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Abstract

Rescheduling rolling stock during a disruption is a passenger railway optimization prob-
lem. In current practice this is typically optimized manually despite the high complexity and
high runtime requirements of the task. In this paper we propose a path-based mathematical
formulation that is solved using column generation in a complete Branch-and-Price frame-
work. In contrast to flow-based approaches our formulation is more easily extended to handle
certain families of constraints, such as train unit maintenance restrictions. We benchmark the
framework against real-life instances provided by the suburban railway operator in Copen-
hagen (DSB S-tog). In combination with a lower bound method we show that near-optimal
solutions can be found within a few seconds during a disruption. In addition we show that
framework is also able to find solution within a few minutes for non-disturbed timetables.

Acknowledgements: The Danish Council for Strategic Research and DSB S-tog

1 Introduction

Rolling stock scheduling is a non-trivial task which must be addressed by railway operators on
a regular basis. It is often hard just to find a feasible solution, i.e., an assignment of physical
train units such that all train services are covered, depot capacities are respected, end-of-day
depot balances are correct and such that several other business rules are satisfied. More than one
feasible schedule might exist and it is important to find a good solution as rolling stock is one of
the major expenses for a railway company. Rolling stock schedules are usually made months in
advance by planners. These are then given to dispatchers who may make some changes or add
details to the schedules a few days prior to operation. Rolling stock scheduling or circulation has
been subject to much research over the last two decades which has advanced this research field. An
approach by Schrijver [27] considers a model for determining the minimum number of units needed
for a single train line. Fioole et al. [16] propose a richer model that includes train compositions,
demand shortage, shunting movements and train splitting. More recently Nielsen et al. [22] adopt
a version of this model for scheduling in real-time during disruptions. The majority of models and
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Figure 1: An example of a timetable for a single line with trips going between two end-stations.
Two trip-sequences have been highlighted for illustrative purposes.

solution methods are focused on offline planning and are not capable of the real-time rescheduling
needed for handling large disruptions.

Inevitably unplanned events occur on a daily basis that disturb the pre-planned operation.
Depending on the severity a disrupted situation may occur rendering the rolling stock schedule
infeasible. Examples of large disruptions include: passenger induced delays, rolling stock break-
down, signalling problems, and infrastructure damage or failure. Large disruptions occur multiple
times per year and the situation requires a new schedule to be found immediately. The impact
of a disruption may be hard to comprehend for rolling stock dispatchers and high quality re-
covery solutions may be very hard to find. If not handled promptly and thoroughly, the effects
of the disruption can easily cascade and result in even more problems. Real-time rolling stock
rescheduling is an emerging area of research that has received relatively limited attention in the
literature [22, 18]. In recent years there has been a growing interest in this field but the topic still
remains a challenge.

We present and benchmark a Branch-and-Price (B&P) framework for solving the Rolling Stock
Rescheduling Problem (RSRP). Column generation is an interesting technique that has proven to
work well with many problems. It is already the state of art for railway crew scheduling [24, 25]
but applications in rolling stock rescheduling are limited [7, 23]. We present a unit-based rolling
stock model that can be solved using delayed column generation. To the best of our knowledge
such a model and approach have not been published before. A unit-based model presents a few
advantages such as the ability to model maintenance constraints. The proposed framework is
designed to work in a rolling time horizon scheme. Given a planned schedule and a point in time
the framework can identify units in depots and in transit, and reschedule the foreseeable future.
During disruption a new schedule must be found every time the timetable changes, e.g., due to
new or updated information about the disruption.

The rest of the paper is structured as follows. A description of the problem is given in Section 2
followed by a literature review. In Section 3 the optimization model is presented and described.
Afterwards in Section 4 the B&P framework is presented. Section 5 describes the test instances
and shows the experimental results. Finally, the paper is concluded in section 6

2 Problem Description

2.1 Terminology

To the public a timetable is a chart stating departure and arrival times of all trains in the system.
The timetable consists of a set of lines, where each line is a set of train trips which connect
the same origin and destination pair and contain the same subset of intermediate stations. A
limited number of trips on the same line can start or end at some intermediate station that is
different to the origin and destination. Every train trip is an individual journey from one origin
station to a destination station, and determines the departure times at every station from the
origin to the target. A trip does not, however, include or determine which physical train unit
should perform the given journey. Figure 1 shows a time-space diagram of a single line containing
multiple trips. Multiple trip legs constitute a trip, where each trip leg refers to two consecutive
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Figure 3: Examples of train compositions.

stations on a trip where the train stops. In other words, a trip consists of a sequence of connected
legs. A trip sequence denotes a continuous series of trips that can be performed by the same
physical train composition. That is, the same composition can be assigned to the whole set of
trips in the trip sequence without going into or out of the depot or require any shunting activity.
Trip sequences typically span a whole day and stay within a single line. Each line is serviced
by a set of trip sequences and every trip, except deadheading trips, is assigned to a single trip
sequence. Deadheading refers to an empty, non-revenue gathering train movement, which is used
to re-position rolling stock.

In reality we need to assign train units to every leg in a timetable; however, such a fine
level of detail is not needed as units are typically assigned to whole trips. In our approach this
assignment is too coarse and we therefore introduce subtrips that cover the gap between trips and
legs. A trip is partitioned into subtrips where each subtrip represents a sequence of connected legs.
Furthermore, we partition the trips such that every origin and target station of a subtrip is a key
station (depot- or end-station). Figure 2 illustrates the key stations in the S-tog network. Such a
partition enables our mathematical model to make relevant decisions such as coupling, decoupling
and turning. During disruptions a few additional key stations can appear since an infrastructure
blockage may require trains to turn around at other stations.

A train unit is the smallest inseparable vehicle we consider, i.e. a set of wagons or cars which is
not practical to separate on a day-to-day basis. In our study we only have one family of units that
consists of two different types; this means that every unit can be coupled together with any other
unit available, resulting in a longer train. Additionally, all train drivers can drive any type of train
unit, and all trains are self-propelled, i.e., do not need a locomotive for pulling. The important
types characteristics are the number of seats, the physical train length and the operational cost.

Units can be coupled together to form train compositions, where a composition is a set of units
in a specific order. Figure 3 shows examples of a train compositions. In this work the compositions
are implicitly determined by the individual assignment of train units to subtrips. We argue that
the composition plays a smaller role in our study for two reasons. Firstly, compositions on trips
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Figure 4: A disrupted timetable due to infrastructure blockage between station A and B. The
updated timetable resolves the situation by turning the train services at station A and B.

typically range from one to two units in size at the Copenhagen Suburban Railway Operator (DSB
S-tog), which means that we do not have any ordering conflicts when coupling or decoupling
units. One uncommon composition with three units can occur, which respects the maximum
length of the platforms on specific lines. However, in this composition all three units must be
of the same smallest type. Secondly, we are primarily concerned with disruptions, which means
that the ordering of individual units (in a composition of a train) for passenger convenience is
not a governing priority. Given a planning period with a pre-specified start and end time, the
rolling stock (re)scheduling problem entails assigning train units (i.e. rolling stock units) to every
timetabled trip-leg for the given planning period. The assignment is subject to a number of natural
constraints such as fleet capacity, train unit location and depot capacity. The problem is similar
and comparable to the multi-commodity flow problem.

The infrastructure owner and railway operator might define a rolling stock schedule as the
actual train-unit assignment of every departure. Note that we will also adopt an equivalent
definition which we find more natural from a train-unit perspective: A rolling stock schedule is a
chronological list of tasks performed by each train unit available. The possible tasks performed
by a train unit are subtrips, decouplings, depot movement and couplings.

2.2 Disruption Management

Trains do unfortunately not always arrive and depart on time. This is due to unplanned events
such as accidents, human mistakes, infrastructure failures, rolling stock breakdowns, and weather
conditions. In this paper we consider events that cannot be absorbed by network buffers and
will therefore lead to a disrupted situation on the network. In such cases, network operators
must make changes to the timetable in order to avoid a total breakdown. As a consequence of
timetable changes the rolling stock schedules and other planned activities may be rendered infea-
sible. Figure 4 shows an example of a disrupted line due to a blockage between two stations in
both directions. Once an updated timetable has been decided upon by the infrastructure owner
a new, candidate rolling stock schedule must be presented by the rolling stock dispatchers within
short time. In reality the timetable and rolling stock schedule are not determined completely inde-
pendently. The infrastructure owner cannot expect to carry out a timetable that is infeasible with
respect to rolling stock, and they are also not interested in cancelling more train departures than
necessary. Thus, when rescheduling rolling stock it makes sense to integrate timetable decisions
to some degree.

