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Summary (English)

This thesis consists of six chapters. The �rst chapter, contains a short intro-
duction to coding theory in which we explain the coding theory concepts we
use. In the second chapter, we present the required theory for evaluation codes
and also give an example of some fundamental codes in coding theory as eval-
uation codes. Chapter three consists of the introduction to graph based codes,
such as Tanner codes and graph codes. In Chapter four, we compute the di-
mension of some graph based codes with a result combining graph based codes
and sub�eld subcodes. Moreover, some codes in chapter four are optimal or
best known for their parameters. In chapter �ve we study some graph codes
with Reed�Solomon component codes. The underlying graph is well known and
widely used for its good characteristics. This helps us to compute the dimension
of the graph codes. We also introduce a combinatorial concept related to the
iterative encoding of graph codes with MDS component code. The last chapter
deals with a�ne Grassmann codes and Grassmann codes. We begin with some
previously known codes and prove that they are also Tanner codes of the inci-
dence graph of the point�line partial geometry of the Grassmannian. We expect
that the techniques exposed in chapter six are also applicable to other codes as
well.
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Summary (Danish)

Afhandlingen består af seks kapitler. Kapitel 1 indeholder en kort introduktion
til kodningsteori, hvor de begreber og resultater fra kodningsteori der er benyttet
i det følgende, bliver gennemgået. I kapitel 2 bliver den relevante teori for eval-
ueringskoder introduceret og en række af de klassiske koder bliver præsenteret
som evalueringskoder. Kapitel 3 indeholder konstruktion af koder baseret på
grafer, blandt andet Tanner koder og graf koder. I kapitel 4 bestemmes dimen-
sionen af nogle graf baserede koder ved at kombinere resultater om graf koder
og sub�eld subcodes. En del af disse koder er optimale for de givne parametre
eller blandt de bedst kendte. I kapitel 5 studerer vi en klasse af graf koder med
Reed-Solomon komponentkoder. De underliggende grafer er velkendte og er ofte
udnyttede på grund af deres �ne kombinatoriske egenskaber. Ved hjælp heraf
bestemmes dimensionen af en række grafkoder. Kapitlet indeholder også en in-
troduktion til et kombinatorisk begreb der kan udnyttes til iterativ indkodning af
grafkoder med MDS komponentkoder. Det afsluttende kapitel behandler a�ne
Grassmann koder og Grassmann koder. Det vises blandt andet at en bestemt
klasse af koder kan opfattes som Tanner koder baseret på incidens grafen af
punkter og linier i den såkaldte Grassmann mangfoldighed. Det forekommer
sandsynligt at de i kapitel 6 udviklede teknikker ogsåkan anvendes på andre
klasser af fejlrettende koder.
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Preface

This thesis was prepared at the Department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark in ful�lment of the re-
quirements for acquiring a Ph.D. in mathematics. It collects the work we've
done in the last three years on graph based codes. We have focused on an alge-
braic approach to graph codes. The reason everything works well here is that
the algebraic aspect of the graphs we study complements nicely the algebraic
structure of the component codes. Therefore, we can set both the codes and
the graphs under the same algebraic framework. After this, we obtained some
good results on the dimension of graph codes including the optimality and near
optimality of the dimension is some cases with Reed�Solomon component codes
and the characterization of the dual code of a graph code.

We also obtained some results about Grassmann codes and a�ne Grassmann
codes. We were able to characterize the minimum weight codewords of the dual
Grassmann codes and dual A�ne Grassmann codes. In turn, this implies that
Grassmann codes are Tanner codes where the graph is the point�line incidence
graph of the point�line partial geometry of the Grassmannian. The partial ge-
ometry of the Grassmannian captures the algebraic and geometrical essence of
the Grassmannian, and this is also re�ected on the Grassmann code. Further-
more, we also proved that the Grassmann code has optimal dimension with
respect to the graph and MDS component code. We were able to extend this to
an iterative encoding function of the Grassmann code as a Tanner code.

The di�erence between the techniques used for both classes of codes is that, for
the codes in Chapter four and �ve, we began with a graph and a component
code and we combined the two together to make graph codes, which we study.
Using the inherent algebraic structure of the graph and the component codes we
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were able to put the whole graph code on the same algebraic framework. This
allowed us to bound their dimension.

For the codes in Chapter six we began with a known code: the Grassmann code.
From the algebraic properties of the Grassmannian we knew the Grassmann
codes are contained in a nontrivial Tanner code. We were able to use the
characterization of a Tanner code in terms of projections and the minimum
weight codewords of the Grassmannian to prove that actually the Grassmann
codes are the Tanner codes of the point�line geometry of the Grassmannian. In
this case, we used the Tanner code concept to study a well known code.

We feel both codes represent an exchange between coding theory and algebraic
geometry. The codes in Chapter four and �ve have graphs which represent a
�nite projective geometry. Furthermore, the component codes also represent
geometrical objects inherent to the geometry of the Grassmannian. Commuta-
tive algebra blends the two together in a way which preserves the graph code
construction. This represents an application of Algebraic Geometry to Coding
Theory. The codes in Chapter six are essentially an algebraic geometrical ob-
ject. From the algebraic geometrical properties of the codes we can prove they
are Tanner codes in a nontrivial way. Moreover, this Tanner code also re�ects
the algebraic geometrical properties of the original code. In this way Coding
Theory is applied to Algebraic Geometry.

Both approaches are useful in coding theory. Both approaches were quite pleas-
ing to work with. The work on these classes of codes is not yet exhausted. We
hope to use the results in this Ph.D. thesis to expand results in coding theory.

Lyngby, 31 October-2014

Fernando Luis Piñero González
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Chapter 1

Introduction

Graph based codes, and a�ne variety codes, are code constructions. As such,
each code gives a di�erent perspective in coding theory. The graph based code
construction boils down to building a long code starting with several short codes,
and a graph which describes how to join the shorter codes together to build up
the longer code one wants. The choice of code and graph to construct the
long graph code gives some information about the resulting code parameters.
This information is not complete, as the graph based code construction gives
a wide leeway to construct a graph code from a graph and a code. What
makes graph codes tantalizing for implementation is that the graph based code
construction gives a simple and fast decoding algorithm based only on the graph
and the decoder of the component code. This is where most research of graph
based codes is focused, on minimum distance and decoding. Usually, research
on graph based codes focuses on the class of codes de�ned by a graph and a
component code, but our research focuses on speci�c graph based codes in order
to understand the dimension of graph based codes.

When Tanner introduced graph based codes he remarked that any code could
be described as a graph based code construction. This is why we say graph
based codes are also a perspective on coding theory. Here we study codes from
the perspective of both graph based codes and a�ne variety codes.

In the second chapter, we introduce: polynomial rings, ideals, varieties, Gröbner
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bases, polynomial functions and other concepts in order to de�ne a�ne variety
codes with the required mathematical background. Most of the material is
standard, although we also present theorems speci�cally for our work on graph
based codes. We �nish the second chapter with some examples of a�ne variety
codes in order to familiarize the reader.

After laying the groundwork on a�ne variety codes in the third chapter, we
introduce: bipartite graphs, labelings and two constructions of graph based
codes, Tanner codes and graph codes. In this thesis, we have omitted another
well�known class of graph based codes known as expander codes. Introducing
expander codes would have complicated our exposition to the topic severly.
Nonetheless, for those interested in expander codes, they are also constructed
as Tanner codes in a simple and intuitive way. When Tanner introduced graph
based codes he also remarked upon the similarity between the two constructions
we present. We make this similarity rigourous in order to use a original result
on graph codes to get the dimension of some Tanner codes. We �nish the third
chapter with some examples of graph codes and Tanner codes.

After presenting the required background, we begin making graph based codes
as a�ne variety codes. In the fourth chapter, we present some Tanner codes
with cyclic component codes. After the necessary background on sub�eld sub-
codes we describe the underlying graph as an a�ne variety. Then, we use some
cyclic component codes such that the graph codes are generated by rational
functions over the a�ne variety representing the graph. Then, we present some
improvements to compute the dimension for the graph based codes with cyclic
component codes. From this improvement, we present the dimension for some
of these graph codes with cyclic component codes. Since Tanner codes are also
a graph codes with cyclic component codes, we present some Tanner codes from
the same construction which turn out to have maximal or best known parame-
ters.

The �fth chapter consists of studying graph based codes with Reed�Solomon
component codes. We present the graph codes from two di�erent graphs with
the same Reed�Solomon component codes. As in chapter four, we present the
underlying graphs as an a�ne variety. Then, we present the graph codes as
a�ne variety codes over the graphs. With Reed�Solomon codes, and as opposed
to chapter four, we can �nd explicit bounds for the graph code dimension in
this case. We prove when the formulas are exact and give examples when the
formulas fail.

In last chapter, we study Grassmann codes and a�ne Grassmann codes. A�ne
Grassmann codes are de�ned as a�ne variety codes. From the minimum dis-
tance codewords of their dual code, we prove a�ne Grassmann codes are Tanner
codes with other a�ne Grassmann codes as component codes. Since Tanner code
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is also described in terms of the puncturing and shortening operations, we can
also view Grassmann codes as Tanner codes with other Grassmann codes as
component codes.

Now we present some preliminary notions of coding theory of interest for us.

1.1 Coding Theory Notions

Definition 1.1.1 For x = (x1, x2, . . . , xn),y = (y1, y2, . . . , yn) ∈ Fn, we
de�ne Hamming distance between x and y as

d(x,y) := #{i | xi 6= yi, i = 1, 2, . . . n}.

Definition 1.1.2 For S ⊆ Fn we de�ne the minimum distance of S as

d(S) := min
x6=y∈S

d(x,y).

Definition 1.1.3 Let C be an Fq-linear subspace of Fnq . Then C is a (linear)
code over Fq. The parameters of C are the length n, the dimension dimFq C and
d(C). If dimFq C = k and d(C) = d, then we say C is a [n, k, d]Fq code. If we
wish to emphasize only the �eld Fq, then we say C is a code over Fq. If c ∈ C
then c is a codeword of C.

Lemma 1.1.4 Let C be a linear code over Fq. If c, c
′ are two codewords of

C of minimum weight and on the same nonzero coordinates, then c′ = αc for
some α ∈ F∗q .

Proof.

Let c′i = αci 6= 0. Then the vector c′ − αc is a codeword of C with a weight
strictly less than d(C). Therefore, c′ − αc must be the zero codeword. �

Although, there exist nonlinear codes, we consider only codes which are linear
subspaces of Fnq . Hereafter, linear codes will be referred to as codes. Since we
are working with linear spaces, we have the following de�nitions.

Definition 1.1.5 Let C be a code of length n and dimension k over Fq. An
generator matrix for C is an k × n matrix G over Fq whose rowspace is C.
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The generator matrix for a code gives a compact way to describe a code and its
dual. If G is the generator matrix of C, then C⊥ is the right nullspace of G.

Definition 1.1.6 Let C be an Fq-linear subspace of Fnq . We de�ne the dual
code of C as the orthogonal complement of C. That is

C⊥ := {x ∈ Fnq | ∀c ∈ C x1c1 + x2c2 + · · ·+ xncn = 0}.

The code C⊥ is a [n, n− k, d(C⊥)]Fq
code.

Definition 1.1.7 Let C1, C2 be codes of length n over Fq. We say C1 and
C2 are monomially equivalent codes if there exist α1, α2, . . . , αn ∈ F∗q such that

(c1, c2, . . . , cn) ∈ C1 if and only if (α1c1, α2c2, . . . , αncn) ∈ C2.

And we have the following theorem.

Theorem 1.1.8 Suppose C1 and C2 are monomially equivalent codes. Then
C⊥1 is monomially equivalent to C⊥2 .

Now we present another notion of equivalent codes based on permutations.

Definition 1.1.9 Let C be a code of length n. Suppose σ is a permutation
of {1, 2, . . . , n}. If c = (c1, c2, . . . , cn), then σ(c) := (cσ(1), cσ(2), . . . , cσ(n)). We
also de�ne σ(C) := {σ(c) | c ∈ C}. In case σ(C) = C, then σ is called an
automorphism of C. The group of all automorphisms is denoted by Aut(C).

Note that if C is a code, then σ(C) is a code with the same parameters as C.

Definition 1.1.10 If a code D is obtained by permuting the positions of a
code C, then the code D is permutation equivalent to C.We denote it by C ≡ D.

Definition 1.1.11 Let C be a code of length n over Fq. Suppose the set
I = {i1, i2, . . . , im} is a subset of the code positions {1, 2, . . . , n}. We de�ne the
punctured code of C at I as

CI := {(ci1 , ci2 , . . . , cim) ∈ FIq | c ∈ C}.

We also de�ne the shortened code of C at I as
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CI := {(ci1 , ci2 , . . . , cim) ∈ FIq | c ∈ C, ci = 0, i 6∈ I}.

Note that puncturing a code means discarding all the coordinates outside of I
and shortening means to set all coordinates outside of I equal to 0, and then
discarding these. Mathematically puncturing a code C on the positions given
by I is projecting the code onto the positions given by I. In coding theory
puncturing is usually reserved for the case the dimension does not decrease. We
use either term. We have the following theorem.

Theorem 1.1.12 Let C be a code of length n over Fq. Let I = {i1, i2, . . . , im}
be a subset of the positions of C, then

(C⊥)I = (CI)
⊥.

Puncturing and shortening codes are an elementary way of constructing codes
from longer codes. In addition, puncturing and shortening also give some control
of the parameters of the punctured code in terms of the parameters of the
original code. These two concepts are also important in undestanding graph
based codes.

Definition 1.1.13 Let C be a code of length n over Fq and dimension k. An
information set of C is a subset, IC , of k positions of C such that the submatrix
of the generator matrix of G obtained from the columns of IC has full rank.

An equivalent de�nition of an information set of C is a set of coordinates such
that the values of a codeword at the coordinates of the information set determine
the codeword uniquely. Therefore, the information set is a set which has all the
information about a codeword. Once the entries in an information set have been
determined, then all other entries are also determined. Note that, for a code of
dimension k there exists at least one information set of size k,

Theorem 1.1.14 (The Singleton bound) Let C be an [n, k, d] code.
Then,

d ≤ n− k + 1.

In coding theory one of the most important class of codes are those for the
Singleton bound holds with equality. That is:
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Definition 1.1.15 An MDS code is an [n, k, d] code which satis�es the Sin-
gleton bound with equality. That is:

d = n− k + 1.

MDS is short for Maximum Distance Separable. There are several characteri-
zations of MDS codes. We can relate MDS codes to the other concepts we have
introduced in the following theorem:

Theorem 1.1.16 Let C be an [n, k, d] code. Let I be a subset of n′ coordinates
of C. The following are equivalent:

• C is an MDS code.

• C⊥ is an MDS code.

• Any set of k coordinates of C is an information set for C.

• Any puncturing of C (including C itself) is an MDS code.

• Any shortening of C (including C itself) is an MDS code.

1.2 What is a good code?

Graph based codes were introduced by Gallagher in [Gal63]. Later, Tanner
also worked on graph based codes starting in [Tan81]. After these seminal
works, others have also worked on graph based codes, such as Low Density
Parity Check (LDPC) codes and Expander codes. Some signi�cant articles are:
[ABN+92, Zem01, KLF01, SS96, BZ05, RS06].

The allure of graph codes is that their performance as a good code does not
depend on their minimum distance, instead it depends on the performance of
the iterative decoder. Normally, the minimum distance of a code is a proxy for
good decoding performance. However, some LDPC codes, Expander codes and
Product codes decode much better than what their minimum distance predicts.
Tanner in [Tan84] shows that the decoding and minimum distance of a graph
based code depends on the second largest eigenvalue of the graphs. The decoding
performance actually depends on the expansion of the graph. Expander graphs
are studied in [Alo86, DBL84, Mar88, Nil91, Mor94, LU95].
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Good codes with good decoding performance using the graph expansion property
are studied in [GI01, GI02, RU01a, RU01b, RSU01, SR03, LRC08].
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Chapter 2

A�ne Variety Codes

Our algebraic approach to graph based codes is based on a�ne varieties. By
treating both the graphs and the component codes within the same framework
of a�ne varieties, we can construct some graph based codes under the same
framework. In this chapter, we introduce a�ne variety codes. With a�ne vari-
eties, we study codes from algebraic objects such as curves and surfaces. These
algebraic objects add an extra algebraic layer to coding theory. We describe
a�ne varieties with polynomial rings, ideals and Gröbner bases. The material
and notation follows [CLO07] closely.

