (Figure 2 and 3) and the velocity profiles as a 

function of the horizontal distance from the mouth (Figure 4). The results of Grimm particle 

concentration measurements are obtained under the same scenarios and compared to the case 

of a non-heated manikin under calm indoor conditions. 

 

Figure 2. The human CBL and its interaction with opposing flow from above. 

 

Figure 2 presents the mean velocity contours in the breathing zone of the CBL in a calm 

indoor environment (denoted as Pure CBL), and its interaction with the downward flow from 

above at the velocities of 0.175, 0.30 and 0.425 m/s. In addition, Figure 4 shows the change of 

the mean velocity as a function of the distance at level of the mouth for the same scenarios. In 

case of a calm indoor environment, the manikin generated the peak velocity in the mouth 

region of 0.185 m/s at 14 mm distance from the surface that steadily decreased to 0.095 m/s at 

150 mm distance. The results indicate that the downward velocity of 0.175 m/s created 

insignificant effect on the velocity profile in the breathing zone, as it was not able to penetrate 

the thermal plume. Manikin’s thermal plume exposed to a uniform downward flow at 0.30 

m/s was neutralized at the level of the forehead at 150-200 mm distance. In this case, the peak 
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velocity in the mouth region decreased from 0.185 m/s to 0.10 m/s (Figure 4). Downward 

velocity of 0.425 m/s was able to completely break away the human CBL. Only the region 

below the chin maintained upward air movement, as it was protected by the physical contours 

of the head. 

 

 
Figure 3. Interaction between the human CBL and assisting flow from below. 

 

Figure 3 shows the mean velocity contours of the manikin exposed to a uniform upward air 

movement at velocity of 0.175 and 0.425 m/s. Figure 4 shows the mean velocity profiles 

along the horizontal distance from the mouth when the CBL is interacting with mutually 

assisting flow at velocities of 0.175, 0.30 and 0.425 m/s. As expected, interaction between the 

pure CBL and mutually assisting flow at 0.175 m/s resulted in increased velocity in the 

breathing zone, compared to the case of the pure CBL (see also Fig. 2). This suggested that 

two flows had a mutually confluent character. Unexpectedly, upward flow velocities of 0.3 

m/s (Figure 4) and 0.425 m/s (Figure 3 and 4) reduced the velocity in the breathing zone and 

tilted the velocity vectors 45˚ towards the manikin’s face. This effect occurred because of a 

blocking effect of the chair and the separation of the assisting flow from the edge of the chair 

at the higher velocities. 

 

 
Figure 4. Mean velocity in front of the mouth: Impact of the opposing and assisting flow. 
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Figure 5 shows the results of concentration measurements in the breathing zone of the 

manikin when the pollution source is located between the feet. The results clearly show that 

the CBL of the manikin is able to pull the pollution from the feet to the breathing zone 

resulting in concentration of 4.4x10
5
, which is approximately 5.5 time higher compared to the 

case with no body heat. This increase in the personal exposure is contributed to the manikin’s 

body heat that lifts the particles from the feet and transports them to the breathing zone. This 

finding is in line with several studies in the past that showed increased particle concentration 

in the breathing zone compared to perfectly mixed concentration, when the pollution source is 

located close the manikin (Rim and Novoselac 2009; 2010).  

 

For opposing flow configuration (Figure 5, left), downward velocity of 0.175 m/s has 

insignificant effect on airflow characteristics and therefore, it was reasonable to expect 

concentrations similar to those in case of the pure CBL (denoted as Manikin On). Increased 

velocity of downward flow to 0.30 m/s induced the maximum concentration level is the 

breathing zone of 9.2x10
5
, which is about 106% above the pure CBL scenario. This is due to 

collision between the downward flow and the manikin’s CBL in the forehead region that 

maximizes the pollutant dwell time and therefore, the concentration in the breathing zone. 