During a disruption the situation can be quite chaotic; it must be resolved as quickly as possible
consequently giving all actors little time to reschedule plans. In our case study (and probably in
many other cases) the infrastructure owners have exclusive control over all train activities while
the train operators have a supporting role. The infrastructure owners respond to a disruption
quickly by making train service cancellations or alterations. Predefined emergency plans exist and
are used as guides for handling the disruption. Their immediate goal is to avoid delay propagation
and further escalation. Depending on the time of the day and the location of the disruption, the
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available time before a decision must be made ranges from 3 to 20 minutes. Groth et al. [17]
present an in-depth description of the disruption management process. A temporary timetable
is formed and the operators must try to reassign train units according to the new disrupted
timetable. This can become a non-trivial task and the new plans may be far from optimal since
the issues are resolved sequentially by degree of severity and priority using rules of thumb while
only considering the immediate future. Train units of cancelled train services are e.g. usually put
into the nearest depot without considering the long-term consequences. After the disruption is
resolved the original timetable is restored by the infrastructure owners, and (in our case study)
the railway operator has, by contract, a 60 minutes time limit to recover the rolling stock (and
all other) schedules. It may however be impossible to cover all trains at this point in time due to
the effects of the disruption. The network operator must thus be able to find new plans quickly
both during and after the disruption. This highly motivates the use of a computer-aided decision
support system.

Computer-aided decision support systems are already used by DSB S-tog during the different
planning phases for determining the rolling stock schedules. However, the system tends to have a
higher level of abstraction and requires more runtime than is available during a disruption. In the
planning phases, anonymous units, whose initial positions can be freely chosen, are routed. For
detailed real-time planning we need to adhere to the current positions of the units and we also
need to consider individual unit restrictions. Significant unit properties such as time or mileage
limits – due to maintenance requirements – should be respected. Other less critical unit-specific
properties are even interesting to consider in a planning context, e.g., paths for trains equipped
to carry bikes or trains covered by commercials.

Increasing the desired level of detail typically hinders the runtime performance. Sacrifices must
be made in order to achieve desirable runtimes. During a disruption the rolling stock dispatchers
allow themselves to relax some of the desirable and non-critical business rules, e.g., they might be
willing to do a few odd or unplanned shunting operations if this resolves the problem. Furthermore,
the exact position of a train unit in a train composition is not so critical due to the fact that units
are bi-directed, self-propelled and because the compositions are not very long. Ignoring the exact
compositions of trains may pose more of a problem for some other railway operators, see Fioole
et al. [16].

2.3 Objectives

The primary objective is to find any feasible schedule; however, if several exist, then some schedules
will clearly be more attractive than others. Therefore, in this work the following secondary objec-
tives are included: the number of trip cancellations, robustness notions, seat shortages, end-of-day
depot balances and operational costs.

Trip cancellations are the most expensive component as these contribute to the reliability
performance of the railway operator. The price-function is a bit complex since a fine is issued if
the reliability percentage falls below a certain contracted threshold, and secondly the size of the
fine depends on the deviation of the reliability. There is a similar contract for punctuality, but
since we do not consider the timetable planning, this detail is not pursued further.

The concept of robustness is often ambiguous and can include several things. In this paper
we do not decide on arrival or departure times – the robustness can only be affected by the
choice of assigned units paths. Couplings and decouplings are performed many times daily but,
although necessary, these operations reduce overall robustness. A coupling or decoupling can easily
take more time than expected due to manual interaction and unforeseen technical difficulties. In
addition, it also requires coordination with a second train or a depot driver. Keeping the number of
couplings to a minimum and performing the couplings outside critical time periods is important.
Reserving enough time for (de)couplings can also be considered as a robustness indicator, see
Cardaso et al. [10] for more consideration on robustness.

The railway operator is obliged to satisfy the actual demand on a trip by supplying enough
seats to cover some percentage of the passengers. Therefore, it is not only necessary to cover a trip
but also to assign units, i.e. a composition, that collectively provide enough seats. Interestingly,
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seat shortages can also result in a lower robustness. Consider the case where a train arrives at a
platform crowded with people. If the train is small, i.e. the number of total seats is too low, then
passengers need extra time to get on and off the train, perhaps causing an unforeseen delay.

The end-of-day depot balance is important for continued operation the next day since a certain
number of trains must be available at each depot the following morning. If the balance is off, then
unplanned deadheading trips will be necessary to execute the plan the next day of operation.
Deadheading train units is undesirable due to the expense of running rolling stock units and
hiring a driver to move the train.

The operational cost of driving a train mainly consists of power consumption, wear and tear,
infrastructure allocation, cleaning, and driver related expenses. The first two are linear with
respect to the distance travelled and the other costs are more or less fixed depending on whether
the trip has been cancelled or not. The infrastructure is already reserved and it has already been
decided how many drivers are working on the day of operation. Cleaning costs are constant as the
unit utilization is close to 100% every day.

The number of cancellations is usually (in literature and at DSB S-tog) the most important
objective and is therefore given a cost that is significantly higher than the other objectives. The
seat and operational objectives are conflicting and a non-trivial trade-off is sought. The network
operator is obliged to meet the passenger demand, but not at all costs, e.g., the operator would
not couple a rolling stock unit to a train service only to provide few additional passenger seats. In
the benchmarks we will investigate this trade-off and try to find a sensible balance. Note, that this
effectively undermines the importance of finding optimal solutions in contrast to some good solu-
tions. Finally, the end-of-day balance is relevant when handling disruptions, as this may obscure
the fleet position at the end of operations. A sufficient number of train units must be present at
specific depots for the following day. A mismatch is corrected by performing deadheading trips,
e.g., during the night.

For the purpose of testing our solution method we will not introduce a more complicated objec-
tive for disruptions, see [22, 25] for a adopting a separate objective for disruptions that minimizes
deviation from the original plan. In contrast to crew scheduling, identical rolling stock units can be
interchanged without substantial complications w.r.t. the trip coverage, seat shortage and opera-
tional expense. We penalize the end-of-day deviations, but we will not consider penalizing missed
or unplanned shunting operations (in addition to the normal cost) during disruptions. Changing
plans are understandably a nuisance that requires communication and coordination. However,
with the recent advancements in mobile technology we believe that this is a diminishing issue.

2.4 Literature

Most literature related to passenger railway optimization (from an operators perspective) can
be categorized by the problem they address, e.g., timetable planning, rolling stock scheduling,
crew scheduling, or shunting. In this section we limit our discussion to the somewhat more scarce
literature related to rolling stock scheduling with an emphasis on real-time disruption management.
We refer to Caprara et al. [13] for an overview of different railway optimization problems, and
Kroon and Huisman [20] or Jespersen-Groth [19] for an overview in a disruption management
context. In this paper we consider self propelled trains units that do not require a powered
locomotive for pulling. Several papers exist that consider the locomotive and carriages problem,
see e.g. [14, 21, 1].

The rolling stock problem has been studied in a variety of different settings using different
mathematical models and targeted time horizons. A good reference for the rolling stock scheduling
problem is the one used by the Dutch railway company Nederlandse Spoorwegen (NS), described
by Fioole et al. [16]. The authors present the problem of assigning train unit compositions to every
departure and arrival. The main goal is to cover every train trip while respecting several constraints
such as fleet capacity, composition change restrictions and allowing trains to be combined and split.

The strategic or tactical rolling stock problem has been studied in various forms over the past
two decades. The goal is to determine the fleet size or to find a feasible rolling stock schedule (or
circulation).
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An early approach was studied by Schrijver [27], where the aim is to minimize the number of
required trains to satisfy passenger demand. This approach does not consider the train compo-
sitions, composition changes, depot parking nor maintenance. A small data-instance from NS is
presented and can be solved within seconds.

Alfieri et al. [3] consider a richer rolling stock model that considers the compositions of train
arrivals and departures. The model assumes a single line and one family of compatible train units.
They are able to solve a generic workday from NS for a line within 1-2 hours.

Peeters and Kroon [23] study a similar setting also spanning multiple lines using one family
of train unit types. They present a B&P method which outperforms a commercial Mixed Integer
Program (MIP) solver. Computation times are less than a minute for the larger data instance
consisting of three lines. A few what-if scenarios are considered that quantify the effect of changing
the fleet composition (and platform lengths) and allowing shunting at a new station.

Fioole et al. [16] study an extension of the same model that allows combining and splitting
trains. They consider a subset of lines from NS and solve the problem as a MIP using a commercial
solver. In addition a heuristic based on the Linear Program (LP) relaxation is used. Good quality
solutions are found within hours. The solution model was used as a supportive tool for generating
the Dutch timetable for 2005.

Cadarso et al [11] consider an approach similar to Fioole et al. [16] which additionally tries to
optimize the robustness of the rolling stock schedule while penalizing high densities of standing
passengers. Deadheading train units is allowed in order to increase capacity. Robustness is mod-
elled by penalizing the total number of coupling operations, and by giving shunting operations
during rush hours a special penalty. They consider two data instances, a single day of a single line
from RENFE with 4 depot stations and 320 train services, and two lines with 9 depot stations
and 400 train services. Optimal solutions are generated within minutes using a commercial MIP
solver.

A two-stage optimization model is presented by Cacchiani et al. [9] for solving the rolling stock
scheduling problem with a set of generated failure scenarios. The model is similar to one presented
by Fioole et al. [16] but without minimum shunting time, combining and splitting of trains. A
full MIP is presented and solved heuristically using a Benders Decomposition method. The data
instance is a one day of single line from NS with up to 400 trips and 28 failure scenarios. The
solution method is able to find good solutions within 2 minutes.