This chapter is organized as follows. First, we introduce polynomial rings. Sec-
ond, we introduce ideals and Gröbner bases. Third, we introduce ideals of
polynomial rings and a�ne varieties. Lastly, we introduce a�ne variety codes
and give some examples.

2.1 Polynomial Rings

Definition 2.1.1 A monomial in x1, x2, . . . , xn is a product of the form

xa11 x
a2
2 · · ·xann ,where a1, a2, . . . , an ∈ N.
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We may simplify the notation of xa11 x
a2
2 · · ·xann to xa. The total degree of the

monomial is a1 + a2 + · · ·+ an. We denote the total degree as deg(xa).

Definition 2.1.2 Let k be a �eld. A polynomial in k is a �nite, k-linear
combination of monomials. We can write a polynomial f in the form

f =
∑
a

fax
a, fa ∈ k

where the sum is over a �nite number of vectors a ∈ Nn. The set of all polyno-
mials in x1, x2, . . . , xn with coe�cients in k is denoted by k[x1, x2, . . . , xn].

We can make the polynomial ring k[x1, x2, . . . , xn] into a domain with the fol-
lowing addition and multiplication operations.

Theorem 2.1.3 Suppose that the product of xa and xb is xa+b. In addition,

let f =
∑
a

fax
a and g =

∑
a

gax
a be polynomials in k[x1, x2, . . . , xn]. Then, the

ring k[x1, x2, . . . , xn] is a domain with the operations

f + g :=
∑
a

(fa + ga)xa, and fg :=
∑
a

(
∑

b+c=a

fbgc)x
a.

Definition 2.1.4 Let f =
∑
a

fax
a be a polynomial in k[x1, x2, . . . , xn]. The

element fa ∈ k is the coe�cient of xa in f. If fa 6= 0, then fax
a is a term of

f. The total degree of f is the highest total degree among the monomials of the
terms of f. We denote the total degree of f by deg(f).

2.2 Ideals and Gröbner bases

Gröbner bases are important computational tools when working with ideals in
polynomial rings. These bases contain the information necessary to answer some
fundamental questions about a polynomial ring ideal quickly and easily. Ideals
and Gröbner bases are elementary tools to study a�ne variety codes.

Definition 2.2.1 A subset I ⊂ k[x1, x2, . . . , xn] is an ideal of the polynomial
ring k[x1, x2, . . . , xn] if it satis�es the following:

• If f, g ∈ I then f + g ∈ I.

• If f ∈ I and h ∈ k[x1, x2, . . . , xn] then fh ∈ I.
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Definition 2.2.2 Let f1, f2, . . . , fs ∈ k[x1, x2, . . . , xn]. We de�ne

〈f1, f2, . . . , fs〉 := {
s∑
i=1

hifi | hi ∈ k[x1, x2, . . . , xn]}.

With the de�nition of an ideal and the de�nition of 〈f1, f2, . . . , fs〉 one can easily
work out that 〈f1, f2, . . . , fs〉 is an ideal of k[x1, x2, . . . , xn]. Thus, we call the
ideal 〈f1, f2, . . . , fs〉 the ideal generated by f1, f2, . . . , fs.

Definition 2.2.3 A monomial order, �, is a total ordering on the monomi-
als on x1, x2, . . . , xn such that:

• 1 � xa for all monomials xa.

• For all monomials xa and xb if xb � xa and xa � xb hold then xa = xb.

• For all monomials xa, xb and xc if xa � xb then xa+c � xb+c.

For a monomial order �, the relation xa � xb includes the possibility xa = xb.
The relation xa ≺ xb is equivalent to xa � xb but xa 6= xb.

Definition 2.2.4 For monomials xa and xb on x1, x2, . . . , xn, a, b ∈ Nn we
de�ne the lexicographical order, ≤lex with x1 > x2 > · · · > xn as follows.

If a1 = b1, a2 = b2, · · · , ai−1 = bi−1 but ai < bi, then x
a <lex x

b.

For monomials xa and xb on x1, x2, . . . , xn, a, b ∈ Nn we de�ne the degree
graded lexicographical order, ≤glex, with x1 > x2 > · · · > xn as follows:

xa <glex x
b if and only if deg(a) < deg(b) or deg(a) = deg(b) and xa <lex x

b,

where ≤lex is the lexicographical order with x1 > x2 > · · · > xn.

The degree graded reverse lexicographical order, ≤grlex with x1 > x2 > · · · > xn
is de�ned as

xa<grlexx
b if and only if deg(a) < deg(b) or deg(a) = deg(b) and xa >rlex x

b

where ≤rlex is the lexicographical order with xn > xn−1 > · · · > x2 > x1.

Definition 2.2.5 Let f =
∑
a

fax
a be a polynomial in k[x1, x2, . . . , xn]. Let

� be a monomial order among the monomials in x1, x2, . . . , xn If xa is the
greatest monomial among all terms of f, then fa is the leading coe�cient of
f under �, xa is the leading monomial of f under � and fax

a is the leading
term of f under � . We denote the leading term of f by LT�(f), the leading
coe�cient by LC�(f) and the leading monomial by LM�(f).
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The fundamental algorithm in computations with ideals in a polynomial ring is
the multivariate polynomial division algorithm.

Algorithm 1 Multivariate division algorithm in k[x1, x2, . . . , xn] under
�
Input: f1, f2, . . . , fs, f.
Output: a1, a2, . . . , as, r.
a1 := 0, a2 := 0, . . . , as := 0, r := 0
p := f
while p 6= 0 do
i := 1
divisionoccurred := FALSE
while i ≤ s and divisionoccurred = FALSE do

if LM�(fi) divides LM�(p) then

ai := ai +
LT�(p)

LT�(fi)

p := p− LT�(p)

LT�(fi)
fi

divisionoccurred := TRUE
else

i := i+ 1
end if

end while

if divisionoccurred = FALSE then

r := r + LT�(p)
p := p− LT�(p)

end if

end while

end

Definition 2.2.6 The output r when dividing f by f1, f2, . . . , fs is called
the remainder of f when divided by f1, f2, . . . , fs. The outputs a1, a2, . . . , as
are known as the quotients.

Theorem 2.2.7 Fix a monomial order � . Let F = (f1, f2, . . . , fs) be an
s-tuple of polynomials in k[x1, x2, . . . , xn]. For any f ∈ k[x1, x2, . . . , xn] there
exist ai, r ∈ k[x1, x2, . . . , xn] such that,

• f = a1f1 + a2f2 + · · ·+ asfs + r,

• none of the terms of r are divisible by any of the monomials LM�(fi),

• and if aifi 6= 0 then LM�(aifi) � LM�(f).
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Proof.

The output of the multivariate division algorithm in k[x1, x2, . . . , xn], when the
input is f1, f2, . . . , fs, f, satis�es the conclusion of the theorem. �

Definition 2.2.8 Let I be an ideal of k[x1, x2, . . . , xn]. Let � be a monomial
order. We de�ne LM�(I) as the set of leading monomials of the polynomials
in I, that is

LM�(I) := {xa | ∃ f ∈ I : LM�(f) = xa}.

Definition 2.2.9 Let I be an ideal of k[x1, x2, . . . , xn]. We de�ne

∆�(I) := {xa | xa 6∈ LM�(I)}.

The set ∆�(I) is a normal basis for k[x1, x2, . . . , xn]/I under � . This is also
known as the footprint of I. This term was introduced by R.E. Blahut.

We call ∆�(I) a normal basis because of the following:

Theorem 2.2.10 Let I be an ideal of k[x1, x2, . . . , xn]. Suppose � is a mono-
mial order. Then {xa + I | xa ∈ ∆�(I)} is a basis for k[x1, x2, . . . , xn]/I as a
k-vector space.

The sets LM�(I) and ∆�(I) contain plenty of information about the ideal I.
For example, I ∩ Spank(∆�(I)) = {0}. Also, if we know a basis for the ideal
I from which the set LM�(I) is easily derived then we can easily determine
whether or not a polynomial belongs to the ideal.

Definition 2.2.11 Let I be an ideal of k[x1, x2, . . . , xn]. Let � be a mono-
mial order. The set {g1, g2, . . . , gm} is a Gröbner basis for I under � if and
only if the following hold:

• 〈g1, g2, . . . , gm〉 = I,

• 〈LM�(g1), LM�(g2), . . . , LM�(gm)〉 = 〈LM�(I)〉.

With a Gröbner basis for I under � we can derive ∆�(I) easily. The next
theorem expands upon the usefulness of Gröbner bases.

Theorem 2.2.12 Let I be an ideal of k[x1, x2, . . . , xn]. Let � be a monomial
order. Suppose 〈g1, g2, . . . , gm〉 = I. The following are equivalent:
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• The basis {g1, g2, . . . , gm} is a Gröbner basis for I under �,

• The remainder of any f when divided by g1, g2, . . . , gm is equal to the
remainder when f is divided by any permutation of g1, g2, . . . , gm,

• The remainder of any f ∈ I when divided by g1, g2, . . . , gm is 0.

The Gröbner basis is the key to compute in k[x1, x2, . . . , xn]/I. The remainder
when dividing by a Gröbner basis under � will always belong to Spank(∆�(I)).
If we divide f by a Gröbner basis of I under �, we denote the remainder by
rem�(f).

2.3 A�ne Varieties and Ideals

Definition 2.3.1 We de�ne the n-dimensional a�ne space of k as

A(n,k) := {(p1, p2, . . . , pn) | ∀i = 1, 2, . . . , n : pi ∈ k}.

The elements of A(n,k) are also known as points. The a�ne space A(1,k) is
known as the a�ne line and A(2,k) is known as the a�ne plane.

Definition 2.3.2 Let f ∈ k[x1, x2, . . . , xn]. Let p be a point of A(n,k). If
we replace xi by pi then we obtain an element of k de�ned as the evaluation of
f at p denoted by either f(p1, p2, . . . , pn) or f(p). In this way, f gives rise to a
polynomial function from A(n,k) to k. The polynomial function given by f is
also denoted by f.

Lemma 2.3.3 Let k be a �eld with an in�nite number of elements. The only
polynomial which evaluates to 0 on all points of A(n,k) is 0.

Please note, it is important that the �eld k has an in�nite number of elements.
Over Fq, the nonzero polynomial xq − x gives the zero function in A(1,Fq).

Definition 2.3.4 We denote by k̄ a �xed algebraic closure of the �eld k.

Definition 2.3.5 Let f1, f2, . . . , fs ∈ k[x1, x2, . . . , xn]. We de�ne

V(f1, f2, . . . , fs) := {p ∈ A(n,k) | ∀ i : fi(p) = 0}.

The set V(f1, f2, . . . , fs) is the a�ne variety over k de�ned by f1, f2, . . . , fs.
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This de�nition of an a�ne variety is not the standard de�nition. The object
we are de�ning technically is the zero locus of a set of polynomials. A�ne
varieties are also geometrical objects and we want to use this to construct to
our liking. Now we de�ne several relations between ideals and a�ne varieties.
With these we may switch between algebraic and geometric descriptions, making
them essential to algebraic geometry.

Definition 2.3.6 Let V ⊆ A(n,k) be an a�ne variety. We de�ne I(V ) as

I(V ) := {f ∈ k[x1, x2, . . . , xn] | ∀ p ∈ V : f(p) = 0 }.

Clearly, I(V ) is an ideal of k[x1, x2, . . . , xn]. The ideal I(V ) is called the ideal
of the variety V .

Definition 2.3.7 Let I be an ideal of k[x1, x2, . . . , xn]. We de�ne

V(I) := {p ∈ A(n,k) | f(p) = 0 ∀f ∈ I}.

Since any ideal I is generated by some f1, f2, . . . , fs ∈ k[x1, x2, . . . , xn], we can
write V(I) = V(f1, f2, . . . , fs). Thus V(I) is an a�ne variety.

Definition 2.3.8 Let I be an ideal of k[x1, x2, . . . , xn]. The ideal I is a rad-
ical ideal if fm ∈ I for some m implies f ∈ I.

Definition 2.3.9 Let I be an ideal of k[x1, x2, . . . , xn]. The radical ideal of
I is denoted by

√
I and de�ned as

√
I := {f | ∃ m ∈ N : fm ∈ I}.

From the de�nition one can easily prove that
√
I is a radical ideal.

Lemma 2.3.10 If V is an a�ne variety, then I(V ) is a radical ideal.

We have de�ned ideals, varieties, the ideal of a variety and the variety of an
ideal. We know that the ideal of a variety is radical. The next theorems tell us
more about the nature of this mapping between ideals and varieties and how to
�nd a 1-1 correspondence between some ideals and varieties.

Theorem 2.3.11 (The Nullstellensatz) Let I be an ideal of the poly-
nomial ring k̄[x1, x2, . . . , xn]. Then,

I(V(I)) =
√
I.
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Theorem 2.3.12 (Ideal�Variety Correspondence) For any �eld
k and an a�ne variety V ⊆ A(n,k) we have

V = V(I(V )).

Moreover, for k = k̄ and for a radical ideal I ⊆ k[x1, x2, . . . , xn] we also have

I = I(V(I)).

The Ideal�Variety correspondence theorem is the fundamental relation between
ideals and a�ne varieties. With this algebraic geometrical relation, we may
de�ne polynomial functions on a a�ne variety. Later on, we will de�ne a�ne
variety codes with these polynomial functions.

Definition 2.3.13 For a �eld k and V an a�ne variety of A(n,k), we de-
note by k[V ] the ring of all polynomial functions from V to k.

Theorem 2.3.14 Let f, g ∈ k̄[x1, x2, . . . , xn]. Let V be an a�ne variety of
A(n, k̄). Then, f and g represent the same polynomial function in k̄[V ] if and
only if f − g ∈ I(V ).

The next corollary shows the relation between the polynomial functions over an
a�ne variety V and the quotient ring k̄[x1, x2, . . . , xn]/I(V ).

Corollary 2.3.15 Let k̄[x1, x2, . . . , xn] be a polynomial ring, V any a�ne
variety of A(n, k̄). Then k̄[V ] and k̄[x1, x2, . . . , xn]/I(V ) are isomorphic rings.

Note that since the Nullstellensatz holds only for algebraically closed �elds, we
may not be able to apply Corollary 2.3.15 for any �eld. In the next subsection,
we study a case where Corollary 2.3.15 holds over non algebraically closed �elds.

2.3.1 Finite A�ne Varieties

Theorem 2.3.16 Let I be an ideal of k[x1, x2, . . . , xn], such that, V(I) is a
�nite set. Then

• #V(I) is at most dim k[x1, x2, . . . , xn]/I.

• If I is a radical ideal then equality holds; dim k[x1, x2, . . . , xn]/I = #V(I).
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• For each xi there is a univariate polynomial fi(xi) ∈ I. If the degree of
fi(xi) is mi then #V(I) ≤ m1m2 · · ·mn.

From [GH00] the �rst bound is referred to as the footprint bound. Now we
improve the footprint bound.

Theorem 2.3.17 Let I be an ideal of k[x1, x2, . . . , xn], such that, V(I) is a
�nite set. Let g1, g2, . . . , gs be a basis of I. Then, for a monomial order � the
following holds:

#∆�(I) ≤ #∆�( 〈LM�(g1), LM�(g2), . . . , LM�(gs)〉)

with equality if and only if g1, g2, . . . , gs is a Gröbner basis for I under � .