Thermal plume of the manikin exposed to uniform downward flow at 0.425 m/s was 

completely offset which decreased pollutant concentration in the breathing zone by factor of 

13.5, compared to the pure CBL scenario. In this case particles originating at the feet level 

were pushed aside by the downward invading flow. 

 

  
Figure 5. Particle concentration in the breathing zone as a result of particle transport due to 

the CBL and mutually opposing (left) and assisting flow (right). 

 

Figure 5 (right), compares the concentration levels in the breathing zone when the manikin 

was exposed to a uniform upward flow at 0.175, 0.30 and 0.425 m/s. As seen, all three 

velocities caused the concentration reduction, compared to the case without surrounding flows 

(Manikin On). This lower concentration was attributed to increased dilution by the upward 

flow to which the pollution source was exposed to. Thereby, higher velocity from the airflow 

generator further reduced the concentration levels in the breathing zone. Upward flow at the 

velocities of 0.175, 0.30 and 0.425 m/s reduced the concentrations respectively by 46%, 58% 

and 77%, compared to the case of no surrounding flows. These results are somewhat in 

compliance with the previous findings that in rooms with higher air mixing, the breathing 

concentration depends less on the source location and it is closer to the average room 

concentrations (Rim and Novoselac, 2010). 

 

Ventilation systems that create flows opposing or assisting the CBL are commonly found in 

residential and non-residential buildings. Some examples of downward approach are ceiling 
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mounted grills that supply a uniform downward airflow, ceiling mounted personalized 

ventilation or ceiling fan. Examples of upward approach are upward piston flow, 

displacement or underfloor air distribution principle and locally supplied assisting 

personalized ventilation. This study has shown that vertical downward approach at 0.425 m/s 

is the most efficient in terms of preventing the pollution from the feet to reach the breathing 

zone. Offsetting the thermal plume is also useful in regard to an optimal design of ventilation 

with a vertically downward air distribution that is aimed to deliver a clean air to the breathing 

zone. On the other hand, increasing the downward velocity poses an additional energy penalty 

and increases the risk of thermal discomfort, as the velocity of 0.425 m/s exceeds the 

comfortable velocity range (ASHRAE 55, 2010). 

 

The results of interaction between the CBL and assisting flow from below at 0.30 and 0.425 

m/s reveal the importance of furniture arrangement on the airflow distribution in the indoor 

environment. The velocity reduction in the breathing zone created by the blocking effect of 

the chair is similar to phenomenon created by joined legs, as observed in numerical study by 

Li et al. (2013). Other studies also showed that table arrangement can largely affect airflow 

characteristics in the breathing zone (Bolashikov et al. 2011a; Licina et al. 2014, accepted) 

and in the manikin’s thermal plume (Zukowska et al. 2012). These studies and the present 

study suggest that the furniture design and arrangement should be taken into account in 

numerical results prediction and for designing an environment with optimal air distribution. In 

terms of pollutant concentration level in the breathing zone of the manikin placed in a 

uniform upward airflow, the results substantially differ from the ones when the manikin is 

exposed to a downward flow. These results emphasise the importance of the body orientation 

relative to the invading airflow direction and magnitude. 

 

The limitation of the current study is that it does not take into account a human respiratory 

cycle which needs to be investigated in the future. In addition, it should be emphasized that 

the results of this study are valid only at the room air temperature of 23 ˚C. Furthermore, 

other airflow directions generated by the ventilation systems should be considered because 

they create different air patterns. Different room air temperatures and air distribution around 

the human body may alter pollutant concentration levels in the breathing zone. 