Several studies consider a short-term rolling stock problem aiming at rescheduling a few days
before the day of operation. Compared to a long-term model such approaches have to deal with a
greater level of detail and cannot assume a clean-slate approach as the availability of the different
resources is fixed.

Budai et al. [8] consider a rebalancing problem where the goal is to minimize inventory end-of-
day deviations from the original plan. They present two very fast heuristics methods which aim
to improve existing schedules. They prove that the rebalancing problem is NP-hard.

Other related research for short-term scheduling with a slightly different problem definition
also exists. Lingaya et al. [21] study the problem of rescheduling locomotives and carriages at
VIA Rail Canada. Ben-Khedher et al. [6] present a schedule planning system and a tactical
capacity-adjustment system for increasing revenue at SNCF.

The online (real-time) rolling stock problem is a new area of research which has received limited
attention recently. The online approaches aim to accommodate railway disruption management
where the offline approaches are not eligible partly because of the strict runtime requirements, but
also because of different goals, restrictions or level of detail.

A paper by Nielsen et al. [22] proposes a setting and framework that is similar to the work of
this paper. A rolling stock scheduling framework is presented that uses time horizons to overcome
disruption uncertainty and runtime difficulty. The optimization model is similar to the model
presented by Fioole et al. [16], but without the possibility of splitting and combining trains. The
main goal is to minimize the number of cancelled trains, end-of-day off-balances and changes to the
original shunting plan. The end-of-day train unit inventory balances are heuristically determined
through the horizons. Every horizon is solved using a commercial MIP solver.

Cadarso et al. [12] present an approach which integrates rolling stock and dynamic passenger
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demand. The model is allowed to cancel train services on predetermined lines, insert emergency
train services and determine the direction of one-way tracks in case of one-way blocked segment.
Passenger demand is updated iteratively after solving the rolling stock model until the demand
stabilizes. The solution method is benchmarked on a 2 hour disruption case study provided by
RENFE consisting of 5 lines, 10 depot stations and 760 train services. Solutions are found within
few minutes. The case study does not reveal significant changes in passenger demand after the
first iteration.

Jespersen-Groth [17] studied a variety of DSB S-tog related problems in her PhD thesis. One
of the problems focused on the reinsertion of train lines once a disruption is over. The model
considers the distribution of available trains and the time required for drivers to reach them. The
model is solved as a MIP which minimizes the time of the last inserted train. The test instances
are solved within 30 seconds.

3 Model

We now define the RSRP and notation more formally before presenting the proposed mathematical
model. To distinguish between parameters and decision variables, the latter will always appear
in bold type. Let S denote the set of key stations, which is an appropriate aggregation of all
stations in the railway infrastructure. The set D ⊆ S defines the set of stations with an associated
depot. Furthermore, we let U be the set of all train unit types. We assume that all unit types are
compatible and self-propelled, i.e., all units can be coupled together and no locomotive is required
to pull the train. Finally, we let T be the set of all subtrips that have to be serviced as indicated
by the timetable. A subtrip t ∈ T departs at a certain time from a source station and arrives
at a certain time at a target station. For convenience, we define A to be the set of all subtrips
that arrive at a depot-station d ∈ D, where A ⊆ T . We define depot(a) as the shorthand for the
depot-station of subtrip a ∈ A.

The RSRP is the problem of finding an assignment of all available units to subtrips. The
assignment of each unit must respect the inherent temporal and spatial constraints, i.e., a unit
can only be at one place at the same point in time and can only be assigned to a subtrip if it
is located at the departure station of the subtrip prior to the subtrip’s departure time. A unit
entering or leaving a trip sequence must have reserved enough time to perform the (de)coupling
before being assigned or reassigned to any other activity. Finally, the depot parking space is limited
which means that only a certain total length of train units can stay parked at depot-stations any
point in time. Consequently, a unit cannot perform a subtrip and then park if the destination
depot is full.

We consider the following objectives in the mathematical model: train trip coverage, seat
shortage, end-of-day balance, (de)couplings and operational cost. Trip coverage is directly related
to trip cancellations, and it is our primary concern to minimize the number of cancellations. If
no unit is covering some subtrip in T then the trip is considered to be cancelled. Matching the
demand is also important, thus the seat shortage is minimized. The number of available seats
depends on how many units service a subtrip, and the difference between available seats and the
demand defines the shortage. However, if there is a surplus of seats then the shortage is zero.
Couplings and decouplings affect the robustness of the solution, and hence we want to minimize
the total number of these. We approximate the number of (de)couplings by counting the number of
times a unit enters and leaves a trip-sequence. This is not an accurate number of required shunting
operations; however, it measures how many times we change the composition of a trip-sequence
which is directly related to robustness. We do not consider schedule deviations in the objective
function in our approach; the model can, however, be extended to do so with the addition of more
constraints and variables.

Instead of presenting a compact flow-based formulation of the rolling stock rescheduling prob-
lem we present a path-based model with an exponential number of path variables. Let Pud denote
the set of all paths for unit type u ∈ U starting in depot-station d ∈ D. A path represents a
chronological list of subtrips that can be preformed by a single unit, i.e., a unit’s schedule for the
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S Set of stations
D Set of stations that have an associated depot
T Set of subtrips
U Set of train unit types
A Set of all arrival events across all stations in S
Pud Set of all possible paths for unit type u starting at station d

Table 1: List of sets

λp Binary variable deciding whether path p is used
yt Binary slack variable deciding whether subtrip t is covered
zt Integer slack variable determining the seat shortage on train t
wu

d Integer slack variable determining end-of-day balance shortage for
unit type t

Table 2: List of Variables

ct1 Cost of cancelling a subtrip t
c2 Cost of one seat shortage per kilometre
c3 Cost of one end-of-day balance shortage
c4 Cost of one coupling or decoupling
cu5 Operational cost per kilometre for unit type u
su Number of seats on train unit u
demandt Seat demand for subtrip t
lengtht Maximum train composition length allowed for subtrip t
inventoryud Number of units of type u starting at depot d
eodud Target end-of-day balance for train unit u at depot d
trackd Combined length of tracks at depot d

Table 3: List of parameters

κt Number of kilometres on subtrip t
ξp Number of couplings and decouplings imposed by path p
κp Number of travel kilometres accumulated on path p
αtp Binary coefficient which takes the value 1 iff path p visits subtrip t
βdp Binary coefficient which takes the value 1 iff path p terminates at

depot d
γd,ap Binary coefficient which takes the value 1 iff path p is staying at

depot d on or before the arrival of subtrip a ∈ A

Table 4: List of Coefficients

9



considered planning period. Shunting operations are implicit as a unit has to be parked whenever
the pause between two subtrips is too long The rescheduling problem thus consists of assigning
exactly one path to each vehicle.

The mathematical model contains four sets of decision variables, two of which are binary and
two of which are integer. First, λp ∈ {0, 1} governs whether path p ∈ P, where P :=

⋃
u∈U,d∈D Pud ,

is selected in the final solution or not. Second, yt ∈ {0, 1} is a slack variable that determines
whether a subtrip t ∈ T is cancelled. Third, zt ∈ Z+

0 is a slack variable that counts the total seat
shortage on subtrip t ∈ T . Finally, wu

d ∈ Z+
0 denotes the number of units of type u ∈ U that are

missing in depot d ∈ D from the scheduled end-of-day balance. The model is presented below.

Minimize:
∑
t∈T

(
ct1yt + ct2κtzt

)
(1)

+
∑
u∈U

∑
d∈D

cd,u3 wu
d (2)

+
∑
u∈U

∑
d∈D

∑
p∈Pud

(ξpc4 + κpc
u
5 )λp (3)

The notation is summarised in Tables 1, 2, 3 and 4. The objective function is a weighted average of
five components. In (1) the cost of cancellations and seat-shortage are added. In (2) the end-of-day
balance shortage cost is added. Finally, in (3) the (de)coupling and mileage cost is added.

∑
p∈Pud

λp = inventoryud ∀u ∈ U , d ∈ D (4)

∑
p∈P

αtpλp ≥ 1− yt ∀t ∈ T (5)

∑
u∈U

su
∑
d∈D

∑
p∈Pud

αtpλp ≥ demandt − zt ∀t ∈ T (6)

∑
p∈P

βdpλp ≥ eodud −wu
d ∀u ∈ U , d ∈ D (7)

∑
u∈U

lu
∑
d∈D

∑
p∈Pud

αtpλp ≤ lengtht ∀t ∈ T (8)

∑
u∈U

lu · inventoryud +
∑
u∈U

lu
∑
d∈D

∑
p∈Pud

γd,ap λp ≤ trackdepot(a) ∀a ∈ A (9)

λp ∈ {0, 1} yt ∈ [0; 1] zt,w
u
d ∈ Z+

0 (10)

Constraints (4) ensure that the number of paths for a specific unit type leaving a depot corresponds
to the number of units of that type available at the depot. The second set of constraints (5) ensures
that yt is set to 1 if a subtrip t is not covered by any path chosen. Constraints (6) ensure that
the lack of seats is captured by zt, while Constraints (7) make sure that the end-of-day balance
shortage is captured in wu

d for every depot d and unit type u. The maximum train composition
length is restricted by constraint (8) according to the platform lengths at the subtrip’s endpoints.
Constraints (9) enforce the requirement that the capacity at any depot d must be respected by
every arrival event. If the track capacity at every arrival is satisfied up until the last arrival, then
the schedule respects the depot capacities throughout the day. Finally, Constraints (10) restrict
the domains of the variables. Note that the slack variables are naturally integral in the presented
model if the path variables are integral.