We need a particular lemma on ideals and polynomials of the form xqi − xi.

Lemma 2.3.18 Let I be an ideal of Fq[x1, x2, . . . , xn]. Suppose that for each
xi there is a univariate polynomial xqi − xi ∈ I. Then I is radical.

Lemma 2.3.18 is a speci�c instance of Seidenberg's lemma. [Sei74]

Our interest on A�ne Variety codes is based on a�ne varieties over Fq. Now
we show that we can work with ideals over Fq. To do this, we state an explicit
basis of the ideal of any a�ne variety of A(n,Fq). We begin with a de�nition of
interpolating polynomials.

Definition 2.3.19 Let p = (p1, p2, . . . , pn) be a point of A(n,Fq). The char-
acteristic polynomial of p over Fq is the polynomial

Fp := 1−
n∏
i=1

(1− (xi − pi)q−1).

If V is a set of points of A(n,Fq) we de�ne the characteristic polynomial of V
over Fq as the polynomial

FV :=
∏
p∈V

Fp.

This interpolating polynomial is not the Lagrange interpolation polynomial.
Rather we are making a polynomial whose zeroes in A(n,Fq) are exactly the
point of the a�ne variety V. We describe it as follows.
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Lemma 2.3.20 If p is a point of A(n,Fq), then FV (p) = 0 if and only if
p ∈ V.

Theorem 2.3.21 Let V be a �nite set of points of A(n,Fq). Suppose f is
a polynomial whose zeroes over A(n,Fq) are V. Then, V is the a�ne variety
V(xq1 − x1, x

q
2 − x2, . . . , xqn − xn, f). Moreover, the ideal I(V ) is generated by

〈xq1 − x1, x
q
2 − x2, . . . , xqn − xn, f〉.

Proof.

Let J := 〈xq1−x1, x
q
2−x2, . . . , xqn−xn, f〉. Since x

q
i −xi belongs to J , the points

of the variety V (J) are contained in A(n,Fq). Furthermore, only the zeroes of f
may belong to V (J). Therefore V (J) as a variety of A(n, F̄q) is V. This implies
J ⊆ I(V ). Since xqi − xi belongs to J , Seidenberg's lemma implies J is radical.
The Nullstellensatz implies equality. �

2.3.2 Footprint bound examples

We show some examples in which we use the footprint bound to �nd the Gröbner
basis of some a�ne varieties of A(n,Fq). These examples are relevant for the
graph codes we will present later on.

Example 2.3.22 Consider V = {(x, y, a, b) ∈ F4
q | ax+b−y = 0}. This set is

an a�ne variety of A(4,Fq). From the de�nition of V, we may choose the values
of x, y and a without any restrictions, but b is uniquely determined. Therefore,
#V = q3. Suppose I is the ideal generated by Xq −X, Y q − Y , Aq −A,Bq −B
and AX+B−Y. The polynomial AX+B−Y is not the characteristic polynomial
FV , but both FV and AX+B−Y have the same zeroes over A(4,Fq). Therefore,
Theorem 2.3.21 implies I = I(V ). Let �1 denote the lexicographical order with
B > A > Y > X. There are q3 monomials not divisible by LM�1

(Xq − X),
LM�1

(Y q−Y ), LM�1
(Aq−A), LM�1

(Bq−B) or LM�1
(B+AX−Y ) therefore

{Xq − X,Y q − Y,Aq − A,Bq − B,AX + B − Y } is a Gröbner basis for I(V )
under �1 . It is easy to check that those polynomials are also a Gröbner basis
under lexicographical order with Y > X > A > B.

What about other Gröbner bases for I(V )? Let �2 denote degree graded reverse
lexicographical order with X > Y > A > B. The polynomials Xq −X, Y q − Y ,
Aq −A, Bq −B and AX +B − Y are not a Gröbner basis for I(V ) under �2 .
The polynomials

Xq−i(Y −B)i −Ai−1(Y −B) and
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Aq−i(Y −B)i −Xi−1(Y −B)

belong to I(V ). The monomials XiY q−i, AiY q−i, AX and Bq are leading mono-
mials of elements of I(V ). Therefore, Xq − X, Y q − Y , Aq − A, Bq − B,
AX +B − Y , Xq−i(Y −B)i −Ai−1(Y −B) and Aq−i(Y −B)i −Xi−1(Y −B)
for i = 1, 2, . . . q − 1 are a Gröbner basis for I(V ) under �2 . Moreover they
are also a Gröbner basis under degree graded reverse lexicographical order with
A > B > X > Y.

2.4 A�ne Variety Codes

An a�ne variety code is a code generated by some polynomial functions over
an a�ne variety. We have geometric information from the a�ne variety and
algebraic information from the polynomial functions used for the code. Several
good examples of a�ne variety codes are Reed�Solomon codes, cyclic codes and
a�ne Grassmann codes.

Definition 2.4.1 Let V := {p1,p2, . . . ,pm} be an a�ne variety of A(n,Fq).
We de�ne the evaluation map of V from Fq[x1, x2, . . . , xn] as:

evV : Fq[x1, x2, . . . , xn]→ Fmq

evV (f) 7→ (f(p1), f(p2), . . . , f(pm)).

We de�ne the evaluation map of V from Fq[x1, x2, . . . , xn]/I(V ) as:

evV : Fq[x1, x2, . . . , xn]/I(V )→ Fmq

evV (f + I(V )) 7→ (f(p1), f(p2), . . . , f(pm)).

By Theorem 2.3.14, the kernel of the map evV : Fq[x1, x2, . . . , xn] → Fmq is
I(V ). The characteristic polynomial of pi, Fpi

, evaluates to 1 at pi and to 0
at all points of V \ pi. Therefore, the map evV is surjective. The �rst ring
isomorphism theorem implies that evV : Fq[x1, x2, . . . , xn]/I(V ) → Fmq is a
well�de�ned isomorphism. We are abusing the notation evV because we are
using it to de�ne evaluation from two di�erent rings. The de�nition is quite
similar in both cases. For this reason, we will specify which de�nition is used.

Definition 2.4.2 ([FL98], Defn. 1.1) Suppose V := {p1,p2, . . . ,pm} is an
a�ne variety of A(n,Fq). Let L̄ be an Fq-linear subspace of the quotient ring
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Fq[x1, x2, . . . , xn]/I(V ). We de�ne the a�ne variety code of L̄ evaluated at V
as

C(V, L̄) := {evV (f) | f ∈ L̄}.

Definition 2.4.3 ([FL98], Defn. 1.1) Let V := {p1,p2, . . . ,pm} be an a�ne
variety of A(n,Fq). Suppose L is an Fq-linear subspace of Fq[x1, x2, . . . , xn].We
de�ne the a�ne variety code of L evaluated at V as

C(V,L) := {evV (f) | f ∈ L}.

The length of C(V,L) is #V. Normally, the positions of a code C of length m
are indexed by the integers 1, 2, . . . ,m, but for an a�ne variety code C(V,L) we
may index the positions by V. If L̄ is a subspace of Fq[x1, x2, . . . , xn]/I(V ), then
the dimension of C(V, L̄) is dim L̄. When L is a subspace of Fq[x1, x2, . . . , xn],
then the dimension of C(V,L) is dim(L/(L ∩ I(V ))).

Example 2.4.4 The �eld F8 is equal to the ring F2[t]/〈1+t+t3〉.We consider
the points of F8 as {0, 1, α, α2, α3, α4, α5, α6} where α is a root of 1 + t + t3.
The roots of 1 + t+ t3 are α, α2 and α4.

Consider V := {(x, y) ∈ F2
8 | 1 +xy+ (xy)3 = 0}. The set V is an a�ne variety

of A(2,F8). We write V := {(1, α), (1, α2), (1, α4), (α, 1), (α, α), . . . , (α6, α5))}.

Let L = SpanF8({1, Y,X,XY,X3, X3Y, Y 3, XY 3}). If we evaluate the functions
at each of the 21 points of V we obtain the following generator matrix for the
code C(V,L).


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
α α2 α4 1 α α3 α6 1 α2 α5 α6 α α4 α5 1 α3 α4 α6 α2 α3 α5

1 1 1 α α α α2 α2 α2 α3 α3 α3 α4 α4 α4 α5 α5 α5 α6 α6 α6

α α2 α4 α α2 α4 α α2 α4 α α2 α4 α α2 α4 α α2 α4 α α2 α4

1 1 1 α3 α3 α3 α6 α6 α6 α2 α2 α2 α5 α5 α5 α α α α4 α4 α4

α α2 α4 α3 α4 α6 α5 α6 α 1 α α3 α2 α3 α5 α4 α5 1 α6 1 α2

α3 α6 α5 1 α3 α2 α4 1 α6 α α4 α3 α5 α 1 α2 α5 α4 α6 α2 α
α3 α6 α5 α α4 α3 α6 α2 α α4 1 α6 α2 α5 α4 1 α3 α2 α5 α 1


The set {1, Y,X,XY,X3, X3Y, Y 3, XY 3} is a subset of the footprint of I(V )
under degree graded reverse lexicographical order with X > Y. Therefore, the
dimension of C(V,L) is 8.We can use the footprint bound to prove the minimum
distance of C(V,L) is at least 6. We will later prove it is actually a [21, 8, 6]F8

code.

Usually a�ne variety codes are used to study codes from complicated algebraic
objects. We present a few theorems on the intersection of two a�ne variety
codes. The theorems will be useful to determine the dimension and a basis for
graph based codes.
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Theorem 2.4.5 Let V := {p1,p2, . . . ,pm} be an a�ne variety of A(n,Fq).
Let L̄ and M̄ be Fq-linear subspaces of Fq[x1, x2, . . . , xn]/I(V ). Then

C(V, L̄) ∩ C(V, M̄) = C(V, L̄ ∩ M̄).

Proof.

As we remarked before, the map evV is an isomorphism between the linear
spaces Fq[x1, x2, . . . , xn]/I(V ) and Fmq . The code C(V, L̄) is simply the image

of L̄ under the map evV . The theorem states evV (L̄) ∩ evV (M̄) = evV (L̄ ∩ M̄)
which is a simple algebraic fact. �

Theorem 2.4.5 characterizes the intersection of two a�ne variety codes, provided
the evaluation functions come from the quotient ring of the ideal. The next
lemma states the intersection of the two a�ne variety codes when the evaluation
functions are polynomials and not quotient ring elements. The lemma helps us
compute the intersection of Theorem 2.4.5 in some cases. A preliminary version
of this Lemma appears in [BHPJ13].

Lemma 2.4.6 Let V := {p1,p2, . . . ,pm} be an a�ne variety of A(n,Fq). Let
�1 and �2 be two monomial orders on x1, x2, . . . , xn. Let L be an Fq-linear
subspace of SpanFq

(∆�1
(I(V ))). In addition suppose that M is an Fq-linear

subspace of SpanFq (∆�2(I(V ))). Suppose f1, f2, . . . , fs satisfy:

SpanFq
({f1, f2, . . . , fs}) = {f ∈ L | ∃g ∈M : f − g ∈ I(V )}.

Then
C(V,L) ∩ C(V,M) = C(V, SpanFq

({f1, f2, . . . , fs})).

Proof.

Suppose
c ∈ C(V, SpanFq ({f1, f2, . . . , fs})).

Then there exist a1, a2, . . . , as ∈ Fq and f, such that

c = evV (f) and f = a1f1 + a2f2 + . . .+ asfs,

then
evV (f) ∈ C(V,L).
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Note that
evV (f) = evV (f + h) ∀ h ∈ I(V ).

Since
∃g ∈M such that f − g ∈ I(V ),

then
evV (f) = evV (g + (f − g)) ∈ C(V,M).

Therefore,

C(V, SpanFq ({f1, f2, . . . , fs})) ⊆ C(V,L) ∩ C(V,M).

For the reverse implication, let

c ∈ C(V,L) ∩ C(V,M).

There exist polynomials

f ∈ L and g ∈M, such that, evV (f) = c = evV (g).

This implies that
f − g ∈ (L+M) ∩ I(V ).

Therefore,
f ∈ {f ∈ L | ∃g ∈M : f − g ∈ I(V )}.

From the conditions on f1, f2, . . . , fs there exist a1, a2, . . . , as ∈ Fq, such that

f = a1f1 + a2f2 + · · ·+ asfs,

which implies
c ∈ C(V, SpanFq

({f1, f2, . . . , fs})).

�

The following corollary is useful to intersect two a�ne variety codes.

Corollary 2.4.7 Let V := {p1,p2, . . . ,pm} be an a�ne variety of A(n,Fq).
Let �1 and �2 be two monomial orders on x1, x2, . . . , xn. Let L be an Fq-linear
subspace of SpanFq

(∆�1
(I(V ))). In addition, suppose that M is an Fq-linear

subspace of SpanFq
(∆�2

(I(V ))). Then, the following are true:

• If h ∈ {f ∈ L | ∃g ∈ M : f − g ∈ I(V )}, then h − rem�2
(h) belongs to

(L+M) ∩ I(V ).

• If h ∈ (L+M)∩ I(V ), then ∃ f ∈ {f ∈ L | ∃g ∈M : f − g ∈ I(V )} such
that h = f − rem�2

(f).
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Proof.

We begin with the �rst statement. Let h ∈ L. We know rem�2(h) is the
unique polynomial in SpanFq

(∆�2
(I(V ))), such that h−rem�2

(h) is an element
of I(V ). If h ∈ {f ∈ L | ∃g ∈ M : f − g ∈ I(V )}, then there exists a
g ∈ M ⊆ SpanFq

(∆�2
(I(V ))), such that h − g ∈ I(V ). Thus, g must equal

rem�2(h) and, therefore, h− rem�2(h) = h− g ∈ (L+M)∩ I(V ). This �nishes
the proof of the �rst statement. Now let h ∈ (L+M)∩I(V ), i.e., h = f−g, where
g ∈ M and f ∈ L. By the de�nition of the remainder we know g − rem�2

(f).
Therefore, f is the polynomial f ∈ {f ∈ L | ∃g ∈M : f − g ∈ I(V )} such that
h = f − rem�2

(f). �

We can also use the footprint bound to get a bound on the minimum dis-
tance of the code. For an a�ne variety code C(V,L), a polynomial f ∈ L
and 〈g1, g2, . . . , gs〉 = I(V ) we give an upper bound on the number of zeroes of
f in V , which gives a lower bound on the weight of the codeword evV (f). A
Gröbner basis for 〈g1, g2, . . . , gs, f〉, then Theorem 2.3.16 gives the exact num-
ber of zeroes of f. However, �nding a Gröbner basis for each ideal of the form
{g1, g2, . . . , gs, f} usually is quite di�cult, so we may settle for the upper bound
given in Theorem 2.3.17.

The authors of [FL98] remark that any code is an a�ne variety code. The key
aspect is to �nd a�ne varieties suited to constructing codes. There are many
codes constructed in this way and we give some examples now.

2.4.1 Reed�Solomon codes

Reed�Solomon codes are among the most prominent codes in algebraic coding
theory. We de�ne them as follows:

Definition 2.4.8 Consider the univariate polynomial ring k[t]. We denote
the Fq�vector subspace generated by 1, t, t2, . . . , tk−1 by k[t]<k.

Definition 2.4.9 ([Lin91]) Let ∅ 6= V ⊆ A(1,Fq). The Reed�Solomon code
of dimension k over V is de�ned as

RS(V, k) := C(V,k[t]<k).

As we may expect, the length of the Reed�Solomon codes depends on the number
of elements of Fq we pick as our evaluation points. If 1 ≤ k ≤ #V, then
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the monomials 1, t, t2, . . . , tk−1 are equal to their remainders when divided by
Πα∈V (t − α). We can use the footprint bound (or the fundamental theorem
of algebra) to say a nonzero codeword of RS(V, k) has at most k − 1 zeroes.
Therefore, Reed-Solomon codes are MDS codes. Please note that the positions
of RS(V, k) are indexed by the integers 1, 2, . . . ,#V or by the elements of V.
Indexing the code positions by the a�ne variety points brings the code closer
to its algebraic roots. This will be useful later on.