 

CONCLUSIONS 

 

This study examines interaction of convective flow generated by human body with mutually 

assisting/opposing airflow and investigates its impact on transport of pollution from the feet 

to the breathing zone. Occupant’s orientation relative to the direction and magnitude of 

invading flow from the surroundings considerably modifies air patterns, and thus pollutant 

concentration in the breathing zone. The experimental results reveal that a heated manikin 

placed in a calm environment is able to transport the pollution from the feet to the breathing 

zone and increase the concentration by factor of 5.5, compared to the case of unheated 

manikin. Downward flow with velocity of 0.175 m/s does not change airflow patterns in the 

breathing zone and thus pollutant concentration, while the velocity of 0.425 m/s peels off the 

thermal plume and minimizes the concentration. Due to its collision at the forehead level, 

downward flow at 0.30 m/s maximizes the concentration in the breathing zone. The manikin 

exposed to the assisting flow at 0.30 m/s or higher has a lower velocity in the breathing zone 

due to the collision of the upward flow with the chair. This emphasizes the importance of the 

furniture arrangement around the human body for consideration in numerical predictions and 

optimal ventilation design. Adding the assisting flow to the CBL decreases the concentration 

in the breathing zone due to a dilution effect which is increased at the higher velocities. 



8 

 

 

REFERENCES 
 

ASHRAE Standard 55. (2010) Thermal Environmental Conditions for Human Occupancy 

(ANSI approved). 

Bolashikov Z, Nagano H, Melikov A, Velte C, Meyer KE. (2011a) Airflow characteristics at 

the breathing zone of a seated person: passive control over the interaction of the free 

convection flow and locally applied airflow from front for personalized ventilation 

application, Roomvent. 

Bolashikov Z, Melikov A, Velte C, Meyer KE. (2011b) Airflow characteristics at the 

breathing zone of a seated person: interaction of the free convection flow and an assisting 

locally supplied flow from below for personalized ventilation application Roomvent. 

Clark RP and Toy N. (1975) Natural convection around the human head. Journal of 

Physiology, 244:283–93. 

Craven BA and Settles GS. (2006) A computational and experimental investigation of the 

human thermal plume, Journal of Fluids Engineering, Vol.128/1251. 

Heist DK, Eisner AD, Mitchell W, Wiener R. (2003) Airflow around a child-size manikin in a 

low-speed wind environment. Aerosol Science and Technology; 37:303-14. 

Homma H and Yakiyama M. (1988) Examination of free convection around occupant’s body 

caused by its metabolic heat. ASHRAE Transactions, 94(1):104–24. 

Li X, Inthavong K, Ge Q, Tu J. (2013) Numerical investigation of particle transport and 

inhalation using standing thermal manikins. Building and Environment (60); 116-125. 

Licina D, Pantelic J, Tham KW, Sekhar C. (2013). Experimental Characterization of the 

Human Convective Boundary Layer in a Calm Indoor Environment, Conference 

Proceedings ASHRAE IAQ; Vancouver, Canada. 

Licina D, Melikov A, Pantelic J, Sekhar C, Tham KW. (2014) Experimental investigation of 

the human convective boundary layer in a quiescent indoor environment, Building and 

Environment 75, 79-91. 

Melikov A, Zhou G. (1996) Air movement at the neck of the human body. Proceedings of 

Indoor Air, Nagoya, Japan, Vol.1, pp.209-214. 

Murakami S, Kato S, Zeng J. (2000) Combined Simulation of Airflow, Radiation and 

Moisture Transport for Heat Release from a Human Body Building and Environment (35), 

6:489–500. 

Rim D. and Novoselac A. (2009) Transport of particulate and gaseous pollutants in the 

vicinity of a human body, Building and Environment (44), 9: 1840-1849. 

Rim D. and Novoselac A. (2010) Occupational exposure to hazardous airborne pollutants: 

effects of air mixing and source characteristics. Journal of Occupational and 

Environmental Hygiene, 7(12), 683-692 . 

Zukowska D, Melikov A, Popiolek Z. (2008) Impact of Thermal Plumes Generated by 

Occupant Simulators with Different Complexity of Body Geometry on Airflow Pattern in 

Rooms. Proceedings of the 7th International Thermal Manikin and Modelling Meeting – 

7I3M, Coimbra, Portugal, Paper 8. 

Zukowska D, Melikov A, Popiolek Z. (2012) Impact of personal factors and furniture 

arrangement on the thermal plume above a sitting occupant Building and Environment 

(49); 104-116. 