Naturally we do not propose to solve the full model, instead we intend to solve the model using
delayed column generation. Such path based models have proven to improve runtime drastically
for a number of routing problems using a delayed column generation approach [15]. We do not
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achieve a tighter LP relaxation for the simple rolling stock rescheduling problem. A tighter LP
relaxation is however obtained when we extend the problem with maintenance restrictions, and
thereby require the subproblem to find resource constrained shortest paths in contrast to simple
shortest paths.

3.1 Rescheduling Extension

Considering a single horizon in the middle of a whole day presents some challenges which requires
some minor changes to the model. Essentially these changes also allow the framework to work
using a rolling horizon, c.f. [22].

Trains are running continuously and some decisions made a few minutes ago cannot be undone,
e.g., if a train unit was assigned to a departure happening before the horizon begins, then the
train will go through with this trip until it arrives at the next station. Likewise, any train unit
assigned to a departure before the horizon ends will have to go through with the trip into the
following horizon.

In the proposed model every train unit starts at a depot and is available from the beginning
of the planning period. However, inside a horizon some trains will only become available some
time after the start of the horizon, due to being en route when the horizon begins. This implies
that some units will be unable to cover the first subtrips. To model this, we partition the sets
of unit types available at each station s ∈ S further, based on a set of ns discrete event times
τs = {θ1, θ2, . . . , θns}. Associated with each time θ ∈ τs is a known number of available units of
each type u ∈ U . For the sake of completeness, we assume this number is inventoryu,θs , and note
that, for all u ∈ U , inventoryus =

∑ns
i=1 inventory

u,θi
s . Constraints (4) hence become:∑

p∈Pu,θs

λp = inventoryu,θs ∀u ∈ U , s ∈ S, θ ∈ τs, (11)

where Pu,θs contains all paths for unit type u ∈ U originating from station s ∈ S after time θ ∈ τs.
The other constrains must now sum over all these paths and not just for all depots and unit types
alone. We note that this modification does not affect the structure of the subproblem and does
not increase the number of subproblems to solve.

Another complicating issue that arises is how to determine the number of couplings. Units
arriving on a subtrip from the previous horizon may have been routed to a platform (in order to
continue on some trip sequence) or into the depot for parking. Since the arrival times of these
units occur after the beginning of the horizon, the previous decisions can be altered. Thus, such
arriving units are denoted undecided, and the model decides if it is to be parked in the depot or
if it should go to the platform and continue on some immediate subtrip. As a consequence, the
price of decoupling must be paid in the current horizon as it was undecided whether the subtrip
assignment would lead to a decoupling once it arrived. This detail is complicated even further if
we impose a minimum (de)coupling time. In this case the model might have decided to park a
unit arriving in the last horizon, and this unit will not be available in the current horizon until a
certain time has elapsed. In contrast to before the unit is now available from the depot only, and
can not take a subtrip from the platform immediately. This issue can be modelled the same way
as the undecided units by adding a new similar set of constraints and limiting the possible paths
to emerge from the depot.

4 Branch-and-Price Framework

In this section we propose a B&P framework for solving the RSRP. This well known technique
for solving large-scale integer programs combines column generation with Branch-and-Bound
(B&B) [5]. Column generation is typically preferred when it is computationally intractable to
build a mathematical model which explicitly contains an enumerated set of all possible variables
in the problem. To implement column generation, one relaxes all integrality restrictions and
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Figure 5: Flow diagram for the proposed Branch-And-Price framework

decomposes the problem into a master problem and one or more independent subproblems. The
master problem contains only a subset of the variables for the full problem, and is typically referred
to as the Restricted Relaxed Master Problem (RRMP). The subproblem(s) is/are an optimization
problem responsible for generating variables (i.e. columns) that are not included in the RRMP,
but which have the potential to decrease the RRMP’s objective function value. More specifi-
cally, each subproblem utilizes the dual information from an optimal solution to the RRMP, and
attempts to identify negative reduced cost columns that can be added to the RRMP. Column
generation refers to the iterative procedure between master and subproblems that must be per-
formed. Incorporating this into a B&B setting in which columns are generated (or “priced”) at
each node of the B&B tree gives rise to the B&P terminology. This section focuses on specific
details concerning our B&P approach. Figure 5 illustrates the steps in the framework. First, a
master model is generated with initial feasibility columns, i.e., a set of variables are initially in-
serted such that a feasible solution exists for the LP relaxation. The RRMP is solved and the dual
values are used to find variables with reduced cost by the subproblem. Whenever new variables
are found the RRMP must be resolved, otherwise the RRMP is optimal. A B&B node is finished
when an optimal solution to the RRMP is found. If the solution is feasible the upper bound is
updated otherwise new branching nodes are created. The framework terminate once all nodes are
processed.

4.1 Master Problem

The RRMP consists of a set of constraints as in the model presented in section 3, where con-
straints (10) are replaced with

λp ∈ [0, 1] yt ∈ [0, 1], zt,w
u
d ∈ R, (12)

and restricting the set of path variables for each depot and unit type pair (d, u) to a subset

Pdu ⊂ Pud . For this relaxed version of the problem we define dual variables πu,θd , µt, δt, ω
d
u, φt,
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and νa; these are associated with Constraints (5), (6), (7), (8), (9), and (11) respectively. Each
column defines a legal path through the rail network for a unit of type u originating from depot d.

4.2 Subproblem

The role of a subproblem is to identify one or more negative reduced cost columns. As indicated
above, this can be viewed as the pricing step in the conventional simplex algorithm, with the
exception that all variables are not stored and priced explicitly. Variables with negative reduced
cost for the RRMP are returned by the subproblem(s). The variables correspond to unit paths
for particular unit types. When generating a path the following information must be determined:
the depot where the unit type begins the path, the terminating depot, the sequence of subtrips
the unit will perform, and any intermediate coupling activity the unit type must perform.

We formulate the problem of finding such paths as a Shortest Path Problem on an acyclic
time-space network. We group together units that have the same characteristics (i.e unit type)
and define a subproblem for each such group. The subproblem for each group routes one physical
unit, where any specific unit from the group can perform the path. Note that the underlying net-
work structure of each subproblem is identical since we assume any unit can perform any subtrip;
however, some parameters of each subproblem must be modified to reflect the individual character-
istics of the respective unit groups. In the following we present a more detailed description of the
time-space network. To assist the reader in understanding all details of the network involved, it is
introduced in stages. Not investigated in this paper is the possibility of extending the subproblem
into a Shortest Path Problem with Resource Constraints (SPPRC) [15]. Unit-specific properties
such as maintenance constraints can be modelled using SPPRC.

4.2.1 Underlying Network

To generate a unit path one must identify a feasible sequence of subtrips starting and ending at
particular depots. Modelling all such possibilities for a given planning period can be achieved
via a time-space network. In such a network, every node corresponds to a particular event. Here
an event can refer to a departure, a passthrough, or an arrival. A departure event refers to the
start of a trip, while an arrival event is associated with the end of a subtrip. A passthrough event
represents a midway stop between two trips - one incoming and one outgoing subtrip is associated
to each passthrough event. Any subtrip indicates the movement of a train between two particular
stations at a certain time and thus can be introduced as an edge in the time-space network.

Associated with each subtrip edge is a passenger demand, a distance κt (between the delimiting
stations), and a subtrip operating cost, cu5κt. Note that the operating cost depends on the unit
type under consideration. Furthermore, each subtrip is associated with a constraint from (5), a
constraint from (6), and a constraint from (8). Thus, the reduced cost contribution, and hence the
weight, of each such edge is cu5κt − µt − suδt − luφt. Additionally, edges which indicate an arrival
subtrip at the depot are adjusted by −luνa consumption of depot track capacity. By adding a
super source as well as a super sink node, connecting the former to all departure events and the
latter to all arrival events, we obtain an acyclic, time-space network, in which all trips within the
planning period are implicitly represented by paths (consisting of subtrip edges). Note that the
edge weight of edges emanating the origin is c4 − πdu, while edges to the sink have weight c4 − ωdu.
Here, the coupling/decoupling cost c4 is added to reflect the fact that the unit enters and exits a
trip sequence.