2.4.2 Cyclic codes

Definition 2.4.10 Let S ⊆ Zq−1. We denote the Fq�vector subspace of
k[t]<q generated by {ti | i ∈ S} byMt(S).

Definition 2.4.11 Let S ⊆ Zq−1. The code C(F∗q ,Mt(S)) is a cyclic code.

For any codeword c = (f(1), f(α), f(α2), . . . , f(αq−2)) ∈ C(F∗q ,Mt(S)) the
cyclic shift of c, i.e. (f(α), f(α2), f(α3), . . . , f(1)), is also in C(F∗q ,Mt(S)). The
Reed�Solomon codes RS(F∗q , k) are also cyclic codes with S = {0, 1, . . . , k− 1}.
When S is the shift of k consecutive integers, (i.e. S = {i, i+ 1, . . . , i+ k− 1} )
then C(F∗q ,Mt(S)) is monomially equivalent to a Reed�Solomon code.

2.4.3 A�ne Grassmann codes

These codes were introduced in in [HBG10]. The same authors studied their
duals as a�ne variety codes in [BGH12].

Definition 2.4.12 Let M be an ` × `′ matrix, where ` ≤ `′. Suppose I is
a subset of {1, 2, . . . , `} and J ⊆ {1, 2, . . . , `′}. Suppose #I = #J = h ≤ r.
Let MI,J denote the submatrix of M obtained from the rows speci�ed by I and
the columns speci�ed by J. An h-minor of M is the determinant of an h × h
submatrix of M. The minor determined by I and J is denoted by det(MI,J).

Consider the set of ` × `′ matrices over Fq, M`×`′(Fq). We identify M`×`′(Fq)
with the points of A(``′,Fq). We associate to this a�ne space the polynomial
ring Fq[X]. The polynomial ring is de�ned in the ``′ indeterminate entries of
X := (Xi,j)1≤i≤`,1≤j≤`′ . We denote σh(X) as the set of all h-minors of X.

Definition 2.4.13 We de�ne the a�ne Grassmann code, CA(`, ` + `′), as
the a�ne variety code C(Fq[X], SpanFq (σ0(X) ∪ σ1(X) ∪ . . . ∪ σh(X))).



Chapter 3

Graph Based Codes

In this chapter, we introduce two classes of graph based codes: Tanner codes and
graph codes. Tanner codes, also known as generalized LDPC codes, are a class
of codes built from a graph and a smaller component code. Several di�erent
codes may be constructed from the same graph and component code, but we
can always gleam some information. For example, there are iterative decoding
algorithms, and bounds on the parameters of the codes. We start with some
basic de�nitions from Graph Theory.

3.1 Bipartite Graphs

Definition 3.1.1 A bipartite graph G is a triple (V1(G), V2(G), E(G)) where
V1(G) and V2(G) are �nite sets and E(G) ⊆ V1(G) × V2(G). The elements of
V1(G) and V2(G) are called vertices (sing. vertex). Two vertices v and u are
adjacent, if and only if (v, u) ∈ E(G). We say either v or u are incident to the
edge (v, u). The vertices v and u are the endpoints of the edge (v, u).

Definition 3.1.2 Let G be a bipartite graph. For a vertex v ∈ V1(G), we
de�ne the neighborhood of v as {u ∈ V2(G) | (v, u) ∈ E(G)}. For a vertex
u ∈ V2(G), we de�ne the neighborhood of u as {v ∈ V1(G) | (v, u) ∈ E(G)}.
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The neighborhood of a vertex u is denoted by N (u). For a vertex v, we denote
the set of edges incident to v by E(v).

Note that for any vertex v ∈ V1(G) a vertex u ∈ N (v), if and only if (v, u) ∈
E(v). For any u ∈ V2(G), there is a similar correspondence between N (u) and
E(u).

In order to simplify the graph based code construction, we impose a regularity
condition. We de�ne regularity as follows.

Definition 3.1.3 Let G be a bipartite graph. If ∀ v ∈ V1(G) : #N (v) = n1
and ∀ u ∈ V2(G) : #N (u) = n2 then G is a (n1, n2)-regular bipartite graph.
We also denote #V1(G) by m1 and #V2(G) by m2.

Note that a (n1, n2)-regular bipartite graph has m1n1 = m2n2 edges.

3.2 Graph Based Codes

Definition 3.2.1 Let G be a (n1, n2)-regular bipartite graph. Let S1 be a set
of cardinality n1 and S2 a set of cardinality n2. Typically, S1 = {1, 2, . . . , n1}
and S2 = {1, 2, . . . , n2}, but sometimes another choice is suitable. Suppose that
for each v ∈ V1(G), χv is a bijection from S1 to E(v) and for each u ∈ V2(G),
φu is a bijection from S2 to E(u). The bipartite graph G with the bijections
described for each vertex is called an endpoint labeled graph.

Please note that φu induces a bijection γu : S2 → N (u) by φu(i) = (γu(i), u).
We de�ne the two classes of graph based codes now.

Definition 3.2.2 [Tan81]

Suppose G is an (n1, n2)-regular endpoint labeled bipartite graph. For a vertex
u ∈ V2(G), we de�ne

cN (u) := (cγu(1), cγu(2), . . . , cγu(n2)) ∈ Fn2
q .

Let C be a code of length n2 over Fq. We de�ne the Tanner code

(G,C) := {(cu) ∈ Fm1
q | ∀ u ∈ V2(G) : cN (u) ∈ C}.
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The code (G,C) is a code of length m1. We may identify the positions of the
Tanner code (G,C) with the integers 1, 2, . . . ,m1 as is normally done in coding
theory. We prefer to identify the positions of (G,C) with the vertices of V1(G)
since the vertices of V1(G) contain the symbols of the codewords. The vertices
of V1(G) are also known as the variable nodes. The vertices of V2(G) are called
the constraint nodes because they represent the parity check equations (G,C)
must satisfy.

We may also de�ne Tanner codes in terms of projections. The Tanner code
(G,C) is a code, such that for any vertex u ∈ V2(G) the code (G,C)N (u) is
contained in a monomially equivalent code to C. This is the key concept behind
the Tanner code. A Tanner code is a long code, which is built from several
copies of the shorter component code. The copies are joined together according
to the graph G. This de�nition is closer to Tanner's own de�nition in [Tan81],
but our de�nition makes the code construction absolutely precise.

Definition 3.2.3 [Tan81, Rot06]

Let G be an (n1, n2)-regular endpoint labeled bipartite graph. For

c = (c(v,u))(v,u)∈E(G) ∈ F#E(G)
q ,

and a vertex u ∈ V2(G), we de�ne the subvector

cE(u) := (cφu(1), cφu(2), . . . , cφu(n2)) ∈ Fn2
q .

Likewise, for the same vector c and a vertex v ∈ V1(G), we de�ne the subvector

cE(v) := (cχv(1), cχv(2), . . . , cχv(n1)) ∈ Fn1
q .

Let C1 be a code of length n1 over Fq and let C2 be a code of length n2 over Fq.

We de�ne the following codes:

• The left auxiliary graph code:

(G,C1 : Fn2
q ) := {(c(v,u)) ∈ F#E(G)

q | ∀ v ∈ V1(G) : cE(v) ∈ C1},

• The right auxiliary graph code:

(G,Fn1
q : C2) := {(c(v,u)) ∈ F#E(G)

q | ∀ u ∈ V2(G) : cE(u) ∈ C2},

• The Graph code:

(G,C1 : C2) := (G,C1 : Fn2
q ) ∩ (G,Fn1

q : C2).



28 Graph Based Codes

A graph code, like Tanner codes, could also be de�ned in terms of projections.
The graph code (G,C1 : C2) is a code where (G,C1 : C2)E(v) is contained in
a code monomially equivalent to C1, and (G,C1 : C2)E(u) is contained in a
monomially equivalent code to C2.

Example 3.2.4 Let G be the following (3, 3)-regular endpoint labeled bipartite
graph:

1 α α2 α3 α4 α5 α6

1 α α2 α3 α4 α5 α6

Note that V1(G) = V2(G) = F∗8. Let V := V (1 + t + t3) = {α, α2, α4} be an
a�ne variety of A(1,F8). The edge set E(G) := {(x, y) ∈ F∗8 × F∗8 | xy ∈ V }.
The edge labelings are as follows:

For x ∈ V1(G) : φx : V → E(x)

φx(vi) := (x,
vi
x

)

For x ∈ V2(G) : χy : V → E(y)

χy(vi) := (
vi
y
, y).

Note that the drawing style of the edge (x, y) depends of the value of xy. If
xy = α, then the edge is a solid line, if xy = α2, then the line is a dashed line
and otherwise, the edge is a thick line. We would like to determine the graph
code (G,RS(V, 2) : RS(V, 2)). Since RS(V, 2) is a [3, 2, 2] code, the value of any
two coordinates determines the third coordinate.
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The Reed�Solomon code RS(V, 2) has the following generator matrix:

(
1 0 α5

0 1 α4

)
.

Another codeword of weight 2 is (1, α, 0). The �rst column corresponds to α, the
second column corresponds to α2 and the third column corresponds to α4. If we
encode 1 at the two thin edges, α at the three dashed edges and α5 at the thick
edge, we can encode the rest of the edges with zeroes.

1 α α2 α3 α4 α5 α6

1 α α2 α3 α4 α5 α6

Note that around each vertex, the symbols assigned to the edges are codewords of
RS(V, 2). We have found a codeword of the graph code (G,RS(V, 2) : RS(V, 2)).

With the rule that the value of any two edges incident to a vertex determines the
value of the third edge incident to the same vertex we show that a codeword of
(G,RS(V, 2) : RS(V, 2)) is determined by the F8 symbols at the following edges:
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1 α α2 α3 α4 α5 α6

1 α α2 α3 α4 α5 α6

We suppose the F8 symbols at each of the 8 edges have been determined. Now the
following edges have also been determined from the conditions given by RS(V, 2):

1 α α2 α3 α4 α5 α6

1 α α2 α3 α4 α5 α6

Now that these edges have been determined, they also determine the F8 symbols
of these additional edges:
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1 α α2 α3 α4 α5 α6

1 α α2 α3 α4 α5 α6

Now the following edges are also determined:

1 α α2 α3 α4 α5 α6

1 α α2 α3 α4 α5 α6

Clearly, the F8 symbols at all edges are determined from the �rst 8 edges. It
is not clear that these 8 positions are information positions for the graph code
(G,RS(V, 2) : RS(V, 2)). In fact, it may happen that we could assign symbols to
the 8 edges such that there is no codeword with those values at those positions.
However, we now prove the dimension of (G,RS(V, 2) : RS(V, 2)) is 8.

Suppose f is an F8-linear combination of 1, Y,X,XY,X3, X3Y, Y 3, XY 3. We
may consider f(X,Y ) as a function on the edge set. At the vertex x ∈ V1(G), f
takes on the values f(x, Y ). The edges incident to x satisfy 1 +xY + (xY )3 = 0,
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therefore f(x, Y ) is a linear combination of 1 and Y. In conclusion, the graph
code (G,RS(V, 2) : RS(V, 2)) is the code from Example 2.4.4. Since we know
the minimum distance is at least 6, and we have found a codeword of weight 6,
the graph code (G,RS(V, 2) : RS(V, 2)) is a [21, 8, 6]F8

code.

The notation we have chosen for graph codes and Tanner codes follows closely
the notation from [Rot06]. Now we present another relation between Tanner
codes and graph codes.

Theorem 3.2.5 [Tan81] Let G be an (n1, n2)-regular endpoint labeled bipar-
tite graph and C be an [n2, k2, d2] code. Suppose C1 is the [n1, 1, n1] repetition
code. Then, the code (G,C1 : C) is an n1-fold repetition code of (G,C).

Proof.

Consider the map τ : F
V1(G)
q → F

E(G)
q , if τ(x) = y, then ye := xu where

u ∈ V1(G) is incident to edge e. Note that τ((G,Fn2
q )) = (G,C1 : Fn2

q ). Suppose
τ(x) = y. For any v ∈ V1(G) the subvector yE(v) = (yφv(1), yφv(2), . . . , yφv(n2))
is equal to xN (v) = (xγu(1), xγu(2), . . . , xγu(n2)). Therefore, x ∈ (G,C) if and
only if y ∈ (G,C1 : C). �

Tanner presented these two closely related constructions of graph based codes
in [Tan81]. In his article, Tanner gave examples of cases where the graph code
properties depend on the labeling functions φv. Nonetheless, he gave bounds on
the code parameters independent of any labelings. Now we present Tanner's
dimension bounds.

Theorem 3.2.6 [Tan81] Let G be an (n1, n2)-regular endpoint labeled bipar-
tite graph. Let C be an [n2, k2, d2] code. Then, the dimension of (G,C) is at
least

m1 −m2(n2 − k2).

Tanner simply counts the parity check equations of the code. There are n2− k2
parity check equations for each of the m2 check nodes of V2(G). Therefore the
codimension of the code is at mostm2(n2−k2).With the same technique Tanner
bounds the dimension of graph codes.

Theorem 3.2.7 [Tan81] Let G be an (n1, n2)-regular endpoint labeled bipar-
tite graph. Let C1 be an [n1, k1, d1] code and let C2 be an [n2, k2, d2] code. Then,
the dimension of the graph code (G,C1 : C2) is at least

#E(G)−m1(n1 − k1)−m2(n2 − k2)
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Tanner's proof is to overestimate the number of parity check equations of the
graph code with the parity checks equations of the auxiliary graph codes. In
fact, we will soon prove that this bound is sharp for the auxiliary graph codes.
It turns out that the auxiliary graph codes are very useful in understanding
graph codes. The next theorem states the structure of the auxiliary graph
codes explicitly.

Lemma 3.2.8 Let G be an (n1, n2)-regular endpoint labeled bipartite graph.
Let C1 be an [n1, k1, d1] code and let C2 be an [n2, k2, d2] code. Then,

• (G,Fn1
q : C2) ≡ C2 × C2 × · · · × C2 ⊆ Fm2n2

q ,

• (G,C1 : Fn2
q ) ≡ C1 × C1 × · · · × C1 ⊆ Fm1n1

q .

Proof.

Let φu be the labeling for u ∈ V1(G) for (G,C1 : Fn2
q ). Suppose V1(G) is the

set {1, . . . ,m1}. The labelings φu for u ∈ V1(G) induce a bijection φ from the
set {1, 2, . . . ,m1n1} to E(G) as follows: φ(n1(i − 1) + j) := (i, φi(j)). Suppose
c ∈ (G,C1 : Fn2

q ). Let cu := cE(u). The map φ sends c to (c1, c2, . . . , cm1
). This

establishes the equivalence between (G,C1 : Fn2
q ) and C1 × C1 × · · · × C1. �

Lemma 3.2.9 Let G be an (n1, n2)-regular endpoint labeled bipartite graph.
Let C1 be an [n1, k1, d1] code and let C2 be an [n2, k2, d2] code. Then,

• (G,Fn1
q : C⊥2 ) = (G,Fn1

q : C2)⊥,

• (G,C⊥1 : Fn2
q ) = (G,C1 : Fn2

q )⊥.

Proof.

