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SUMMARY 
 

The paper compares thermal environment conditions created by four HVAC systems: mixing 

ventilation, chilled ceiling combined with mixing ventilation, chilled ceiling with mixing 

ventilation and personalized ventilation, and chilled ceiling combined with personalized 

ventilation only. Measurements were performed in a test room arranged as an office with 

2 workstations and 2 seating occupants resembled by thermal manikins. Heat gain of               

66-72 W/m
2
 was simulated in the room (occupants, computers, lighting, solar gain). The air 

temperature in the chamber was maintained at 26°C and 28°C. Personalized ventilation 

supplied air at non-isothermal condition with temperature of 25°C. 

 

Results showed that the compared methods generated almost the same thermal environment in 

the occupied zone. However at the workstations the personalized ventilation combined with 

chilled ceiling provided more cooling and decreased the radiant temperature asymmetry 

created by the simulated warm window surface. Chilled ceiling combined with PV alone may 

be applied successfully in practice. 

 

INTRODUCTION 
 

Building sector uses more than 40% of the fuel and energy consumption, of which nearly half 

is spent on providing comfortable indoor environment. The ventilation systems currently used 

in buildings are mostly total volume mixing ventilation (TVMV) systems. These systems 

require a considerable amount of energy. They are centrally controlled and create uniform 

indoor environment which may not be preferred by all building occupants.  

 

Radiant cooling systems like chilled ceiling (CC) are becoming more popular cooling solution 

as they remove greater part of sensible heat gains in spaces by radiation. CC has to be 

combined with a ventilation system to provide fresh air into the room. Most often it is mixing 

ventilation (MV) and rarely displacement ventilation. Another ventilation principle is 

personalized ventilation (PV), which, so far, has not been combined with radiant cooling. It 

has been documented that PV improves inhaled air quality because it delivers clean air 

directly to occupants’ breathing zone (Melikov, 2004). The elevated air movement at the 

breathing zone improves perceived air quality (Melikov and Kaczmarczyk, 2012) and 
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occupants’ thermal comfort (Kaczmarczyk et al., 2006). Previous studies performed by 

Kaczmarczyk et al. (2004) showed that PV decreases Sick Building Syndrome (SBS) 

symptoms in comparison with MV at the room air temperatures of 23°C and 26°C. 

Furthermore, it was shown that PV provides effective convective cooling of the body parts 

exposed to the air flow.  

 

The combination of PV with CC has potential to provide more efficient cooling of occupants 

because of aggravation of convective and radiant cooling. PV provides increased convective 

cooling directly to occupants at their workstations and can be controlled according to their 

individual preferences (Kaczmarczyk et al., 2002). Whilst, CC creates “cool head and warm 

feet” environment which is more preferable by occupants than “warm head and cool feet” 

environment provided often by total volume systems (Imanari et al., 1999). Thus combining 

these two systems should be an effective way to improve the thermal comfort in rooms at 

higher temperature than the upper limit of 26°C as recommended in the standards (EN 15251, 

2007). It was reported that increasing the maximum allowed air temperature in the room and 

implementing PV system may be an effective energy-saving strategy (Schiavon et al., 2010). 

Under certain operating conditions combination of CC with PV instead of MV is expected 

also to lead to reduction of the energy consumption. When the energy use is considered the 

variable air volume MV systems can work in a similar way as PV, but the response time of 

these systems is longer than the PV systems, thus the thermal comfort perceived by occupants 

will be reduced. 

 

The objective of the this research was to identify and compare the environmental conditions 

in the room obtained by convective cooling only and convective cooling combined with 

radiant cooling with total volume air distribution and air distribution locally at occupied 

workstations. The results on the thermal environment are reported in this paper. The 

performance of the systems with regard to contaminants distribution is reported by 

Lipczynska et al. (2014).   