Figure 6 below illustrates such a time-space network for a simplified example with three sta-
tions, two of which are depot stations (denoted d1 and d2). The example contains two trip
sequences (each having three trips), and there are 12 unique subtrips. All nodes corresponding
to station events are ordered in time, and appear on the same horizontal level. The network is
labelled assuming we are pricing a unit of type u. An example path from depot-station d1 to
depot-station d2 is given; the weight of any subtrip edge is cu5κt − µt − suδt − φt, where t denotes
the associated subtrip. Note that this network does not allow decoupling at intermediate stations.
Here a and a′ denote the two arrival subtrips at the depot.
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c4 − ωd2u − luνa′
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c4 − ωd1u − luνa

Figure 6: Simplified example of the acyclic time-space network. This figure illustrates the subtrips
of two trip sequences. The blue path is an example of a possible unit path. The current network
does not capture depot details.

While this time-space network includes all subtrips in the planning horizon, it is inflexible in
the sense that it does not permit a unit to be decoupled from a trip sequence; since each node in
the graph has degree at most two, each path must consist of a sequence of consecutive subtrips. In
reality this is not ideal, it may be preferable to allow units to follow only part of a trip-sequence.
To provide such flexibility, we duplicate all nodes for station events occurring at all depot-stations,
creating a platform event node as well as a depot event node. The purpose being to provide finer
details on the possibilities available for a unit, given its location at the time of the respective
station event. A platform event stipulates that the unit type is at the platform and must perform
the outgoing subtrip, while a depot event merely indicates that the unit type is positioned in the
depot and cannot perform the outgoing subtrip.

To allow a unit type to remain parked at a depot-station we introduce edges connecting consec-
utive depot events at the same station. Similarly, we introduce so-called coupling edges connecting
depot events with platform events indicating that the unit type will be “coupled” with other units
to perform the outgoing subtrip. Coupling edges must respect a certain minimum coupling time,
meaning a depot event cannot connect to the station platform event before the coupling time has
elapsed. Similarly, decoupling edges are introduced, each of which connects a platform event with
a depot event. In contrast to coupling edges, the edges are not connecting platform and depot
events at the same station, thus eliminating the possibility of coupling a unit without taking a
subtrip. Again, we assume a minimum decoupling time on decoupling edges, which is modelled
by connecting these edges to the target station depot after the decoupling is completed. Note
that the introduction of decoupling edges implicitly duplicates the number of subtrip edges that
terminate at depot-stations; for each such subtrip there are two edges in the time-space network,
one indicating whether the unit ends at a platform (a platform subtrip) and one indicating if it
ends in the depot (a depot subtrip). All coupling and decoupling edges are assigned an additional
cost c4 to reflect the price one must pay to perform a coupling. The cost an any depot subtrip
edge is c4 + cu5κt − suµt − δt − φt, where t ∈ T is the subtrip in question. By counting the
number of coupling edges used in any path from the source to the sink, one can determine how
many times the unit is coupled and/or decoupled from a trip sequence. Finally, all coupling and
decoupling edges must be adjusted by the dual contribution from Constraints (9) since any such
edge indicates the consumption (or release) of depot track capacity. This dual contribution on
any decoupling edge is given by −luν̌a, with subtrip a ∈ A and ν̌a =

∑
a′∈A+

a
νa′ . Here A+

a gives
the set of all subtrips in A arriving at depot d = depot(a) whose arrival time is at least as large as
that of subtrip a. Similarly, the depot track dual contribution on any coupling edge is luν̂a, where
ν̂a =

∑
a′∈A−a νa′ . Here A−a is the set of all subtrips departing from d whose departure time is at

least the arrival time of a. Informally, in the former case the dual represents the cost of allocating
depot space when decoupling; in the latter case the dual represents the gain of releasing depot
space.

Constructing the network in such a fashion allows units to perform a set of non-consecutive
subtrips, include the coupling costs, and respect the minimum coupling durations. The last feature
allows us to monitor when a unit type will be available to perform certain subtrips if coupling
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and/or decoupling decisions have been made. The shortest path in such this network identifies
the column with minimum reduced cost.

Figure 7 shows how the time-space network from Figure 6 can be extended to include depot
subtrips as well as coupling and decoupling edges. Stations with depot tracks have depot event
nodes and are coloured light gray in the figure. Note that all coupling and decoupling edges have
not been included; however, an example of each can be seen in two of the three example paths
provided. The blue path depicts a unit which does not take the first outgoing subtrip from depot-
station d2, but is instead coupled to the second outgoing subtrip. The unit then performs four
consecutive subtrips. The red path also illustrates a unit that starts from depot-station d2 and
performs four consecutive subtrips; however, this unit performs the first outgoing subtrip and is
decoupled upon completing its fourth subtrip. In contrast, the green path gives an example path
for a unit that does not move from depot-station d1 during the planning period.

O Dc4
− π

d1
u

−ω
d2
u

c
4 −

π d
2u

−ω d1u

−
π d

2u −ω
d 2
u

c4 + lu ˆνa1 − φt

−π
d1
u

−ω d
1u

c4 + c5κt − µt − suδt − lu ˇνa2

Figure 7: A simplified example of the acyclic time-space network showing some of the possible
coupling arcs. Only two of the stations have an associated depot. Three possible unit paths have
been highlighted.

4.2.2 Modifications Necessary for Rescheduling Extension

While Figure 7 accurately reflects a unit’s possible movements over the entire planning period,
some additional features are needed to ensure it can be embedded in a rescheduling environment.
As mentioned in Section 3.1, in such a situation it is necessary to distinguish between unit types
that are definitely positioned in depots at the start of the planning horizon, and those which
are unavailable to be assigned immediately due to being en route when the planning horizon
commences. To incorporate such functionality, a station source node, a depot inventory node, and
a number of undecided nodes are introduced for each station. The super source connects to each
of the station sources, which in turn each connect to a station’s inventory and undecided nodes.
The inventory node grants access to the full network by being connected to the station’s first
platform and depot event node. In contrast, the undecided node grants access to a limited part
of the network via several availability edges. Each availability edge is associated with a specific
station s ∈ S and a particular time θ ∈ τs corresponding to the time of arrival. Such edges ensure
that the associated set of undecided units inventoryu,θs cannot be assigned paths until they are
available, i.e. after a certain time has elapsed. For each pair (s, θ) there are at most two edges
giving the respective set of undecided units the possibility of continuing on a consecutive subtrip,
or entering the depot.

Continuing with our examples from Figures 6 and 7, Figure 8 illustrates a complete subproblem
network that is applicable in a rescheduling environment. The illustrated horizon starts just
after the departure of the first subtrip from depot-station d1 in Figures 6 and 7. All coupling
and decoupling edges have been included and are given as dashed lines. Station sources, depot
inventory nodes, and undecided nodes are denoted s, i, and u respectively. In Figure 7, two
subtrips are in progress upon termination of the first horizon, and as a result the units assigned
to each in the first horizon will only be available after a certain time has elapsed. The edges
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emanating u3 describe this. Figure 8 gives the two example unit paths from Figure 7. The blue
path illustrates a path which begins at depot-station d2. The unit is coupled to the first outgoing
subtrip, performs four consecutive subtrips, and terminates at the platform of depot-station d2.
The red path is an example of a path that continues from the first horizon. The units performing
this path are only available after a certain time θ1 at station d3. The red path depicts a path that
performs three consecutive subtrips, after which it is decoupled at depot-station d2. Edges from
the super source to the station sources have cost zero. The same is true of the edges emanating
the station sources.
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Figure 8: A simplified example of the acyclic time-space network showing the extensions necessary
for it to be used in a rescheduling environment

By including restrictions on unit mileage and coupling count we can consider maintenance
restrictions, which may require a unit to have a path that does not exceed a certain maximum
length, and control how many couplings – at most – we wish to permit any unit to perform. The
nature of the time-space network is such that we can also satisfy requests which ask specific units
to end at specific depot-stations. Note, that adding potential deadheading trips corresponds to
adding edges between station depots, and does not require additional variables or constraints in
the master problem. As a side comment, the network will contain negative edge weights; however,
negative cycles cannot not exist due to its acyclic nature. The shortest path can therefore be
found using a directed acyclic graph shortest path algorithm with linear time complexity.

4.3 Branching

The column generation process terminates with an optimal solution to the RRMP. If the variables
satisfy the integral constraints a feasible solution to the RSRP has been found, and we can update
the upper bound and prune the current branch. This is, however, not always the case and we need
to define branching rules in order to enforce integrality.