We denote the code C1 ×C1 × · · · ×C1 ⊆ Fm1n1
q as

m1∏
i=1

C1. Likewise, we denote

C⊥1 ×C⊥1 ×· · ·×C⊥1 ⊆ Fm1n1
q as

m1∏
i=1

(C⊥1 ). Note that clearly (
m1∏
i=1

C1)⊥ = (
m1∏
i=1

C⊥1 )

By hypothesis, (G,C1 : Fn2
q ) and (G,C⊥1 : Fn2

q ) are constructed with the same
(n1, n2)-regular bipartite labeled graph. From Lemma 3.2.8, there is a bijec-

tion φ : {1, 2, . . . ,m1n1} → E(G), such that φ(
m1∏
i=1

C1) = (G,C1 : Fn2
q ) and
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φ(
m1∏
i=1

(C⊥1 )) = (G,C⊥1 : Fn2
q ). Since φ(

m1∏
i=1

(C⊥1 )) = φ(
m1∏
i=1

(C1)⊥) = φ(
m1∏
i=1

(C1))⊥,

we obtain that the dual code of (G,C⊥1 : Fn2
q ) is actually (G,C1 : Fn2

q ). The
other case is similar. �

Theorem 3.2.10 Suppose G is an (n1, n2)-regular bipartite endpoint labeled
graph. Let C1 be an [n1, k1, d1] code and let C2 be an [n2, k2, d2] code. Then,

(G,C1 : C2)⊥ = (G,C⊥1 : Fn2
q ) + (G,Fn1

q : C⊥2 ).

Proof.

From [MS77] we have the following equality for any two vector spaces codes C
and D;

(C ∩D)⊥ = C⊥ +D⊥.

We use this equality to prove the last part. From the de�nition of a graph code,

(G,C1 : C2) = (G,Fn1
q : C2) ∩ (G,C1 : Fn2

q ).

This implies their dual codes are equal, that is

(G,C1 : C2)⊥ = ((G,Fn1
q : C2) ∩ (G,C1 : Fn2

q ))⊥.

Now we apply (C ∩D)⊥ = C⊥ +D⊥ to obtain

(G,C1 : C2)⊥ = (G,Fn1
q : C2)⊥ + (G,C1 : Fn2

q )⊥.

Lemma 3.2.9 implies that we may rewrite the right hand side with auxiliary
graph codes with C⊥1 and C⊥2 as component codes. We obtain

(G,C1 : C2)⊥ = (G,Fn1
q : C⊥2 ) + (G,C⊥1 : Fn2

q ).

�

With these key observations we can �nd the check equations which both codes
have in common.

Corollary 3.2.11 Let G be an (n1, n2)-regular bipartite labeled graph. Let
C1 be an [n1, k1, d1] code and let C2 be an [n2, k2, d2] code. Then

#E(G)− dim(G,C1 : C2) = m1(n1 − k1) +m2(n2 − k2)− dim(G,C⊥1 : C⊥2 ).
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Proof.

By Theorem 3.2.10 (G,C1 : C2)⊥ is (G,C⊥1 : Fn2
q ) + (G,Fn1

q : C⊥2 ). The vector

space (G,C⊥1 : Fn2
q ) is the space of parity checks from the vertices in V1(G).

It has dimension m1(n1 − k1). The space (G,Fn1
q : C⊥2 ) is the space of parity

checks from V2(G). This space has dimension m2(n2 − k2). The set of common
parity checks is (G,C⊥1 : Fn2

q ) ∩ (G,Fn1
q : C⊥2 ) but that is the de�nition of the

graph code (G,C⊥1 : C⊥2 ) and the theorem follows. �

We point out the following peculiarity from the dimension formula in Corollary
3.2.11: if #E(G) = m1(n1 − k1) + m2(n2 − k2), as it happens for a (n1, n1)
regular graph with k2 = n1 − k1, then dim(G,C1 : C2) = dim(G,C⊥1 : C⊥2 ).
Therefore the orthogonal codes (G,C1 : C2) and (G,C⊥1 : C⊥2 ) have the same
dimension.

3.3 Examples

As Tanner remarked himself, any code can be realized as a Tanner code. We
give some signi�cant examples of Tanner and graph codes.

Definition 3.3.1 Let G = (V1(G), V2(G), E(G)) be a bipartite graph. If
E(G) = V1(G)× V2(G), then G is the complete bipartite graph on m1 and m2

vertices. We denote G by Km1,m2
.

Note that for any v ∈ V1(Km1,m2) the equality N (v) = V2(Km1,m2) holds.
Likewise for any u ∈ V2(Km1,m2) we have that N (u) = V1(Km1,m2). The graph
Km1,m2

is a (m2,m1)-regular bipartite graph.

Example 3.3.2 (A code C) Let C be a [n, k, d] code. Let V1(Kn,1) be the
set of positions of the code C. Suppose V2(Kn,1) = {u}. The vertex labeling
φu : {1, 2, . . . , n} → V1(Kn,1) is the identity. Then, C equals (Kn,1, C).

Example 3.3.3 (Product codes [Tan81]) Suppose C1 and C2 are an
[n1, k1, d1] code and an [n2, k2, d2] code respectively. We construct Kn2,n1

such
that V1(Kn2,n1

) is the set of positions of C2 and V2(Kn2,n1
) is the set of po-

sitions of C1. For v ∈ V1(Kn2,n1
) the bijection χv : {1, 2, . . . , n1} 7→ E(v) is

de�ned as χv(i) := (v, i). Likewise for u ∈ V2(Kn2,n1
) the edge labeling φu :

{1, 2, . . . , n2} 7→ E(u) is de�ned as φu(i) := (i, u). The graph code (Kn2,n1 , C1 :
C2) is the product code of C1 and C2.
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Tanner [Tan81] already shows the importance of the labelings for graph based
codes. Taking the graphsG = K7,7 and the [7, 4, 3] Hamming code as component
codes, he gives three graph codes with completely di�erent parameters: the
[49, 16, 9] product code, a [49, 12, 16] code and a [49, 7, 17] code.

Example 3.3.4 (Code of a bipartite graph) Let G be an (n1, n2)
regular bipartite graph. Let M be a V1(G) × V2(G) matrix whose entries are
0 and 1. Suppose that the entry Mi,j = 1 if and only if (i, j) ∈ E(G). The code
of G is de�ned as the dual code of the rowspace of M. We denote it by C(G).
For any labeling, the code C(G) is equal to the Tanner code (G,C2), where C2 is
the [n1, n1−1, 2] zero sum code. Several codes which fall under this example are
Reed�Muller codes, codes of �nite geometries, designs and incidence structures,
LDPC codes and cyclic codes to name a few.

We can also use a code to get a graph as follows.

Definition 3.3.5 [Tan81]

Let C be a binary code of length n. Suppose C⊥ is generated by its codewords
of weight d1. The Tanner graph of C is the following graph. The vertex set
V1(G(C)) := {1, 2, . . . , n}. We identify this vertex set with the set of positions
of C. The vertex set V2(G(C)) := {c ∈ C⊥ | wt(c) = d1}. We identify this
vertex set with the set of codewords of C⊥ of weight d1. The edge set is given by
E(G(C))) := {(i, c) ∈ V1(G(C))× V2(G(C))) | ci 6= 0}.

Since C⊥ is a binary code generated by its codewords of weight d1, then the
code of the Tanner graph C(G(C)) is C itself. The code C is also equal to the
Tanner code (G(G), [d1, d1−1, 2]F2). One also may study G by considering C(G)
over other prime �elds by taking the component code to be [d1, d1 − 1, 2]Fp

.



Chapter 4

Graph Codes with Cyclic
Component Codes

The sub�eld subcode technique is designed to obtain codes over a small, simple
alphabet. Now we apply this technique to some interesting graph codes with
cyclic component codes. Some of these Tanner codes turned out to be optimal.
This �nding is published in [HPZ14].

First, we introduce the notion of sub�eld subcodes. Then, we introduce the
Tanner codes. We �nish this chapter discussing some of the optimal codes we
found with this construction and other interesting results.

4.1 Sub�eld Subcodes

Several codes are constructed as sub�eld subcodes. For example, BCH codes are
sub�eld subcodes of Reed�Solomon codes. The material in this section follows
[Sti90]. We begin by giving some preliminary concepts related to �elds.

The trace function from Fqm to Fq is tr : x 7→ x+ xq + xq
2

+ · · ·+ xq
m−1

. The
trace function is a Fq-linear epimorphism from the additive group of Fqm to the
additive group of Fq.
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Definition 4.1.1 Let x ∈ Fnqm . Suppose C is a code over Fqm of length n.
We de�ne the following:

• x(q) := (xq1, x
q
2, . . . , x

q
n) ∈ Fnqm ,

• C(q) := {c(q) | c ∈ C},

• The sub�eld subcode of C, denoted by C|Fq, is de�ned as C ∩ Fnq ,

• tr(x) := (tr(x1), tr(x2), . . . , tr(xn)) ∈ Fnq ,

• The trace code of C, denoted by tr(C) is de�ned as {tr(c) | c ∈ C},

• C is q-invariant if C = C(q).

Since we are working over Fqm the code C(q) is also an Fqm -linear code. Note
that both the sub�eld subcode C|Fq and the trace code tr(C) are codes over Fq.
The next two theorems state that q-invariant codes have the same parameters
as sub�eld subcodes. Therefore, we may work with q-invariant codes over Fqm .

Theorem 4.1.2 Suppose C is code over Fqm . The following are equivalent.

• C is a q-invariant code,

• C has a basis of vectors in Fnq ,

• dimFqm
C = dimFq

C|Fq.

Theorem 4.1.3 Suppose C is a q-invariant code over Fqm . Then, C is a
[n, k, d]Fqm

code if and only if C|Fq is an [n, k, d]Fq
code.

Definition 4.1.4 Let C be a code over Fqm . We de�ne the following:

C0 := C∩C(q)∩C(q2)∩ . . .∩C(qm−1) and C∧ := C+C(q)+C(q2)+ · · ·+C(qm−1).

Note that C0 is the largest q-invariant subspace of C and C∧ is the smallest
q-invariant space containing C.

Lemma 4.1.5 Let C be a code over Fqm . Then,

C0 = SpanFqm
(C|Fq), C∧ = SpanFqm

(tr(C)) and (C0)⊥ = (C⊥)∧.
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Delsarte's lemma, i.e. (C|Fq)⊥ = tr(C⊥), follows e�ortlessly.

Now we present some results on the q-invariance of cyclic codes and graph codes.
These theorems allow us to �nd graph codes using q-invariant component codes.

Theorem 4.1.6 Let S ⊆ Zqm−1. The set S is closed under multiplication
mod qm − 1 by q if and only if C(F∗qm , SpanFqm

({tj | j ∈ S})) is a q-invariant
code.

Proof.

Let f ∈ SpanFqm
({tj | j ∈ S})) ⊆ Fqm [t]/〈tqm−1 − 1〉. The function given by

fq mod tq
m−1 − 1 ∈ SpanFqm

({tj | j ∈ S})) ⊆ Fqm [t]/〈tqm−1 − 1〉 if and only
if S is closed under multiplication mod (qm − 1) by q. �

This presentation of cyclic codes is related to the classical de�nition using roots
of the generator polynomial as parity equations. Consider evF∗q (ti) · evF∗q (tj).

Note that, evF∗q (ti) ·evF∗q (tj) = 0 if and only if i+j 6= 0 mod (q−1). Therefore,

picking the monomials {tj | j ∈ S} is the same as picking the roots αj , such
that f(α−j) = 0 for f ∈ Fq[t]/〈tq−1−1〉.We chose the monomial representation
of the cyclic code because it represents a cyclic code as an evaluation code over
V = F∗q .

Theorem 4.1.7 Let G be an (n1, n2)-regular endpoint labeled bipartite graph.
Let C1 be a code of length n1 over Fqm and C2 is a code of length n2 over Fqm .
Then

(G,C1 : C2)0 = (G,C0
1 : C0

2 ) and(G,C1 : C2)|Fq = (G,C1|Fq : C2|Fq).

Proof.

The two equalities are equivalent, thus we will prove only the �rst one:

(G,C1 : C2)0 = (G,C1 : C2) ∩ (G,C1 : C2)(q) ∩ . . . ∩ (G,C1 : C2)(q
m−1),

but (G,C1 : C2)(q) = (G,C
(q)
1 : C

(q)
2 ). This implies

(G,C1 : C2)0 = (G,C1 : C2) ∩ (G,C
(q)
1 : C

(q)
2 ) ∩ . . . ∩ (G,C

(qm−1)
1 : C

(qm−1)
2 ).
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We apply the de�nition of a graph code to obtain

(G,C1 : C2)0 = (G,C1 ∩ C(q)
1 ∩ . . . ∩ C(qm−1)

1 : C2 ∩ C(q)
2 ∩ . . . ∩ C(qm−1)

2 ).

Therefore,

(G,C1 : C2)0 = (G,C0
1 : C0

2 ).

�

4.2 Graph codes over Γsub with cyclic component

codes

In this section we construct some Tanner codes with cyclic component codes.
First, we de�ne the graph and the a�ne variety we will be working with in this
chapter, and then we discuss the parameters of some of these codes.

Definition 4.2.1 We de�ne V := {(x, y, a, b) ∈ F4
q | ax+b−y = 0, ax 6= 0}.

Note that each element (x, y, a, b) ∈ V is determined by the values of x and a
and either y or b, therefore #V = (q − 1)2q. Denote the lexicographical order
with B > A > X > Y by �1 and lex order with Y > X > A > B by �2 .

Theorem 4.2.2 The set {AX +B − Y,Xq−1 − 1, Y q − Y,Aq−1 − 1, Bq −B}
is a Gröbner basis for I(V ) under both �1 and �2 .

Proof.

This ideal is closely related to the ideal of Example 2.3.22. We can prove the
theorem with the same technique. Under �1 we have the leading monomials:
LM�1

(AX + B − Y ) = B, LM�1
(Xq−1 − 1) = Xq−1, LM�1

(Y q − Y ) = Y q,
LM�1

(Aq−1 − 1) = Aq−1 and LM�1
(Bq − B) = Bq. The footprint ∆�1

(I(V ))
is contained in {XiY lAj | 0 ≤ i, j ≤ q − 2, 0 ≤ l ≤ q − 1}. However, since
#V = (q− 1)2q, the footprint must be of this cardinality and therefore the two
sets are the same. A similar proof holds for �2 . �

For future reference we give the following corollary.
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Corollary 4.2.3

∆�1(I(V )) = {XiY lAj | 0 ≤ i, j ≤ q − 2, 0 ≤ l ≤ q − 1}.

∆�2
(I(V )) = {XiBlAj | 0 ≤ i, j ≤ q − 2, 0 ≤ l ≤ q − 1}.

Definition 4.2.4 We de�ne the graph Γsub as the following bipartite graph.
The vertex set V1(Γsub) := {(x, y) ∈ F∗q × Fq | (x, y, a, b) ∈ V }. Likewise
V2(Γsub) := {(a, b) ∈ F∗q ×Fq | (x, y, a, b) ∈ V }. The edge set E(Γsub) is de�ned
as {((x, y), (a, b)) ∈ V1(Γsub)× V2(Γsub) | (x, y, a, b) ∈ V }.

Note that Γsub is a (q−1, q−1) regular endpoint labeled bipartite graph. In this
case, the sets S1 and S2 for the bijections are the a�ne variety F∗q = V (tq−1−1)
as an a�ne variety of A(1,Fq). We �nd E((x, y)) = {(x, y, a, y − ax) | a ∈ F∗q}.
For (a, b) ∈ V2(Γsub), the set E((a, b)) = {(x, ax + b, a, b) | x ∈ F∗q} is also
indexed by F∗q . We use this indexing by F∗q in the endpoint labelings.

Definition 4.2.5 The (q−1, q−1)-regular graph Γsub is a (q−1, q−1)-regular
endpoint labeled bipartite graph with the following bijections.

∀(a, b) ∈ V2(Γsub) φ(a,b) : F∗q → E((a, b))
φ(a,b)(x) = (x, ax+ b, a, b)

∀(x, y ∈ V1(Γsub) χ(x,y) : F∗q → E((x, y))
χ(x,y)(a) = (x, y, a, y − ax)

We de�ne the following sets of equivalence classes of monomials.

Definition 4.2.6 Let S ⊆ Zq−1, then

M1(S) := {XiY lAj + I(V ) | 0 ≤ i ≤ q − 2, 0 ≤ l ≤ q − 1, j ∈ S},

M2(S) := {XiBlAj + I(V ) | 0 ≤ j ≤ q − 2, 0 ≤ l ≤ q − 1, i ∈ S}.