 

METHODOLOGIES  

 

The thermal environment provided with total volume mixing ventilation (TVMV), chilled 

ceiling combined with mixing ventilation (CCMV), chilled ceiling combined with mixing 

ventilation and personalized ventilation (CCMV/PV), and chilled ceiling combined with 

personalized ventilation (CC/PV) was studied in a climate chamber arranged as an office with 

2 workstations (Figure 1). At each workstation (WS1 and WS2) a personal computer was 

placed. Heated panels on one of the walls and on the floor simulated solar heat gains. Two 

thermal manikins dressed in summer clothes (total insulation with chair of 0.59 clo) were 

used in the experiment to simulate occupants. The body surface temperature of the manikins 

was controlled to be the same as the skin temperature of an average person in state of thermal 

comfort. The total heat loads in the room were 72 W/m
2 

at 26°C (occupants: 66 W/manikin; 

computers: 65 W/computer; direct and radiant solar heat load: 654 W; lighting: 160 W) and 

66 W/m
2
 at 28°C (occupants: 53 W/manikin; computers: 65 W/computer; direct and radiant 

solar heat load: 553 W; lighting: 160 W).  

 

PV used round movable panel (RMP) as an air terminal device at each workstation. The RMP 

was used as it has high efficiency in delivering clean air (Bolashikov et al., 2003) and allows 

for changing its position according to occupant preferences. PV supplied air at temperature of 

25°C. Linear diffusers mounted at the centre of the ceiling were used for MV and were 

supplying air at difference of 10 K between supply and room air temperature. Exhaust 
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diffuser was located in the corner of the room at the right side from the entrance. There was 

no air recirculation in the systems. Chamber is equipped with 18 radiant panels which are 

built-in the suspended ceiling. Each panel had a dimension of 1190x590x20 mm. They totally 

covered 75% of floor area. The supply air flow rate for ventilation was calculated according 

to the recommendations in EN 15251 (2007) for category II as a sum of flow rate needed for 

removal of low-pollution from building materials, qB (12 L/s), and flow rate for removal of 

pollution from occupants, qP (7 L/s per person). The supply air flow for MV, qMV, in CCMV 

case was a sum of those values, qB and qP, and was equal to the total supply air flow, qtot 

(26 L/s). In cases of CCMV/PV system the MV supplied the air flow required because of 

building emission, qB, and the PV supplied rate because of people occupancy, qP. The total 

ventilation rate qtot was a sum of flow rate supplied by the MV, qMV, and by the PV, qPV. The 

personalized air flow rate, qPV, was either 7 L/s (equal to qP required by standards) or 15 L/s 

per person (qP,inc, increased qP rate). In CC/PV system each RMP supplied air flow which was 

a sum of 0.5qB rate (required by standards for building pollution removal) and air flow rate 

because of occupancy: qP or qP,inc. The temperature of cooling water, tw, circulating through 

CC panels depended on the heat load in a particular case studied and was set to maintain the 

defined air temperature constant. The total supply air flow rate in TVMV, qtot equal to qMV, 

was selected according to thermal balance to keep designed air temperature in the room. 

 

The system configurations were compared at the following conditions: design room 

temperature ta - 26 and 28 °C, air flow rate supplied by the MV, qMV, and the PV, qPV1 at WS1 

and qPV2 at WS2. The studied combinations are listed in Table 1. 

 

Table 1. Designed operating parameters for cases included in evaluation 

 

Case 

Conditions 

Design 

ta, °C 

Total 

sensible 

heat load, 

W/m
2
 

CC MV PV 
qtot, 

L/s tw, °C 
(inlet/outlet) 

qMV, L/s qPV1, L/s qPV2, L/s 

TVMV 26 72 - 82 - - 82 

CCMV 26 72 17.2/18.7 
26  

(qB+qP) 
- - 26 

CCMV/PV1 

28 66 

20.8/21.9 
12  
(qB) 

7  
(qP) 

7 
 (qP) 

26 

CCMV/PV2 21.5/22.5 
12  
(qB) 

15 
(qP,inc) 

15 
(qP,inc) 

42 

CCMV/PV3 21.1/22.2 
12  
(qB) 

15 
(qP,inc) 

7  
(qP) 

34 

CC/PV1 

28 66 

18.7/20.3 - 
13  

(0.5qB+qP) 

13  
(0.5qB+qP) 

26 

CC/PV2 19.9/21.3 - 
21 

(0.5qB+qP,inc) 

21 
(0.5qB+qP,inc) 

42 

CC/PV3 19.4/20.9 - 
21 

(0.5qB+qP,inc) 

13  

(0.5qB+qP) 
34 

 

Measurements of air temperature (ta), globe temperature (tg), operative temperature (to), air 

velocity (va) and turbulence intensity (Tu) were performed. Local discomfort due to draught 

and radiant temperature asymmetry was assessed. The measurements were performed in 21 

locations in the room (Figure 1) at the standardized height of 0.1 m, 0.6 m, 1.1 m, and 1.7 m. 