Branching on (master) variables in the RRMP is not preferable in general, nor in our case.
Forcing a fractional path variable to take the value 0 or 1 in separate branch nodes complicates the
subproblem. In the 0 branch the subproblem will (without alterations) likely return the forbidden
path as a new variable. Thus, in order to disallow specific paths we need to solve the k-shortest
(resource constrained) path problem, just to make sure that we have the shortest path that is not
forbidden by branching rules. In addition, the efficiency of branching on paths is uncertain as the
total number of paths is extremely large. We propose branching on certain characteristics of the
paths instead, which is easier to handle in the subproblems.
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An interesting and effective branching rule has been proposed by Ryan and Foster [26] for
the similar crew scheduling problem. Instead of branching on original or subproblem variables,
which often is imbalanced or ineffective, they propose a more balanced branching rule which can
be handled entirely by the subproblem. In crew scheduling a split flow is found and a branching
rule is set such that a column either covers two consecutive crew tasks or does not cover them
both. Despite the similarities of the considered problem we cannot adopt this approach since our
problem does not exhibit the required structure for this type of branching. In our case, we can
enforce branches based on subtrip variables, but the cover of a sub-trip is allowed to be greater
than exactly one. Furthermore, applying the branching scheme on specific units introduces at
least two disadvantages. First, such a rule will not have a significant effect since we have many
similar train units. Secondly, we will need to solve variations of the subproblem for every unit
depending on its individual branching constraints.

Our first family of branching rules enforces integrality on the number of paths originating and
terminating at a depot. The number of paths leaving a depot (as the first action) can never be
fractional. The same holds for the number of paths entering (as the last action) a depot. This
rule can be applied on two levels, either for a specific unit type or aggregated over all types. Our
B&P framework imposes this rule on an aggregated level where possible, otherwise on a specific
unit type.

Even if the paths respect the integral requirements above, the solution may still be fractional.
The second family of branching rules enforces integrality on subtrip coverage. The subtrip cover
is equal to the number of (possible fractional) paths that service a subtrip. We therefore ensure
that the total subtrip cover f ∈ R is integer by imposing that the cover is ≤ bfc in one branch
and ≥ dfe in the other. This branching rule can also be applied on two different levels. Where
possible we aggregate over unit types, otherwise we create a branch based on a specific unit type.

splitting point

a b

c

Figure 9: A general setting of two fractional paths where they begin to split from each other. The
example include two subtrips edges and one waiting at station edge.

Proposition 1. The proposed branching rules form a complete branching strategy given that the
decoupling and coupling costs are strictly positive.

Proof. Assume we have a solution that respects the constraints in RRMP and the branching rules.
If a variable is fractional then there must exist other fractional paths in order to maintain integral
trip cover and integral start/end inventory. The situation is illustrated in Figure 9. Note, that the
illustrated paths may consist of multiple paths where the sum is fractional. The figure illustrates
a general case where two connected fractional paths split. Flow can only enter and leave stations
with a sum that is integral. Consequently, before the paths are able to split (black and red) there
must exists two paths (blue and green) that arrived earlier through a common subtrip. The case
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where both paths (blue and green) follow each other after the split is not interesting as this can
be substituted with a single path, thus requiring another fractional path to follow the black path.

We now argue that the general case with fractional paths can be transformed such that the
paths (blue and green) end up following each other to a greater extent. Thus, if a solution contains
fractional paths then the same argument can be repeated until all splits have been resolved. Note
that when we swap path trajectories at the splitting point only the coupling and decoupling
signature changes. Other operational costs stay constant as we service the same subtrips and do
not change end-of-day balances. The argument is divided into three exhaustive cases based on
which path is following a trip sequence.

1. If the blue path is following a trip sequence (i.e. subtrips a and b belong to the same
sequence) then we know that the green path has to decouple at the splitting point and
the red path has to do at least one coupling. Thus, if we instead swap the red and green
trajectories after the splitting point, then we save the green decoupling. The red path saves
one coupling, but it is uncertain whether it has to use a coupling to service subtrip c. The
new transformed solution is at least one coupling cheaper and we conclude that this scenario
cannot appear since it contradicts that the flows are part of an optimal solution.

2. If the green path is following a trip sequence (i.e. subtrips a and c belong to the same
sequence) then the blue path has to decouple at the splitting point while the black path
must at least do one coupling. Thus, swapping the blue and black paths after the splitting
point will definitely save the blue decoupling. Again, this scenario cannot appear as it leads
to a contradiction.

3. The above argument is symmetric if either the red or black follow a trip sequence. If however
none of the paths follows a trip sequence, then swapping the red and green paths after the
splitting point would not change the objective value. In such cases we can find an integral
solution of equal value.

Note that if the coupling and decoupling costs are zero, then the whole argument can be re-
peated, only in every case we can transform the fractional paths to integral paths while maintaining
the same objective value.

5 Computational Results

In this section we present our computational results using the presented B&P framework. The
solution method is benchmarked against data provided by DSB S-tog. Our primary focus is
on disruption handling which is why we will investigate the potential of the solution method as
a recovery tool during large disruptions using disrupted timetables. However, the only essential
differences between a normal and a disturbed case are only the timetable and the objective weights.
Generally trip cover and seat demands are hard constraints in planning but arguable from a
planners perspective soft constraints allow more flexible solutions, e.g. covering 99.9% of seat
demand. From the perspective of the B&P algorithm only the input data is changed. Therefore,
aside from the general assumptions in this paper the framework can be used to solve normal day-
to-day schedules. We will therefore initially also present some results of normal (non-disrupted)
timetables.

5.1 Data

The test instances consist of real-life data provided by DSB S-tog operation in spring of 2014.
We have collected realized rolling stock schedules as well as the tactical and short term plans
for specific dates. DSB S-tog adopts a weekly periodic timetable that amounts to four distinct
timetables. All weekdays follow the same timetables while Saturday and Sunday have a different
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Name Stops Subtrips Subtrips’ Weekday Lines

Fri 28 719 3 259 1 086 Friday A,B,Bx,C,E,F&H
Sat 20 474 1 795 706 Saturday A,B,C&F
Sun 19 919 1 753 690 Sunday A,B,C&F
Mon 28 017 3 196 1 074 Monday A,B,Bx,C,E,F&H

Table 5: Four timetable and demand datasets provided by DSB S-tog. The columns respectively
show the instance names, total number of stops, total number of natural subtrips, number of
subtrips after preprocessing, Weekday and finally the lines that are running.

Scenario #1 - L Segment

Contingency Plan A.3.10 (Valby - Frederikssund)
Description One track is blocked on one of

the fingers
Cancelled lines H
Turned lines C1
Unchanged A1, A2, B1, B2, Bx, C2, E1, E2

Table 6: Details of the leaf type disruption case. The disruption blocks one track between Valby
and Frederikssund stations.

weekend timetable. However, on Fridays and Saturdays there are additional night-trains. In total
we have four different cases: Monday-Thursday, Friday, Saturday and Sunday. Table 5 summarises
key metrics of the selected instances. Preprocessing has been performed to combine subtrips that
arrive or depart from stations without shunting options. Such subtrips can be combined with
the succeeding or preceding subtrip since the composition cannot be changed. Considering non-
preprocessed data-set can be misleading as the complexity of the instance is related to the number
of real decisions that can be made.

The number of possible disruption scenarios is very high as there can be multiple points of
failure, disruption durations, start times and levels of severity. For the point of benchmarking our
solution method we find it sufficient to benchmark two different types of disruptions of different
severity. The topology of the infrastructure is star-shaped which means that two interesting cases
appear: A disruption in the center (known as the central section), or a disruption along one of
the leaves (known as the fingers). The disruption timetables are modified as stipulated by the
existing contingency plans. We will test different start times and durations of both disruption
types. Figure 6 and 7 describe the two selected cases.

Scenario #1 - Central Segment

Contingency Plan A.0.16 (København H - Øster-
port)

Description One track is blocked in the cen-
tral segment

Cancelled lines A2, B2, Bx, C1, E2, H
Turned lines A1, B1, C2, A1, C1
Unchanged E1

Table 7: Details of the central type disruption case. The disruption blocks one track between
København H and Østerport stations
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5.2 Lower Bound

The gap between the optimal solution and the root LP relaxation is in some cases relatively high
- even above 10%. This is not surprising as the problem has many similarities with the Integer
Multicommodity Flow Problem (MCFP), which shows a similar property, see [4].

We find another bound using a MIP formulation of the problem. With the addition of depot-
related constraints, the model is essentially the formulation presented by Fioole et al. [16]. The
correctness of this bound is apparent as the flow model solves the same problem, only not account-
ing for the structure of the generated paths. A valid solution to the path formulation is feasible
in the flow model.

The lower bound found by the flow model proves to be stronger than the LP relaxation of the
master problem. The model is solved in a few seconds or up to one minute. We therefore adopt
this bound for future results.

5.3 Tuning

Every B&P framework has many tuning-options. Without going into details we briefly mention
some initial tuning experiments which have been performed.

The columns of the initial master problem are chosen carefully to ensure feasibility. We tried
inserting different heuristic columns that cover sequences of subtrips. Inserting such heuristic
columns did however not seem to improve convergence nor turn out to be beneficial in any way.

An experiment was performed inserting the lower bound as a constraint on the objective in
the master problem. This experiment did however not show any consistent improvement on data
sets.

Preliminary tests revealed that the branching rules are not very effective - the number of nodes
in the B&B tree is high. We have four different types of branching rules and the number of possible
branches in every fractional node is large. We implemented and tested Strong Branching which
proved to efficiently reduce the B&B tree in general. We adopt a variant of Full Strong Branching
where all possible branching candidates are generated and ordered by fractional distance. The
candidates are evaluated in order until no improvement has been made for a certain number of
iterations [2].