A simple counting argument shows #M1(S) = #M2(S) = q(q − 1)#S. We
remark that the elements of M1(S) are equivalence classes of monomials in
∆�1

(I(V )). In the same manner, the elements ofM2(S) are equivalence classes
of monomials in ∆�2

(I(V )).

Theorem 4.2.7 Let S ⊆ Zq−1, then

C(V,M1(S)) = (Γsub, C(F∗q ,Mt(S)) : Fq−1q ),

C(V,M2(S)) = (Γsub,F
q−1
q : C(F∗q ,Mt(S))).
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Proof.

Let f(X,Y,A) ∈ SpanFq (M1(S)). For (x, y) ∈ V1(Γsub), we consider the equiv-
alence class f(x, y,A). Note that f(x, y,A) ∈ SpanFq

({Aj+I(V ) | j ∈ S}). This
implies that we can also consider f(x, y,A) as a polynomial fxy(A), such that
fx,y(A) + 〈Aq−1 − 1〉 ∈ SpanFq

({Aj + 〈Aq−1 − 1〉 | j ∈ S}). Therefore, f evalu-
ates to a codeword in the component code C(F∗q ,Mt(S)). For the code position
α ∈ F∗q , the label corresponding to it, χ(x,y)(α), is the edge (x, y, α, y − αx).
Evaluating f(x, y,A) at A = α is the same as evaluating f(X,Y,A) at the edge
χ(x,y)(α). Therefore, f evaluates to a codeword of (Γsub, C(F∗q ,Mt(S)) : Fq−1q ).
The size of M1(S) is q(q − 1)#S. Since M1(S) is a subset of ∆�1

(I(V )), the
dimension of C(V,M1(S)) is q(q− 1)#S. Lemma 3.2.8 states that the auxiliary
graph codes are isomorphic to the direct product of their nontrivial compo-
nent code. Therefore, the dimension of (Γsub, C(F∗q ,Mt(S)) : Fq−1q ) is also
q(q − 1)#S, which implies the codes are equal. The second equality follows
similarly. �

For SX , SA ⊆ Zq−1 we denote the code (Γsub, C(F∗q ,Mt(SX)) : C(F∗q ,Mt(SA)))
by (Γsub, SX : SA). To �nd the codewords of (Γsub, SX : SA) we need a way to
compute SpanFq (M1(SX)) ∩ SpanFq (M2(SA)). We give a closer look to the
footprints ∆�1(I(V )) and ∆�2(I(V )).

Definition 4.2.8

M1(i, j) := {Xi−sAj−sY s + I(V ) | s ∈ Zq−1}.

M2(i, j) := {Xi−sAj−sY s + I(V ) | s ∈ Zq−1}.

Where the negative powers of X and A are considered mod q − 1.

Theorem 4.2.9 In Fq[X,Y,A,B]/I(V ), for 0 ≤ i, j ≤ q − 1, the Fq-vector
spaces SpanFq (M1(i, j)) and SpanFq (M2(i, j)) are equal.

Proof.

Note that f̄ ∈ M1(0, 0) if and only if (XiAj + I(V ))f̄ ∈ M1(i, j). There is a
similar relation between M2(0, 0) and M2(i, j). Thus we prove the statement
only for the case SpanFq (M1(0, 0)) and SpanFq (M2(0, 0)) . In this case,

M1(0, 0) := {X−sA−sY s + I(V ) | s ∈ Zq−1},

M2(0, 0) := {X−sA−sBs + I(V ) | s ∈ Zq−1}.
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Let f ∈ SpanFq (M1(0, 0)).We write f as
q−1∑
i=0

fi(AX)q−1−iY i+ I(V ). Note that

in Fq[X,Y,A,B]/I(V ) we have that Y + I(V ) equals (AX + B) + I(V ). Thus

f =
q−1∑
i=0

fi(AX)q−1−i(AX +B)i + I(V ) =
q−1∑
i=0

(
q−1∑
j=i

fj
(
j
i

)
)(AX)q−1−iBi. �

This allows us to compute the dimension of the graph codes simply by computing
the intersectionsM1(i, j)∩M2(i, j) with Theorem 2.4.5 for all 0 ≤ i, j ≤ q− 2.
To do this, we �nd the change of basis matrix fromM1(i, j) toM2(i, j).

Definition 4.2.10 Let Uq denote the q × q matrix whose entry at the i-th
row and j-th column is

(
j
i

)
. The matrix Uq is known as the Upper Pascal matrix.

From the proof of Theorem 4.2.9, we explicitly found Uq as the change of ba-
sis matrix from M1(i, j) to M2(i, j). Since we have a linear mapping from
a basis of Fq[X,Y,A,B]/I(V ) to another basis of Fq[X,Y,A,B]/I(V ) map-
ping the disjoint spaces M1(i, j) to the disjoint spaces M2(i, j), we can �nd
SpanFq

(M1(SX))∩SpanFq
(M2(SA)) by �nding instead the intersection of the

smaller spaces SpanFq
(M1(SX) ∩M1(i, j)) ∩ SpanFq

(M2(SA) ∩M2(i, j)) for
each of the possible (q − 1)2 values of (i, j).

4.3 Graph code parameters

In this section, we look at Uq, the change of basis matrix from M1(i, j) to
M2(i, j), to �nd the dimension of graph codes with cyclic component codes.
We focus on the case of Reed�Solomon component codes and p�invariant cyclic
codes. We start with the following lemma:

Lemma 4.3.1 Let SX , SA ⊆ Zq−1. For i and j, let S′X = {s+ j | s ∈ SX} be
the shift of SX by j and let S′A = {s+ i | s ∈ SA} be the shift of SA by i. Then,

(Γsub, SX : SA) ≡ (Γsub, S
′
X : S′A).

Proof.

Consider that f + I(V ) ∈ M1(SA) ∩M2(SB) if and only if xjaif + I(V ) is in
the codeM1(S′X) ∩M2(S′A). This implies (Γsub, SX : SA) and (Γsub, S

′
X : S′A).

are monomially equivalent. �
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4.3.1 Parameters of graph codes with Reed�Solomon com-

ponent codes

We use the following theorem from [HJ11] and [RS06] to estimate the minimum
distance of the graph codes over Γsub. We use the eigenvalues of the graph for
one of the bounds. Since Γsub is (q − 1, q − 1) regular, its largest eigenvalue is
q+ 1. The second largest eigenvalue is

√
q. This follows from the fact that Γsub

is a subgraph of the point�line incidence geometry of the projective plane over
Fq and the eigenvalue interlacing theorem.

Theorem 4.3.2 Let C1 be a [q − 1, k1, d1]Fq code. Likewise, suppose C2 is
a [q − 1, k2, d2]Fq code. Let D denote the minimum distance of (Γsub, C1 : C2).
Then,

D ≥ d1d2 + (d21 − d1)(d2 − 1) and q(q − 1)
d1d2 −

√
qd1d2

q − 1−√q
.

We have computationally veri�ed for q = 4, 8, 16, 32 and 64 and q = 9, 27 and 81
that for 1 ≤ kx + ka ≤ q − 1

dim(Γsub, RS(F∗q , kx) : RS(F∗q , ka)) ≥ kxka(kx + ka)

2
.

We have also veri�ed for q − 1 ≤ kx + ka ≤ 2(q − 1)

dim(Γsub, RS(F∗q , kx) : RS(F∗q , ka)) ≥

(q − kx)(q − ka)(2q − kx − ka)

2
+ (q2 − q)(kx + ka − (q − 1)).

Theorem 4.3.2 shows that D is at least

(q − kx)(q − ka) + (q − kx)(q − kx − 1)(q − ka − 1),

(q − kx)(q − ka) + (q − ka)(q − ka − 1)(q − ka − 1),

and q(q − 1)
(q − kx)(q − ka)−

√
q(q − kx)(q − ka)

q − 1−√q
.

The bounds on the graph code parameters are sharp in some cases. We delve into
the properties of binomial coe�cients and Uq to later prove that the dimension
bound is exact in several cases.
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4.3.2 Parameters of graph codes with p�invariant cyclic

component codes

Theorem 4.1.6 implies the cyclic code C(F∗q ,Mt(S)) is p-invariant if and only if
S is closed under multiplication by p. In this section, we use p-invariant cyclic
codes as component codes. Theorem 4.1.7 implies the resulting graph codes are
the p-invariant codes of the graph codes of their sub�eld subcodes as component
codes. Therefore the codes we present in this subsection have parameters over
the sub�eld F2 and F3.

Please note that in this subsection we will represent the p-invariant sets SX and
SA by a representative of each coset under the action of multiplying by p. For
example, in the case that q = 8, we represent {0} by {0}, {1, 2, 4} by {1} and
{3, 5, 6} by {3}.

4.3.2.1 Graph codes over F2 for q = 8, N = 392

SX SA kx dx ka da K ≥ D
{0} {0} 1 7 1 7 1 392

{0} {1} 1 7 3 4 6 175
{0} {3} 1 7 3 4 6 175

{0} {0, 1} 1 7 4 3 10 108
{0} {0, 3} 1 7 4 3 10 108

{0} {1, 3} 1 7 6 2 30 56

{1} {1} 3 4 3 4 33 63
{3} {1} 3 4 3 4 33 63
{3} {3} 3 4 3 4 32 63

{1} {0, 1} 3 4 4 3 52 63
{1} {0, 3} 3 4 4 3 51 63
{3} {0, 1} 3 4 4 3 51 63
{3} {0, 3} 3 4 4 3 54 63

{0, 1} {0, 1} 4 3 4 3 89 21
{0, 3} {0, 1} 4 3 4 3 89 21
{0, 3} {0, 3} 4 3 4 3 88 21

When q = 8 we can already see the importance of the labeling functions. In
this case, there is an isomorphism between the cyclic codes of F∗8 obtained
by the map t 7→ t−1. This means that the codes de�ned with the class of 1
and the codes de�ned with the class of 3 are isomorphic, yet the graph codes
(Γsub, {1} : {1}) and (Γsub, {1} : {3}) have dimension 33 while (Γsub, {3} : {3})
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has dimension 32. However, the dimension of (Γsub, {3} : {0, 3}) is 54 and the
dimension of (Γsub, {1} : {0, 1}) is 52. The other two codes, (Γsub, {3} : {0, 1})
and (Γsub, {1} : {0, 3}) have dimension 51. These di�erences in the dimension do
not appear when we have both the class of 1 and the class of 3 in the monomials
of the cyclic code component codes as we show now.

SX SA kx dx ka da K ≥ D
{1, 3} {0} 6 2 1 7 30 56

{1, 3} {1} 6 2 3 4 122 20
{1, 3} {3} 6 2 3 4 122 20

{1, 3} {0, 1} 6 2 4 3 174 12
{1, 3} {0, 3} 6 2 4 3 174 12

{1, 3} {1, 3} 6 2 6 2 281 6

4.3.2.2 Graph codes over F2 for q = 16, N = 3600

In this case, the cyclotomic cosets are {0}, {1} = {1, 2, 4, 8}, {3} = {3, 6, 12, 9},
{5} = {5, 10} and {7} = {7, 14, 13, 11}. Now −{1} = {−1,−2,−4,−8}. In Z15

the coset {−1,−2,−4,−8} is equal to {7}. All other cyclotomic cosets are their
own inverses.

We will focus on these 2-invariant component codes: C(F∗16,Mt({1})) and
C(F∗16,Mt({7})), which are [15, 4, 8] codes, the codes C(F∗16,Mt({0, 1})) and
C(F∗16,Mt({0, 7})), which are [15, 5, 7] codes and C(F∗16,Mt({0, 1, 5})) and
C(F∗16,Mt({0, 7, 5})), which are [15, 7, 5] codes. In the next table we present
graph codes with isomorphic component codes, but completely di�erent behav-
iors of the dimension in all three cases.

SX SA kx dx ka da K ≥ D
{1} {1} 4 8 4 8 62 456
{1} {7} 4 8 4 8 62 456
{7} {7} 4 8 4 8 59 456

{0, 1} {0, 1} 5 7 5 7 137 301
{0, 1} {0, 7} 5 7 5 7 137 301
{0, 7} {0, 7} 5 7 5 7 137 301

{0, 1, 5} {0, 1, 5} 7 5 7 5 395 105
{0, 1, 5} {0, 7, 5} 7 5 7 5 387 105
{0, 7, 5} {0, 7, 5} 7 5 7 5 379 105

Now we compare what happpens when we compare di�erent, non isomorphic
codes.



4.3 Graph code parameters 47

SX SA kx dx ka da K ≥ D
{1} {0, 1} 4 8 5 7 94 392
{1} {0, 7} 4 8 5 7 92 392
{7} {0, 1} 4 8 5 7 94 392
{7} {0, 7} 4 8 5 7 92 392

{1} {0, 1, 5} 4 8 7 5 152 264
{1} {0, 7, 5} 4 8 7 5 148 264
{7} {0, 1, 5} 4 8 7 5 152 264
{7} {0, 7, 5} 4 8 7 5 148 264

{0, 1} {0, 1, 5} 5 7 7 5 229 203
{0, 1} {0, 7, 5} 5 7 7 5 229 203
{0, 7} {0, 1, 5} 5 7 7 5 227 203
{0, 7} {0, 7, 5} 5 7 7 5 229 203

The dimension is harder to predict in this case. Now we give some examples
with codes which contain {3, 6, 12, 9} in their monomial set.

SX SA kx dx ka da K ≥ D
{1} {3} 4 8 4 6 38 328
{7} {3} 4 8 4 6 38 328
{3} {3} 4 6 4 6 35 186

{0, 1} {0, 3} 5 7 5 3 95 105
{0, 7} {0, 3} 5 7 5 3 100 105
{0, 3} {0, 3} 5 3 5 3 85 21

In the �rst example, C(F∗16,Mt({3})) is a component code. When the sec-
ond component code is C(F∗16,Mt({1})) or C(F∗16,Mt({7})) the dimension
is higher than the case where C(F∗16,Mt({3})) is the other component code.
When C(F∗16,Mt({0, 3})) is a component code, then we get a higher dimen-
sion with C(F∗16,Mt({0, 3})) than with C(F∗16,Mt({1})) or C(F∗16,Mt({7})).
Moreover, the dimension when C(F∗16,Mt({1})) is a component code is dif-
ferent from the dimension when C(F∗16,Mt({7})) is the second component
code. When both component codes are C(F∗16,Mt({1})) or C(F∗16,Mt({7}))
or C(F∗16,Mt({0, 1})) or C(F∗16,Mt({0, 7})) the dimension is higher.

4.3.2.3 Optimal Codes

We found some optimal binary codes as Tanner codes Γsub with cyclic com-
ponent codes. There are several ways of estimating the minimum distance of
Tanner codes [Rot06, HJ11], but these methods were insu�cient to compute
the minimum distance of the code. We generated all codewords to �nd the
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minimum distance of the Tanner codes described in the following table. Their
optimality is given by [Gra07].

q SA (Γsub, C(F∗q ,Mt(SA))) Status
*

8

{1, 2, 4} [56, 6, 28] Optimal

{0, 1, 2, 4} [56, 10, 24] Optimal
*

16

{1, 2, 4, 8} [240, 8, 120] Optimal

{0, 1, 2, 4, 8} [240, 13, 112] Best Known

We also mention, for q = 9 and SA = {0, 1, 3} the code (Γsub, C(F∗q ,Mt(SA)))
is a [72, 5, 45]F3

code where the optimal code is a [72, 5, 46]F3
code.



Chapter 5

Graph Codes with
Reed�Solomon Component

Codes

The graphs introduced in this chapter are derived from the a�ne plane over Fq.
It turns out that the edge set of these graphs are a�ne varieties. We compute
the dimension of the graph codes by considering them as a�ne variety codes.