At additional heights of 0.05 m, 0.3 m, 2.0 m and 2.4 m va and Tu were measured. The heat 

loss from manikins’ body (whole body and body segments) was measured. For air and globe 

temperature measurements HOBO® U12 loggers with an accuracy of ±0.2 K were used 
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(Simone et al., 2013). Low velocity multichannel thermal anemometer SENSOANEMO 

5100SF with 8 omnidirectional anemometers was used for measuring air velocity with an 

accuracy of 0.02 m/s ±1% of readings. All measured results were average of 5 min. 

 

 
 

Figure 1. Lay-out of the room: plane view with measurement points and reference point (ref) 

 

New thermal factors, TF, where defined to compare the systems effectiveness in creating 

uniform thermal conditions in the room (1 and 2): 

 

refajaja tt ,,,TF      (1) 

 

refgjgjg tt ,,,TF      (2) 

 

where jat ,  and jgt ,  are average temperature values on j height, refat ,  and refgt ,  are temperature 

values in the reference point, shown in Figure 1. The thermal factor equal 1 represent uniform 

environment.   

 

The equivalent temperature, teq, represents the effect of non-evaporative heat loss from the 

human body (ISO 14505-2, 2006). It is used to predict the average occupant’s response to the 

thermal environment. The segmental and overall teq from thermal manikins were calculated 

using the following equation (3): 

 

calsskeq hQtt      (3) 

 

where tsk is the manikin skin surface temperature (°C), Qs is the manikin dry heat loss (W/m
2
), 

hcal is the calibrated heat transfer coefficient (W/m
2
K). 

 

The design air temperature, as defined in Table 1, was 26°C and 28° depending on the HVAC 

system. The air temperature was used as a design parameter instead of recommended in EN 

15251 (2007) and EN ISO 7730 (2005) operative temperature. Decision is reasoned by heat 

balance calculations, where air temperature was used to define supply air temperatures for 
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MV and PV systems. Furthermore, traditional control systems are not equipped with operative 

temperature sensors but air temperature sensors. To compare the thermal performance of 

analysed systems, i.e. their cooling effect, the equivalent temperature was referred to the value 

of air temperature in the reference point (4): 

 

ref,aeq ttt      (4) 

 

RESULTS AND DISCUSSION 

 

The thermal environment in the room, apart from the WSs, did not show substantial 

differences between all analysed systems and conditions studied. Because of that only 

selected conditions for each system are presented in this paper (TVMV, CCMV, CCMV/PV1 

and CC/PV1 – Table 1). Table 2 shows average air and globe temperature values. Effect of 

the radiant cooling on the globe temperature was smaller than it was expected. Differences 

between air temperature and globe temperature were small and in most measured points were 

within the accuracy of sensors. Only with TVMV system at height of 1.7 m and CCMV at 

0.1 m the globe temperature was up to 0.9 K higher than the air temperature.  

 

Table 2. Average measured values of air temperature (bold font) and globe temperature 

(normal font) in occupied zone 

 

Case TVMV CCMV CCMV/PV1 CC/PV1 

Average temperature, ºC 26.1 / 26.4 26.1 / 26.3 28.2 / 28.2 28.2 / 28.2 

SD, K 0.5 / 0.6 0.4 / 0.5 0.4 / 0.5 0.3 / 0.4 

Minimum temperature, ºC 25.3 / 25.4 25.3 / 25.7 27.7 / 27.7 27.8 / 27.8 

Maximum temperature, ºC 27.2 / 27.6 27.3 / 27.6 29.3 / 29.6 29.2 / 29.5 

Maximum difference, K 1.9 / 2.2 2.0 / 1.9 1.6 / 1.9 1.4 / 1.7 

Average maximum horizontal 

difference at the same heights, K 
1.5 / 1.9 1.3 / 1.6 1.1 / 1.4 1.0 / 1.3 

Vertical 

difference  

1.1 m - 0.1 m 

average, K 0.2 / 0.1 0.3 / 0.0 0.0 / -0.1 0.0 / -0.1 

maximum, K 0.5 / 0.4 0.6 / 0.3 0.2 / 0.3 0.3 / 0.2 

PD, % 0.5 / - 0.5 / - 0.4 / - 0.4 / - 

 

