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Analysis of resting state functional magnetic resonance imaging (rs-fMRI) using 

graph theory is of increasing interest. Here, brain regions are represented as nodes 

and links between nodes are present if the statistical dependence of the time 

courses exceeds a given threshold. So-called communities can be found as clusters 

of nodes with high internal linking and sparse linking to the rest of the network and 

the degree to which a network can be divided into such communities can be 

measured using the modularity index [1]. Modularity has shown to be related to e.g.

normal aging [2], working memory [3], and motor learning [4]. However, it is still 

unknown whether modularity reflects the best grouping of nodes. Here we use the 

Infinite Relational Model (IRM) [5,6] and two constrained variants thereof and test 

their clustering reproducibility and ability to predict unseen data.

Three rs-fMRI datasets were used. The Copenhagen set was acquired locally and 

consists of 30 healthy controls (HC), TR=2.49s, 480 vol. In addition we used two 

datasets from the FCON1000 database. The Leipzig set consists of 37 HC, TR=2.3s, 

195 vol. and Beijing Zhang part2 sets consists of 42 HC, TR=2s, and 225 vol. Data 

preprocessing included realignment and normalization to MNI305 space. The 

Copenhagen data was filtered using physiological (cardiac, respiration, motion) 

regressors [7]. The mean time series for each of the 116 brain regions included in 

the AAL atlas [8] was extracted for each subject and their correlation matrix was 

formed. The brain networks were created by thresholding these matrices 

individually to maintain the top d-percent links (Fig. 1). 

IRM is a nonparametric Bayesian Network model, which can be used to infer node 

clustering. Contrary to modularity, the IRM models both within-cluster and 

between-cluster link probabilities. Therefore nodes with a high internal linking could 

in fact be clustered separately if their relation to other clusters is different. By 

placing a Chinese Restaurant Process (CRP) prior on the node partitioning the 

number of clusters is determined during the model inference. A Beta distribution is 

used as prior for the cluster link probabilities, these probabilities can however be 

integrated out and thus model inference only involves sampling the node cluster 

assignments using Markov chain Monte Carlo. Here we seek common node 

clustering and cluster link probabilities over subjects. In addition we consider two 



constrained versions of the IRM. The Bayesian Community Detection (BCD) [9], 

which for a given cluster restricts between-cluster link probabilities to be strictly 

lower than the within-cluster link probability. The Infinite Diagonal Model (IDM) 

allows individual within-cluster probabilities but restricts all between-cluster link 

probabilities to be equal. IDM can thus be seen as a probabilistic version of 

modularity. The NPAIRS [10] split-half framework was used to evaluate the models 

predictability and reproducibility for different graph link densities (2, 4, 8, 16, and 

32%). Predictability was measured using test likelihood of data from one split when 

the model was trained on the other split. Predictability was calculated as the 

normalized mutual information between node partitions of the two splits.

For all link densities and datasets investigated BCD and IRM showed clearly better 

predictability than IDM and BCD had better or on par predictability compared with 

IRM (Fig. 2). For link densities greater than 4% IRM and BCD had higher 

reproducibility than IDM, and BCD had better or on par reproducibility compared 

with IRM.

Resting state organization in fMRI networks is consistent with a model based on 

community structure. Modelling between-cluster linking significantly increases 

predictability and reproducibility. Node partitioning and link probabilities together 

represent a compressed description of the network, which allows for group 

inference, behavioral measures correlation, and is a potential new expressive 

bio-marker.



Figure 1



Figure 2
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