We also introduce forcing sets. A forcing set for a graph G is de�ned only
with combinatorial notions, but it allows us to encode a graph code iteratively
provided the component codes are MDS codes. It also gives an upper bound on
the dimension of a graph code with MDS component codes.

5.1 Graph code: (Γ1, RS(Fq, k) : RS(Fq, k))

Definition 5.1.1 We denote the a�ne variety {(x, y, a, b) ∈ F4
q | ax+b = y}

as a subvariety of A(4,Fq) by W.

Note that each point (x, y, a, b) ∈ W is determined by the values of x and a
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and either one of y or b, thus #W = q3. We denote degree graded reverse
lexicographical order with B > A > X > Y as �1 and degree graded reverse
lexicographical order with Y > X > A > B as �2 . First we de�ne the following:

Definition 5.1.2 We de�ne

f
(1)
i := Xi(Y −B)q−i −Aq−1−i(Y −B)

f
(2)
i := Ai(Y −B)q−i −Xq−1−i(Y −B)

Theorem 5.1.3 The set

{AX +B − Y,Xq −X,Y q − Y,Aq −A,Bq −B, f (1)i , f
(2)
i , i = 1, 2, . . . q − 1}

is a Gröbner basis for I(V ) under both �1 and �2 .

Proof.

This is a simple corollary from the footprint bound. This is also the ideal
discussed in Example 2.3.22. �

Definition 5.1.4 We de�ne the graph Γ1 as the following bipartite graph.
The vertex set V1(Γ1) := F2

q. Likewise the vertex set V2(Γ1) := F2
q The edge set

E(Γ1) is de�ned as {((x, y), (a, b)) ∈ V1(Γ1)× V2(Γ1) | (x, y, a, b) ∈W}.

Note that Γ1 is a (q, q)-regular bipartite graph.

Definition 5.1.5 We use the following bijections to make a (q, q)-regular
endpoint labeled bipartite graph with Γ1.

∀(a, b) ∈ V2(Γ1) φ(a,b) : F∗q → E((a, b))
φ(a,b)(x) = (x, ax+ b, a, b)

∀(x, y ∈ V1(Γ1) χ(x,y) : F∗q → E((x, y))
χ(x,y)(a) = (x, y, a, y − ax)
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Definition 5.1.6 We de�ne the following monomial sets in Fq[X,Y,A,B]

M1(k)(X) := {Y i2Aj1Bj2 | j1 + j2 < k, i2 < q},
M1(k)(A) := {Xi1Y i2Bj2 | j2 < k, i1 + j2 < q, i2 < q},
M2(k)(X) := {Y i2Aj1Bj2 | i2 < k, j1 + i2 < q, j2 < q},
M2(k)(A) := {Xi1Y i2Bj2 | i1 + i2 < k, j2 < q},
M1(k) := M1(k)(X) ∪M1(k)(A),
M2(k) := M2(k)(X) ∪M2(k)(A).

One can check M1(k) ⊆ ∆�1
(I(W )) and M2(k) ⊆ ∆�2

(I(W )). A counting
argument shows that for 1 ≤ k ≤ q, both M1(k) and M2(k) have exactly q2k
monomials.

Now we use a�ne variety codes to study (Γ1, RS(Fq, k) : RS(Fq, k)). We can
relate the auxiliary graph codes with the endpoint labeled graph Γ1 to some
a�ne variety codes over W.

Theorem 5.1.7

C(W,SpanFq
(M1(k))) = (Γ1, RS(Fq, k) : Fqq)

C(W,SpanFq
(M2(k))) = (Γ1,F

q
q : RS(Fq, k))

Proof.

Let f(X,Y,A,B) ∈ 〈M1(k)〉Fq . For each (x, y) ∈ V1(Γ1), we evaluate the uni-
variate polynomial f(x, y,A, y − Ax). From the bound on the degree of A and
B, f(x, y,A, y − Ax) is a polynomial of degree < k. Therefore f evaluates to a
codeword in the component code RS(Fq, k). Now we need to ensure the code
positions are the ones given by χ(x,y). To the code position α ∈ Fq we associate
the edge χ(x,y(α) = (x, y, α, y − αx). Evaluating f(x, y,A, y − Ax) at A = α
is the same value as evaluating f(X,Y,A,B) at the edge χ(x,y)(α). Therefore
evW (f) is a codeword of (Γ1, RS(Fq, k) : Fqq). The dimension of SpanFq

(M1(k))
is q2k. Since M1(k) ⊆ ∆�1

(I(W )), the dimension of C(W,SpanFq
(M1(k))) is

also q2k. The dimension of (Γ1, RS(Fq, k) : Fqq) is also q
2k which implies both

codes are the same. The other equality follows in a similar manner. �

Definition 5.1.8 Let

{f ∈M1(k) | ∃ g ∈M2(k) : f − g ∈ I(W )} = SpanFq
(f1, f2, . . . , fs)
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as an Fq-linear space and

Nk := SpanFq (M1(k) ∪M2(k)) ∩ I(W ).

Theorem 5.1.9 The graph code (Γ1, RS(Fq, k) : RS(Fq, k)) is the a�ne va-
riety code C(W,SpanFq

(f1, f2, . . . , fs)).

Proof. The proof follows from Theorem 2.4.6 and Theorem 5.1.7. �

Theorem 5.1.10 If 1 ≤ k ≤ q
2 , the dimension of (Γ1, RS(Fq, k) : RS(Fq, k))

is least k3. If q
2 ≤ k ≤ q, then the dimension of (Γ1, RS(Fq, k) : RS(Fq, k)) is

at least k3 − 3q2k + q2k.

Proof.

If 1 ≤ k ≤ q
2 the linear space SpanFq

(f1, f2, . . . , fs) has at least the k3 inde-
pendent monomials inM1(k)∩M2(k). These k3 monomials and Theorem 5.1.9
imply that dim(Γ1, RS(Fq, k) : RS(Fq, k)) ≥ k3. For q2 ≤ k ≤ q Corollary 3.2.11
implies that dim(Γ1, RS(Fq, k) : RS(Fq, k)) is at least k3 − 3q2k + q2k. �

To �nd the dimension of the graph codes (Γ1, RS(Fq, k) : RS(Fq, k)), we must
�nd the dimension of the space Nk = I(W ) ∩ SpanFq

(M1(k) ∪M2(k)). When
Nk = {0} then a basis of (Γ1, RS(Fq, k) : RS(Fq, k)), would be given by the
evaluation of the monomials in M1(k) ∩ M2(k). We will prove that in some
cases Nk = {0}. We describe the proof as follows.

We �rst de�ne a set of elements of I(W ) which turn out to generate the Fq-
linear space I(W )∩SpanFq (∆�1(I(W ))∪∆�2(I(W ))). Then we partition these
ideal elements into subspaces, such that di�erent spaces have disjoint support.
We then prove that if an ideal element is in I(W ) ∩ SpanFq

(M1(k) ∪M2(k)),
then it is an Fq-linear combination of some disjoint spaces. We then prove that
if a polynomial in a subspace is also in I(W ) ∩ SpanFq

(M1(k) ∪M2(k)), then
certain matrices of binomial coe�cients must have a nonzero element in its right
kernel. We �nish by proving that these binomial matrices have full rank, which
implies that I(W ) ∩ SpanFq (M1(k) ∪M2(k)) = {0}.

Definition 5.1.11 Let M ∈ ∆�1
(I(W )). We de�ne

fM := M − rem�2
(M).



5.1 Graph code: (Γ1, RS(Fq, k) : RS(Fq, k)) 53

Lemma 5.1.12

I(W ) ∩ SpanFq
(∆�1

(I(W )) ∪∆�2
(I(W ))) =

SpanFq
({fM |M ∈ ∆�1

(I(W )) \∆�2
(I(W ))}).

Proof.

If f ∈ I(W ) ∩ SpanFq (∆�1(I(W )) ∪ ∆�2(I(W ))), then f = g − rem�2(g) for
some g ∈ SpanFq

(∆�1
(I(W ))). If g =

∑
gM M , then f =

∑
gM fM . The

reverse containment follows from the de�nition of fM . �

Lemma 5.1.13

Nk ⊆ I(W ) ∩ SpanFq
(M1(k) ∪∆�2

(I(W ))).

Now we shall �nd the dimension of Nk which will give the dimension of the
graph codes. To do this, we exploit the structure of the ideal elements fM .
We can compute fM explicitly. However, we only need the following facts: if
M = Xi1Y i2Bj2 , then

fM = Xi1f1(Y,B) +Xi1f2(Y,B) +Aq−1−i1f3(Y,B) (5.1)

where f1, f2 and f3 are homogeneous polynomials in Y and B of degrees i2 + j2,
i2 + j2 − (q − 1) and i2 + j2 + i1 − q + 1 respectively and f2 is a multiple of B.
Furthermore,

f1(Y,B) +Bq−i1f2(Y,B) = qi2,q−i1(Y,B)(Y −B)q−i1 (5.2)

Likewise if M = Aj1Y i2Bj2 , then

gM = Aj1g1(Y,B) +Aj1g2(Y,B) +Xq−1−j1g3(Y,B) (5.3)

where g1, g2 and g3 are homogeneous polynomials in Y and B of degrees i2 + j2,
i2 + j2 − (q − 1) and i2 + j2 + j1 − q + 1 respectively and g2 is a multiple of B.
Furthermore,

g1(Y,B) +Bq−1g2(Y,B) = qi2,q−j1(Y,B)(Y −B)q−j1 (5.4)

where qi,j(Y,B) is a homogeneous polynomial in Y and B of degree i− j.
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Definition 5.1.14 We denote byM1(k)
(1)
i,a as the subset ofM1(k) of mono-

mials M satisfying degX M = i, degB M + degY M = a. Likewise we denote

by M1(k)
(2)
i,a as the subset of M1(k) of monomials M satisfying degA M = i,

degB M + degY M = a.

The sets M1(k)
(1)
i,a and M1(k)

(2)
i,a allow us to partition Nk into subspaces of

polynomials with disjoint support. This separation will help us in �nding the
elements, if any, of Nk.

Lemma 5.1.15 Let S1, S2 be two distinct subsets of the form M1(k)
(1)
i,a or

M1(k)
(2)
i,a as in De�nition 5.1.14 where i < k ≤ q/2. Suppose that the polynomial

f =
∑

M∈S1

cMfM and g =
∑

M∈S2

dMfM . Then f and g have disjoint support.

Proof.

If M ∈ S1 = M1(k)
(1)
i1,a

, then equation (5.1) implies that f can be written as

Xi1f4(Y,B) +Xi1f5(Y,B) + Aq−1−i1f6(Y,B) where f4, f5 and f6 are homoge-
neous polynomials in Y and B of degrees a, a − (q − 1) and a + i1 − q + 1

respectively. If S2 = M1(k)
(1)
i′1,a
′ and either i′1 6= i1 or a 6= a′ then g has no

term in its support in common with f. Therefore we assume S2 = M1(k)
(2)
j1,a′

.
However, equation (5.3) implies q − 1 − i1 = j1. The hypothesis of the lemma
states j1 < k. However, since j1 + i1 = q − 1, j1 > q − 1− k ≥ q/2, then f and

g have disjoint support. Similarly, the case S1 =M1(k)
(2)
j1,a

follows. �

Lemma 5.1.16 Suppose f ∈ SpanFq
(fM ), M ∈M1(k)

(1)
i1,a

. Furthermore sup-

pose f equals Xi1f4(Y,B) +Xi1f5(Y,B) +Aq−1−i1f6(Y,B) where f4, f5 and f6
are homogeneous polynomials in Y and B of degrees a, a−(q−1) and a+i1−q+1.
If f ∈ SpanFq

(M1(k) ∪M2(k)), then f4(Y,B) +Bq−1f5(Y,B) is a multiple of
(Y −B)q−i1 , whose terms satisfy either degB ≥ q or degB < k.

Proof.

Equation (5.2) implies that f4(Y,B) + Bq−1f5(Y,B) is a homogeneous poly-
nomial and a multiple of (Y − B)q−i1 . We write f4(Y,B) + Bq−1f5(Y,B) as
h(Y,B)(Y −B)q−i1 . Since Xi1(f4(Y,B)+f5(Y,B)) ∈ SpanFq (M1(k)∪M2(k)),
the polynomial h(Y,B) has the desired properties. �
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Lemma 5.1.17 Suppose f ∈ SpanFq (fM ), M ∈M1(k)
(2)
j1,a

. Furthermore sup-

pose f equals Aj1g4(Y,B) +Aj1g5(Y,B) +Xq−1−j1g6(Y,B) where g4, g5 and g6
are homogeneous polynomials in Y and B of degrees a, a−(q−1) and a+j1−q+1.
If f ∈ SpanFq

(M1(k) ∪M2(k)), then g4(Y,B) +Bq−1g5(Y,B) is a multiple of
(Y −B)q−j1 , whose terms satisfy either degB ≥ q or degB < k − j1.

Proof. The proof is the same as in Lemma 5.1.16. �

Lemma 5.1.16 shows that a nonzero element of Nk gives rise to a multiple of
(Y − B)q−i1 with no monomials in the middle. We will show that in the cases
relevant to (Γ1, RS(Fq, k) : RS(Fq, k)) there does not exist a multiple of (Y −B)l

such that we �nd a nonzero element of I(W ) in SpanFq
(M1(k)∪M2(k)). This

will give a closed formula for the dimension in these cases.

Lemma 5.1.18 Let h(Y,B) =
m∑
j=0

hjY
jBm−j . The homogeneous polynomial

h(Y,B)(Y −B)l can be written as a polynomial whose terms have either degree in
B less than d1 or degree in B greater than d2 if and only if the coe�cient vector
h = (hm, hm−1, . . . , h0) is in the left kernel of F = (

(
l

d1−v+u
)
)0≤u≤d2−d1,0≤v≤m.

Proof.

The vector hF represents the coe�cients of h(Y,B)(Y −B)l which do not satisfy
the degree conditions from the theorem. These terms are 0 if and only if h is in
the left kernel of F. �

Definition 5.1.19 Let k, h, r be integers. We de�ne

B(k, h, r) :=

((
k

r + h− v + u

))
0≤u,v≤h

.

Lemma 5.1.20 Let m ≥ 1, i < 2m−1, 0 ≤ h ≤ i − 1, then the matrix of
binomial coe�cients B(2m − i, h, 2m−1 − h) has full rank over F2m .

Proof.

Since i < 2m−1, Lucas' Lemma [Luc78] implies
(
2m−i
2m−1

)
= 1. Therefore the

entries on the main diagonal u − v = 0 are equal to 1. If 0 < v − u ≤ h,
then 2m − i < 2m−1 − (v − u) < 2m−1. Similarly, the entries below the main
diagonal are 0. Therefore, the determinant of B(2m − i, h, 2m−1 − h) is 1. �
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Lemma 5.1.21 Let q = 2m. Suppose k ≤ 2m−1. Then Nk = {0}.

Proof.

Let h < i1 < k. Let g(Y,B) be a homogeneous polynomial of degree h such that
no term, M , of g(Y,B)(Y − B)q−i1 satis�es k ≤ degB M < q. This implies the
matrix (

(
q−i1
k−v+u

)
)0≤u≤q−1−k,0≤v≤h has a nonzero left kernel element. However,

B(q − i, h, k − h) is a submatrix, Lemma 5.1.20 implies it has full rank. �

Lemma 5.1.22 Let q = p, p a prime. Suppose k ≤ p
2 . Then Nk = {0}.

Proof.

Let h < i1 < k. Let g(Y,B) be a homogeneous polynomial of degree h such that
no term, M , of g(Y,B)(Y −B)p−i1 satis�es k ≤ degB M < p. This implies the
matrix (

(
p−i1
k−v+u

)
)0≤u≤p−1−k,0≤v≤h has a nonzero left kernel element. However,

B(p− i, h, k − h) is a submatrix. [Mat08] states that it has full rank. �

We have proved that in certain cases there are no nonzero ideal elements in Nk.
In this way we obtain the following dimensions for the following graph codes.