The vertical distribution of thermal factors TFa and TFg, calculated according to equations 1 

and 2 at height of 0.1 m, 0.6 m, 1.1 m and 1.7 m, indicates that all systems create environment 

with thermal parameters close to design values. At all measured cases factors achieved values 

of 0.99-1.01. Vertical differences between head and ankle levels (for seated person 1.1 m and 

0.1 m) were at all cases within high expectations' category A (EN ISO 7730, 2005). 

The maximum predicted PD caused by it was 0.5% at cases TVMV and CCMV. 

 

The highest values of the draught rate (DR) in the occupied zone appeared in the reference 

cases TVMV and CCMV, where air flows supplied through MV were higher. In those cases 

DR was within range of 13.9-21.7%. In case CCMV/PV DR was within 5.1-10.7% and with 

CC/PV within 2.9-13.3%. In most cases the highest air velocity values in occupied zone were 

measured at height of feet (0.05-0.1 m) and were in the range of 0.20-0.33 m/s. Vertical 

profiles of average velocity were similar in all cases (average velocity in the range             

0.10-0.16 m/s). This indicates small differences in the air flow pattern in the room between 

the studied systems. It is estimated that the biggest influence on the air flow pattern in the 

room has the convective plume from the heat sources, WSs (occupants with computers) and 

solar gains (warm window and heated by the solar radiation floor). 
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Globe temperatures measured at the locations at height of 0.6 m (the abdomen level of 

a seated person) were equal to operative temperatures. For all systems the impact of chilled 

ceiling was not big. Differences between air temperature and operative temperature at height 

of 0.6 m were within ±0.2 K, which is equal to the accuracy of the sensors. Figure 2 shows 

operative temperature distribution in the room. It can be seen that warm surface of the 

window results in higher operative temperature at the part of the room near to it than in the 

rest of the room. Differences in the operative temperature on the two sides of the WSs were in 

the range 0.7-1.1 K and may be expected to cause local thermal discomfort of occupants. 

This non-uniformity was studied in more details with thermal manikins and is presented later 

in this paper.  

 

  

to,°C:  <25,5 25,5-25,9 26,0-26,4 26,5-26,9 ≥27,0
 

 

 

 

 

to,°C: <27,5 27,5-27,9 28,0-28,4 28,5-28,9 ≥29,0
 

 

Figure 2. Plane distribution of operative temperature at 0.6 m: a, b) design ta 26°C; 

c, d) design ta 28°C. Color scale presents distribution in 0.5 K steps. Average (ave), minimum 

(min), maximum (max) and standard deviation (SD) values at this level are presented 

 

 

a) b) 

c) d) 
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Figure 3 shows the influence of the analysed systems on the cooling effect (Δt) determined for 

the selected parts of human body. Results from case CCMV/PV3 were equal to the case 

CCMV/PV2, and from the case CC/PV3 were equal to CC/PV2. Therefore the cases 

CCMV/PV3 and CC/PV3 are not presented in Figure 3. It can be seen that compared to the 

other systems the PV cools most the upper part of the body (head, chest, neck and upper 

arms). Depending on the flow of supplied air through the PV the cooling effect at the face was 

from -2.4 K to -14.0 K at WS1 and from -5.0 K to -9.5 K at WS2. Comparing to the reference 

cases TVMV and CCMV the difference in the cooling effect of PV was from -0.4 K at air 

flow of 7 L/s to -14.0 K at 21 L/s. Use of the PV resulted in whole body cooling effect up to    

-0.8 K at the highest air flow from RMP of 21 L/s. 
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Thermal manikin: WS1

TVMV CCMV CCMV/PV1 CCMV/PV2 CC/PV1 CC/PV2
qPV=7L/s qPV=13L/sqPV=15L/s qPV=21L/s  

 