Generating multiple columns in every iteration in the B&P framework improves convergence,
compared to only inserting one path with the lowest reduced cost. However, generating too many
columns proved to have a negative impact on runtime. For every depot we find and use the lowest
reduced cost path per unit type.

Depending on the considered objective the instance root relaxation is, more often than not,
far from integrality. In order to get an fast initial solution we tried add a step which solves the
root node relaxation as a MIP. In many cases this proved to find very good initial solutions in a
few seconds. We therefore adopt this approach.

A B&P framework is ideal for parallel execution. Our results did however show that the
performance can sometimes decrease, especially if small instances are considered. Our conclusion
is that parallel execution is most beneficial when the instances are large, and when the B&B tree
becomes large. For the sake of clarity, the following benchmarks will be run using only a single
thread.

A comparison between using CPLEX and CLP (COIN-OR simplex solver) for solving the
master relaxation showed that the latter is both faster and more robust. We observed a faster
and more steady convergence using CLP. Note however that CPLEX, due to a different execution
path, was in a few cases able to find other better incumbent solutions faster. In our experiments
we use CLP for solving the master relaxations.

5.4 Planning Benchmark

The rolling stock rescheduling problem has multiple objectives. In our paper we consider a single
objective function which in turn is a weighted sum of all objectives. Finding the correct or
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Runtime

Instance Horizon Subtrips Columns Time Strong Column LP

Fri 4:40-27:09 1 086 2 127 13 0.3% 5.7% 46.8%
Sat 2:00-27:09 706 682 3 2.4% 20.5% 0.0%
Sun 2:00-25:37 690 450 2 0.0% 4.3% 8.9%
Mon 4:37-25:37 1 074 1 941 11 0.4% 6.1% 36.0%

Table 8: Optimal solutions obtained only considering cancellation costs and a small cost for
couplings. The elapsed time is measured in seconds. Strong, Column and LP show the relative
time spent in strong branching, column generation and LP solving.

appropriate weights for each objective is far from trivial. The most important objective is the
total number of trip cancellations; all other objectives are of small importance in comparison.

The only other factor related to economic cost is the total mileage of every unit. Even though
we want to minimize cost, this is often less important than meeting the expected demand and
performing shunting movements. The operational expenses are even less important during a
disruption. During disruptions an unwanted end-of-day balance incurs economical cost since this
implies that trains have to be deadheaded.

The planners are obliged to meet the passenger demand and cannot cancel any trains when
they construct a rolling stock schedule in the planning phase. However, they are reluctant to add
more units to a train if only a few passengers are expected to miss a seat. The exact number of
acceptable seat shortages is left to the subjective judgement of the planners. During disruptions
the problem is further complicated since the demand is no longer known due to a change of
passenger behaviour. A study of passenger behaviour is out of scope for this paper which is why
we will assume that demand stays unchanged for all trains services during disruptions. Arguably,
this assumption may be unrealistic, nevertheless this information is better than none.

As argued, it can be difficult to find appropriate settings for objective coefficients which is
why a few iterations may be necessary before making a decision. Different settings will also have
an effect on the total runtime as it changes the difficulty of finding the optimal solution. The
ideal settings thus depend on the quality of the solution and the runtime requirements. In the
benchmark we solve the problem to optimality whenever practicable otherwise we will terminate
the framework on a proven bound.

In the first experiment we benchmark the performance of the framework, only considering
the most important objective, namely the number of cancellations. We assign zero cost to all
other objectives but the coupling cost. A small cost to the number of couplings since preliminary
experiments show that the solution method performs worse without. Without a coupling cost
the number of alternative optimal paths in the subproblem increases drastically. The number of
different path (with the same cost) has a bad effect on integrality in the master problem. The
results for the first benchmark are shown in Table 8. The results show that we are able to solve the
planning instances to optimality within a few seconds. In all cases we had a gap of 0% between the
relaxed root node and optimal value. This suggests that our formulation has some good properties
using the considered objectives. All instances were solved to optimality before branching could
occur.

A solution with minimal cancellations is not necessarily a good solution - a minimal seat-
shortage is also desirable. Experiments performed using a small coupling cost and different short-
age costs in shown in Table 9. The results show that the algorithm has difficulty solving the
problem to optimality. Seat cover is at 100% which means seat shortage contributes with a zero
cost to the objective. A 5% termination gap was used since the framework has a hard time im-
proving this gap, even given a timelimit of 1 hour. The gap is therefore solely caused by the
number of couplings performed. The relatively large root gap is not unexpected since fractional
unit paths are able to cover seat demand more cost-efficiently than integral paths which have to
pay full coupling prices. In a planning context, the number of couplings is not a primary concern

21



Instance Subtrips Time Columns Gap Root Gap Cover

Fri 1 086 47 3 798 4.3% 13.9% 100.0%
Sun 706 2 714 0.0% 0.0% 100.0%
Sat 690 2 718 0.0% 2.8% 100.0%
Mon 1 074 66 4 268 1.9% 9.9% 100.0%

Table 9: Solutions obtained only considering cancellation costs, a small shunting cost and a seat
shortage cost. A termination gap of at most 5% was set. The elapsed time is measured in seconds.
Gap and The Root Gap show respectively the relative optimality bound and the relative distance
to the root node relaxation. Cover shows the percentage of covered seats in the found solution.

Instance/Penalty 0.0 0.1 1.0 10.0

Fri 85.6% 99.0% 100.0% 100.0%
Sat 95.5% 99.6% 100.0% 100.0%
Sun 97.6% 99.5% 100.0% 100.0%
Mon 84.7% 98.9% 100.0% 100.0%

Table 10: Seat demand coverage obtrained using increasing seat shortage penalties.

compared to scheduling new couplings during the day of operation.
In planning the goal is to meet the expected demand. A seat-coverage of 100% is ideal, however

if the cost of covering 99% is significantly less, then this is also an acceptable solution. Table 10
shows the seat cover using varying seat shortage costs - as expected, the seat cover increases as
the cost increases.

Minimizing cancellations, shunting and seat shortages can lead to expensive schedules since
train services can be executed with too much capacity. Minimizing the mileage is therefore also
essential for the planning phase. Results using varying mileage costs are shown in Table 11. Note,
that the given mileage is relative to the travel-distance of assigning one unit to all subtrips. The
results confirm that the total mileage decreases as the mileage cost increases. The mileage decreases
noticeably when assigning a small non-zero cost compared to ignoring it all together. The results
show that an increase in mileage cost has an negative effect on seat coverage. Observing that the
runtime quickly escalates while seat shortage starts to drop we adopt a value between 0.1 and 1
further on. Although the total runtime ranges up to 2 minutes we see that the best solution is
found within a few seconds. The time spent after finding a good solution is merely closing the
optimality gap. The low mileage cover suggests that the two smaller instances are easy instances
since we do not need more than one unit to cover every trip.

5.5 Disruption Benchmark

Adopting the parameter settings found in the planning benchmarks we continue to study a num-
ber of disruption cases. In this setting we will only consider short runtimes as this is a crucial
precondition during a disruption resolution process.

We will benchmark two types of disruptions (and corresponding contingency plans) illustrated
in Figures 6 and 7. We consider disruptions of length 1 and 4 hours with three different starting
points: 9:00, 11:00 and 15:00. The selected periods overlap with the peak periods in different
ways. The weekend instances, Sat and Sun, are omitted since they are both smaller and since the
effect of activating a contingency plan is smaller.

A disruption occurs unexpectedly during the day and from this point in time a new modified
timetable (c.f. the contingency plans) is followed. A forecast of the disruption duration is made
which determines when the normal timetable can be used again. The expected time required to
resolve the cause of the problem is essentially unknown and should be handled by a complete
framework, however in the this paper (and others before) we will assume that the duration is
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Instance Penalty Time Best Tree Cols Gap Root Cover Mileage

Fri 0.00 163 11 72 1 942 0.8% 5.7% 99.0% 135.5%
Fri 0.01 148 14 62 2 744 0.7% 5.4% 99.1% 128.5%
Fri 0.10 71 19 41 2 354 0.7% 4.7% 99.0% 125.9%
Fri 1.00 182 14 69 2 815 1.0% 5.6% 98.5% 123.0%

Sat 0.00 2 2 1 469 0.0% 0.0% 99.6% 109.7%
Sat 0.01 3 2 0 668 0.0% 0.0% 99.6% 100.1%
Sat 0.10 3 3 0 727 0.0% 0.0% 99.6% 100.1%
Sat 1.00 3 3 0 647 0.0% 0.0% 99.6% 100.1%

Sun 0.00 2 2 1 368 0.0% 0.0% 99.5% 106.6%
Sun 0.01 2 2 0 575 0.0% 0.0% 99.5% 100.1%
Sun 0.10 3 2 0 656 0.0% 0.0% 99.5% 100.1%
Sun 1.00 2 2 0 633 0.0% 0.0% 99.5% 100.1%

Mon 0.00 75 11 40 1 918 0.4% 4.3% 98.9% 136.0%
Mon 0.01 100 17 46 2 606 0.9% 4.7% 98.8% 125.8%
Mon 0.10 99 16 46 2 955 1.0% 4.2% 98.7% 125.0%
Mon 1.00 86 18 39 2 833 1.0% 4.3% 98.6% 124.6%

Table 11: Shows the results obtained for the instances using increasing mileage cost penalties. A
termination gap of 1% was set. The column show the instance, mileage penalty, runtime, when
the best solution was found, B&B tree size, no of columns generated, optimality gap, root lp
relaxation optimality gap, seat coverage and mileage cover.

known. Note, that if (or when) the forecast changes we assume that our framework is used to
resolve the updated timetable. Therefore for simplicity and without loss of generality we solve
and benchmark single disruptions where the disruption durations are given in advance. Up until
the start of the disruption we assume that a optimized plan has been followed, which means that
we know the location of all train units. In this paper the optimized plan has been obtained by
solving the whole planning period (without disruptions) as shown in the previous section.