Figure 3. Cooling effect determined with thermal manikin at WS1 (results at WS2 are 

analogous to WS1) for different cases studied 

 

Results obtained with both thermal manikins showed a thermal asymmetry between left and 

right body sides as a result of the localization of WSs next to the window. For upper arms at 

the reference cases TVMV and CCMV the difference in equivalent temperatures was         

2.0-3.6 K at WS1 and 2.6-2.8 K at WS2. Use of the PV decreased it to values from 1.3 K to 

1.9 K at both WSs depending on the air flow rates supplied through RMP. 

 

CONCLUSIONS 

 

The study shows the advantages of combining personalized ventilation with cooling ceiling. 

Based on the obtained results following conclusions were made: 

 

1. All systems generated similar environment in the occupied zone apart of the workstations; 

 

2. PV combined with CC provided more cooling for the whole body and for the body 

segments in comparison with the remaining systems; 
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3. Compare to the other studied systems PV combined with CC decreased the non-

uniformity in the body heat loss at the workstations caused by the simulated warm 

window; 

 

4. Chilled ceiling combined with PV alone may be applied successfully in practice and will 

be superior to chilled ceiling combined with mixing ventilation.  

  

ACKNOWLEDGEMENT 

 

This research was performed and funded at the International Centre for Indoor Environment 

and Energy. The stay of Aleksandra Lipczynska at the Centre was supported by a scholarship 

under the "DoktoRIS - Scholarship programme for innovative Silesia" co-financed by the 

European Union under the European Social Fund covered by Human Capital Programme. 

 

REFERENCES  

 

Bolashikov Z., Nikolaev L., Melikov A. et al. (2003) New air terminal devices with high 

efficiency for personalized ventilation application. In: Proc. of Healthy Buildings 2003,  

4-11 December, Singapore, pp. 850-855. 

EN 15251 (2007) Indoor environmental input parameters for design and assessment of energy 

performance of buildings addressing indoor air quality, thermal environment, lighting and 

acoustics. Brussels: European Committee for Standardization. 

EN ISO 7730 (2005) Ergonomics of the thermal environment - Analytical determination and 

interpretation of thermal comfort using calculation of the PMV and PPD indices and local 

thermal comfort criteria. Brussels: European Committee for Standardization. 

Imanari T., Omori T., Bogaki K. (1999) Thermal Comfort and energy consumption of the 

radiant ceiling panel system. Comparison with the conventional all-air system. Energy and 

Buildings, Issue 30, pp. 167-175. 

ISO 14505-2 (2006) Ergonomics of the thermal environment - Evaluation of thermal 

environments in vehicles - Part 2: Determination of equivalent temperature. Brussels: 

European Committee for Standardization. 

Kaczmarczyk J., Melikov A., Bolashikov Z. et al. (2006) Human response to five designs of 

personalized. International Journal of Heating, Ventilation and Refrigeration, 2(12), 

pp. 367-384. 

Kaczmarczyk J., Melikov A., Fanger P. (2004) Human response to personalized ventilation 

and mixing ventilation. Indoor Air, 14(8), pp. 17-29. 

Kaczmarczyk J., Zeng Q., Melikov A. et al. (2002) Individual control and people’s 

preferences in an experiment with a personalized ventilation system. In: Proc. of 

Roomvent 2002 Conference, Copenhagen. 

Lipczynska A., Kaczmarczyk J., Melikov A. (2014) Performance of personalized ventilation 

combined with chilled ceiling in an office room: inhaled air quality and contaminant 

distribution. Indoor Air 2014 Conference, Hongkong. 

Melikov A. (2004) Personalized ventilation. Indoor Air, 14(7), pp. 157-156. 

Melikov A., Kaczmarczyk J. (2012) Air movement and perceived air quality. Energy and 

Environment, Issue 47, pp. 400-209. 

Schiavon S., Melikov A., Sekhar, C. (2010) Energy analysis of the personalized ventilation 

system in hot and humid climates. Energy and buildings, Issue 42, pp. 699-707. 

Simone A., Olesen B., Stoops J. et al. (2013) Thermal comfort in commercial kitchens      

(RP-1469): Procedure and physical measurements (Part 1). HVAC&R Research, Issue 19, 

pp. 1001-1015. 