The results of the benchmarks are shown in Tables 12 and 13. The framework was set to
terminate and report the best found solution within 5 minutes or when a optimality gap of 1% is
proven. Note, that since we solve the remainder of the day this means that larger durations and
later starting points result in smaller instances.

In the first Table 12 we see the results of activating the contingency plan A311 with multiple
duration and starting points. Within a few seconds we obtain very good solutions. Due to a
decrease in the number of subtrips a low runtime is not unexpected. Again, the lower bound
shows a noticeable improvement compared to the relaxation of the root node. In all cases the
final solutions are found after solving the root node as a MIP. A full cover is obtained in all cases,
which means that all trips in the disrupted timetable are possible to cover. The cover metric does
not include the trips cancelled due to switching to the contingency plan. The mileage use and seat
coverage is close to what we observed during planning.

In the second Table 13 we see the results of activating the contingency plan A016 with multiple
duration and starting points. Again, good solutions are found within a few seconds. Now the
strength of the flow bound is more apparent than before, in the worst case the improvement is up
to approximately 15% compared to the relaxation of the root node. In all cases the final solutions
are found after solving the root node as a MIP. This change is probably correlated to reduced
trip cover. We observe that some trips are now cancelled in the disrupted timetable. A fractional
solution found in the root node relaxation is able to cover more trips, seats and use less couplings
and mileage. The mileage usage is still comparable to our previous results. The slightly lower the
seat cover is partly due to the necessity of cancelling trans but also due to a more turbulent fleet
position.
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Quality

Disruption # Time Cols Gap Root Cover Seat Mileage

Fri 9:00-10:00 823 5 2 563 0.9% 3.4% 100.0% 99.0% 122.9%
Fri 9:00-13:00 814 6 2 608 0.0% 3.2% 100.0% 99.4% 124.8%
Fri 11:00-12:00 703 5 2 234 0.3% 3.8% 100.0% 99.1% 121.3%
Fri 11:00-15:00 692 5 2 483 0.3% 2.1% 100.0% 99.0% 122.7%
Fri 15:00-16:00 456 3 1 456 0.0% 0.8% 100.0% 98.9% 118.3%
Fri 15:00-19:00 442 3 1 362 0.0% 1.2% 100.0% 99.2% 118.8%

Mon 9:00-10:00 807 5 2 642 0.1% 2.6% 100.0% 98.9% 126.1%
Mon 9:00-13:00 798 6 3 391 0.6% 2.8% 100.0% 99.1% 126.3%
Mon 11:00-12:00 687 6 2 460 0.9% 4.0% 100.0% 98.8% 124.5%
Mon 11:00-15:00 676 5 2 854 0.5% 2.9% 100.0% 98.9% 121.6%
Mon 15:00-16:00 440 5 1 626 0.0% 2.4% 100.0% 98.2% 119.0%
Mon 15:00-19:00 426 3 1 416 0.7% 2.1% 100.0% 98.2% 121.1%

Table 12: Results of solving the first type of disruption case. The first columns show the instance,
disruption duration, no of subtrips and runtime. Cols shows the no of generated columns. The
next columns show the optimality gap w.r.t. the lower bound and root node relaxation. Finally,
the last column measure the quality of the solution w.r.t. covered subtrips, covered seats and train
unit mileage.

Quality

Disruption # Time Cols Gap Root Cover Seat Mileage

Fri 9:00-10:00 836 11 4 096 0.3% 15.1% 99.8% 98.9% 122.4%
Fri 9:00-13:00 782 18 6 068 0.5% 14.7% 99.8% 98.7% 119.4%
Fri 11:00-12:00 713 8 3 051 0.6% 16.7% 99.8% 98.9% 122.1%
Fri 11:00-15:00 657 10 3 939 0.2% 14.8% 99.7% 98.4% 117.5%
Fri 15:00-16:00 468 6 2 379 0.3% 2.1% 99.6% 97.2% 113.8%
Fri 15:00-19:00 402 5 1 727 0.0% 1.9% 99.8% 98.4% 115.3%

Mon 9:00-10:00 820 13 4 129 0.4% 2.7% 99.8% 98.4% 121.6%
Mon 9:00-13:00 766 14 5 827 0.1% 2.5% 99.8% 98.8% 118.3%
Mon 11:00-12:00 697 10 3 665 0.5% 16.5% 99.8% 98.8% 122.4%
Mon 11:00-15:00 641 8 4 066 0.2% 14.3% 99.7% 98.4% 118.6%
Mon 15:00-16:00 451 6 2 239 0.0% 1.5% 99.6% 97.5% 119.1%
Mon 15:00-19:00 385 6 2 053 0.2% 1.9% 99.8% 97.2% 118.2%

Table 13: Results of solving the second type of disruption case. The first columns show the
instance, disruption duration, no of subtrips and runtime. Cols shows the no of generated columns.
The next columns show the optimality gap w.r.t. the lower bound and root node relaxation.
Finally, the last column measure the quality of the solution w.r.t. covered subtrips, covered seats
and train unit mileage.
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6 Conclusions

In this paper we presented and investigated a Branch-and-Price framework for optimizing the
Rolling Stock Rescheduling Problem (RSRP), and benchmarked both planned and disrupted real-
life DSB S-tog instances.

The RSRP is essentially a multi-criteria optimization problem that is usually solved using a
linear weighted objective. However, we observed that the objective must be carefully tuned in
order to achieve the desired balance between operational cost, shunting and seat shortages. In
this paper we found a balance that achieves a demand cover very close to 100%, while minimizing
optional costs.

The B&P framework is able to solve the instances to optimality, but this proves to be time-
consuming in certain settings. However as discussed, proven optimality is not essential since
finding the correct objective weight balance is non-trivial. The benchmark revealed that we can
find solution with a 1% proven optimality gap within 3 minutes for the hardest planning instances,
and within 20 seconds for the disruption instances. In general, the test shows that the framework
is able to find good solutions very fast, but on the hand not able to close the optimality gap
efficiently. A MIP based lower bound efficiently improved the optimality gap.

In future research we will focus on several things. One obvious extension is to impose train
composition and shunting restrictions. This would allow the train operators to more explicitly
control how already running train compositions can be upgraded or reduced in order to improve
robustness or feasibility. Another natural extension is to extend the subproblem to handle resource
constraints in order to be able to model new types of constraints such as train unit maintenance
restrictions. Finally, it would be interesting to extend the current models in order to model already
used maneuvers at DSB S-tog during disruption. Examples include allowing trains to turn earlier
than planned, and allowing two trains to swap services when meeting on the same station.
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management of railway rolling stock. European Journal of Operational Research, 220(2):496–
509, 2012.

[23] Marc Peeters and Leo Kroon. Circulation of railway rolling stock: a branch-and-price ap-
proach. Computers & operations research, 35(2):538–556, 2008.

26



[24] Daniel Potthoff, Dennis Huisman, Daniel Potthoff, Dennis Huisman, and Guy Desaulniers.
Column generation with dynamic duty selection for railway crew rescheduling. Transp Sci,
44(4):493–505, 2010.

[25] Natalia J. Rezanova and David M. Ryan. The train driver recovery problem—a set partition-
ing based model and solution method. Computers & Operations Research, 37(5):845 – 856,
2010.

[26] Ryan, Foster, and Wren. An integer programming approach to scheduling. 1981.

[27] Alexander Schrijver. Minimum circulation of railway stock. CWI QUARTERLY, 6:205–217,
1993.

27


	Introduction
	Problem Description
	Terminology
	Disruption Management
	Objectives
	Literature

	Model
	Rescheduling Extension

	Branch-and-Price Framework
	Master Problem
	Subproblem
	Underlying Network
	Modifications Necessary for Rescheduling Extension

	Branching

	Computational Results
	Data
	Lower Bound
	Tuning
	Planning Benchmark
	Disruption Benchmark

	Conclusions