Theorem 5.1.23 Let q equal a power of 2 or a prime. Then,

If 1 ≤ k ≤ q

2
, then dim(Γ1, RS(Fq, k) : RS(Fq, k)) = k3.

If
q

2
≤ k ≤ q, then dim(Γ1, RS(Fq, k) : RS(Fq, k)) = k3 − 3q2k + q2k.

Proof.

Lemmas 5.1.21 and 5.1.22 imply that when q satis�es the conditions of the
theorem and k ≤ q/2, then Nk = {0}. Therefore, the Fq-linear vector space
{f ∈M1(k) | ∃ g ∈M2(k) : f−g ∈ I(W )} is equal to SpanFq (M1(k)∩M2(k)).
Thus, dim(Γ, RS(k) : RS(k)) = k3. Corollary 3.2.11 implies the statement of
the theorem for q

2 ≤ k ≤ q. �

Generally, Theorem 5.1.23 does not hold. When q is an odd prime power, and the
rate of the component codes is around 1/2, then the dimension of the graph codes
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is greater than k3. For example, in the case q = 9 and k = 4, the dimension of
the graph code (Γ1, RS(F9, 4) : RS(F9, 4)) is 66 > 43. The polynomial (Y −B)6

over F3 equals Y
6+B3Y 3+B6.With this polynomial we �nd the ideal elements

X3(Y −B)6−A5(Y −B) and A3(Y −B)6−X5(Y −B) are in the linear space
SpanF9M1(4) ∪ M2(4)). These ideal elements give two codewords which are
not monomials in M1(4) ∩ M2(4). For example X3Y 6 + X3Y 3B3 ∈ M1(4)
and −X3B6 −A5Y +A5B ∈ M2(4) are two polynomals which evaluate to the
same nonmonomial function. However, k3 still is a useful lower bound on the
dimension of (Γ1, RS(Fq, k) : RS(Fq, k)).

5.1.1 Parameters of (Γ1, RS(Fq, k) : RS(Fq, k))

We use the following theorem from [HJ11] and [RS06] to estimate the minimum
distance of the graph codes (Γ1, RS(Fq, k) : RS(Fq, k)).

Theorem 5.1.24 The minimum distance, D, of (Γ1, RS(Fq, k) : RS(Fq, k)),
satis�es the following:

• D ≥ (q − k + 1)((q − k + 1)2 − (q − k)).

• D ≥ q2(q − k + 1)
q−k+1−√q
q−√q .

For the case where q = 4 and k = 2, the bounds on the minimum distance
are D ≥ 32 + (32 − 2) = 16 and D ≥ 16 ∗ 3 ∗ 1

2 = 24. A direct computation
shows D = 35. The bound D ≥ 24 may not be improved because it is a bound
which depends only on the graph Γ1 and the component code RS(Fq, k) and
the bound is sharp because there is a graph code over Γ1 with another labeling
and RS(F4, 2) as component code with parameters [64, 10, 24]F4

. We tried to
improve the bound with a technique derived from the footprint bound as given
in [Gei08]. However, in this case, the bound is D ≥ 21.

For the case where q = 4 and k = 3, the bounds on the minimum distance are
D ≥ 22+(22−2) = 6 and D ≥ 16∗2∗ 0

2 = 0. A direct computation shows D = 6.
The bound D ≥ 6 may not be improved as the graph code is a [64, 31, 6]F4

code.
We also considered the bound given by a di�erent technique derived from the
footprint bound as in [Gei08]. However, in this case, the bound is D ≥ 4.
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5.2 Graph code: (Γ2, RS(I, k) : RS(I, k))

Definition 5.2.1 We de�ne U := {(x, y, t) ∈ F3
q2 | tq + t = 1, xy = t} as

an a�ne variety of A(3,Fq2). We denote the a�ne variety V(tq + t − 1) by I
as an a�ne variety of the line A(1,Fq2).

Note that each point (x, y, t) ∈ U is determined by the values of x and t. For
any x ∈ F∗q2 there are q possible values of t. Once x and t are �xed, so is y.

Therefore #U = q(q2 − 1).

Definition 5.2.2 We de�ne the graph Γ2 as the following bipartite graph.
The vertex set V1(Γ2) := F∗q2 Likewise the vertex set V2(Γ2) := F∗q2 We de�ne

the edge set of Γ2 as the set E(Γ2) := {(x, y) ∈ V1(Γ2)× V2(Γ2) | (x, y, t) ∈ U}.

Note that Γ2 is a (q, q)-regular bipartite graph.

Definition 5.2.3 Let �1 be lexicographical order with Y > X > T. Likewise
we denote by �2 the lexicographical order where X > Y > T.

Theorem 5.2.4 The ideal I(U) is generated by the polynomials T q + T − 1,

Xq2−1 − 1, Y q
2−1 − 1 and T −XY.

Proof.

A quick check of the footprint of 〈T q + T − 1, Xq2−1 − 1, Y q
2−1 − 1, T −XY 〉

under �1 shows the footprint of the ideal has q(q2 − 1) elements. Since the
basis elements evaluate to 0 at the points of U and U has q(q2 − 1) points, the
equality follows. �

From this basis for I(U) we can easily �nd its Gröbner bases under �1 and �2 .

Theorem 5.2.5 The set {T q + T − 1, Xq2−1 − 1, Y − TXq2−2} is a Gröbner

basis for I(U) under �1, and {T q +T −1, Y q
2−1−1, X−TY q2−2} is a Gröbner

basis for I(U) under �2 .

Proof.

The polynomial Y = TXq2−2 belongs to I(U). Since the ideal I(U) contains

T q + T − 1, Y − TXq2−2 and Xq2−1 − 1, the monomials T q, Xq2−1 and Y can
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not be in ∆�1(I(U)). This implies #∆�1(I(U)) ≤ q(q2 − 1). Since U has at
least q(q2− 1) elements, the equality #∆�1

(I(U)) = #U follows, which implies

{T q + T − 1, Y − TXq2−2, Xq2−1 − 1} is a Gröbner basis under �1 . The case
for �2 is similar. �

Definition 5.2.6 To construct graph codes over Γ2 we will use the following
endpoint labelings:

χX(X,Y ) := XY

φY (X,Y ) := XY

Note that the edges of E(Γ2) represent the pair (X,Y ) when (X,Y, T ) ∈ U. We
may represent the pair (X,Y ) as (X, TX ) or ( TY , Y ). Therefore, we may consider
the labelings in the following equivalent way.

Theorem 5.2.7

χX(X,
T

X
) = χ T

Y
(
T

Y
, Y ) := T

φ T
X

(X,
T

X
) = φY (

T

Y
, Y ) := T

The component codes we will be working with are RS(I ⊆ Fq2 , k). Since the
positions of the component codes are indexed by the elements of I, the labelings
map the edges of Γ2 to I. We remark that the code RS(I ⊆ Fq2 , k) is actually
the code RS(Fq, k) over the �eld Fq2 . If η ∈ Fq2 is a zero of T q + T = 1 and
ε ∈ Fq2 is a zero of T q + T = 0 then all zeroes of T q + T = 1 are of the form
η+αε, α ∈ Fq. Therefore, there is a bijection between I and Fq by mapping η+αε
to α. The binomial theorem gives a mapping from SpanFq2

(1, z, z2, . . . , zk−1) to

SpanFq2
(1, η + zε, (η + zε)2, . . . , (η + zε)k−1) which gives the equality between

RS(I ⊆ Fq2 , k) and RS(Fq, k).

Definition 5.2.8 We de�neM1(k),M2(k) ⊆ Fq2 [X,Y, T ] as follows:

M1(k) := {XiT j | 0 ≤ i ≤ q2 − 2, 0 ≤ j ≤ k − 1},

M2(k) := {Y iT j | 0 ≤ i ≤ q2 − 2, 0 ≤ j ≤ k − 1}.

Note thatM1(k) is a subset of ∆�1
(I(U)) andM2(k) is a subset of ∆�2

(I(U)).

As before, we relate the auxiliary graph codes with some a�ne variety codes.
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Theorem 5.2.9

C(U,M1(k)) = (Γ2, RS(I, k) : Fqq2)

C(U,M2(k)) = (Γ2,F
q
q2 : RS(I, k))

Proof.

Let f(X,T ) ∈ SpanFq2
(M1(k)). Fix x ∈ F∗q2 . Then f(x, T ) is a polynomial of

degree at most k−1 in T. Let tq+t = 1, then t is equal to xy where (x, y, t) ∈ U.
The position of f(x, T ) at T = t is the one given by χX(X, TX ). Therefore,
f(X,T ) evaluated in the a�ne variety U is also codeword of (Γ1, RS(I, k) : Fqq2).

SinceM1(k) is a subset of the footprint, the dimension of the code C(Γ2,M1(k))
is equal to (q2 − 1)k which is the same as the dimension of (Γ1, RS(I, k) : Fqq2).
The second equality follows similarly. �

Lemma 5.2.10 Let XiT j ∈M1(k). Then,

rem�2(XiT j) = Y q
2−1−iT i+j mod T q + T − 1.

Proof.

We divide the monomial XiT j by X = TY q
2−2 to obtain Y q

2−1−iT i+j as the
remainder of XiT j . Then the only possible leading term of T q+T−1, Y q

2−1−1,
or X − TY q2−2 which might divide Y q

2−1−iT i+j is T q, therefore rem�2(XiT j)

is equal to Y q
2−1−iT i+j mod (T q + T − 1). �

Definition 5.2.11 For i = 0, 1, . . . q2 − 2 We de�ne

∆�1
(I(U))(i) := {XiT j 0 ≤ j ≤ q − 1}

∆�2
(I(U))(i) := {Y iT j 0 ≤ j ≤ q − 1}.

The remainder induces a bijection between the spaces SpanFq2
(∆�1

(I(U))(i))

and SpanFq2
(∆�2(I(U))(q2 − 1 − i mod q2 − 1)). Note that in the case i = 0

the vector space SpanFq2
(∆�1(I(U))(0)) is equal to SpanFq2

(∆�2(I(U))(0)).

To simplify notation we write SpanFq2
(∆�2

(I(U))(q2 − 1 − i)) instead. The

bijection is given by Xih(T ) 7→ Y q
2−1−i(T ih(T ) mod T q + T − 1). The key to

computing the remainder lies in computing h(T ) mod T q + T − 1. First, we
arrange all remainders in a (q2 − 1)× q matrix.
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Definition 5.2.12 Let R denote the following q2− 1× q matrix. We denote
by ri,j its (i, j)-th entry, which is de�ned as follows:

q−1∑
j=0

ri,jT
j = T i mod T q + T − 1.

It turns out that we can compute the entries of R.

Theorem 5.2.13 Let ri,j denote the (i, j)-th entry of R. Then

ri1q+i0,j =


(−1)j−io

(
i1
j−i0

)
0 ≤ i0 ≤ q − 1− i1, j 6= 0

(−1)q−i0
(
i1
q−i0

)
j = 0

(−1)j+q−i0
(
i1+1
j+q−i0

)
q − i1 ≤ i0 ≤ q − 1 j 6= 0

Proof.

Let i = i1q. In this case the remainder of T i = (T q)i1 mod T q + T − 1 is
(1 − T )i1 . If i0 = 1, 2, . . . q − 1 − i1, then T i0(1 − T )i1 has degree less than q
and the remainder coe�cient is ri1q+i0,j = (−1)j−i0

(
i1
j−i0

)
. Now, suppose i0 is

one of q− i1, q− i1 + 2, . . . q− 1. We will compute the i1q+ i0-th row, from the
previous row. For 2 ≤ j ≤ q− 1, the entry ri1q+i0,j is equal to ri1q+i0−1,j−1, the
entry ri1q+i0,0 = ri1q+i0−1,q−1 = (−1)q−i0

(
i1
q−i0

)
and the entry corresponding to

the column j = 1 is ri1q+i0,1 = (−1)q−i0+1
(
i1+1
q−i0

)
which is equal to the di�erence

ri1q+i0−1,0 − ri1q+i0−1,q−1 = (−1)(−1)q−i0−1
(

i1
q−i0−1

)
+ (−1)q−i0

(
i1
q−i0

)
. �

As a consequence of the de�nition of R we have the following characterization
of R.

Corollary 5.2.14 Let Ri be the q × q submatrix of R obtained by taking
q consecutive rows of R starting from i and cycling back to 0 if necessary.
Then Ri is the change of basis matrix which maps SpanFq2

(∆�1(I(U))(i)) to

SpanFq2
(∆�2

(I(U))(q2 − 1− i)).

Proof.

If Xih(T ) ∈ SpanFq2
(∆�1

(I(U))(i)), then the remainder maps the polynomial

Xih(T ) to Y q
2−1−i(T ih(T ) mod T q + T − 1). But the de�nition of R implies

that mapping h(T ) to T ih(T ) mod T q + T − 1 is given by h 7→ hRi, where
h = (h0, h1, . . . , hq−1) is the coe�cient vector of h(T ). �
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To �nd the dimension of (Γ2, RS(I, k) : RS(I, k)) we need to �nd the ele-
ments of SpanFq2

(M1(k)) whose remainders belong to SpanFq2
(M2(k)). Be-

cause the remainder induces a bijection between SpanFq2
(∆�1

(I(U))(i)) and

SpanFq2
(∆�2(I(U))(q2 − 1− i)) we can divide the work by �nding elements of

SpanFq2
(M1(k) ∩ ∆�1(I(U))(i)) whose remainders belong to the linear space

SpanFq2
(M2(k) ∩ ∆�2

(I(U))(q2 − 1 − i)) for each i. For this purpose we will

need the left nullspace of a k × (q − k) submatrix of the Ri matrices.

Definition 5.2.15 Let Ri,k denote the k × (q − k) submatrix of R obtained
by taking the rows i, i+ 1, . . . , i+k− 1, the rows are indexed mod (q2− 1) and
the last q − k columns.

The matrix Ri,k represents the polynomials in SpanFq2
(M1(k)∩∆�1

(I(U))(i))

which can be written as polyomials in SpanFq2
(∆�1(I(U))(q2−1− i)) of degree

k or more in T. The left corank of Ri,k is equal to the dimension of the functions
in SpanFq2

(M1(k)∩∆�1
(I(U))(i)) whose remainders are in the Fq2 -linear space

SpanFq2
(M2(k) ∩∆�2(I(U))(q2 − 1− i)).

The following lemma allows us to halve the number of submatrices we need to
consider.

Lemma 5.2.16 The rank of Ri,k is equal to the rank of Rq2−1−i,k.

Proof.

The left nullspace of Ri,k represents the space of solutions (f1, f2) to the equation
f1(t)ti = f2(t) mod tq+ t−1 where the degree of f1 and f2 is less than k. Since

ti is invertible, we may multiply both sides by tq
2−1−i to obtain a solution of

the form (f2, f1) to the equation f1(t) = f2(t)tq
2−1−i mod tq + t − 1. These

solutions are represented by the left nullspace of Rq2−1−i,k. �

Theorem 5.2.17 If 1 ≤ k ≤ q
2 , then (Γ2, RS(I, k) : RS(I, k)) has dimension

at least k3. If q
2 ≤ k ≤ q, then (Γ2, RS(I, k) : RS(I, k)) has dimension at least

(q2 − 1)(2k − q) + (q − k)3.

Proof.

Let i = i1q+ i0 where 0 ≤ i1 + i0 ≤ k−1 < q
2 . Let j ≥ k, then j− i0, i1 ≤ k− i0.

Therefore the binomial coe�cient is equal to (−1)j−i0
(
i1
j−i0

)
= 0. On the other
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hand this is equal to the entry ri,j of the matrix R. Therefore, in the case
i = i1q + i0, where 0 ≤ i1 + i0 ≤ k − 1 < q

2 , the matrix Ri,k has at least
k− i0− i1 zero rows. The left nullspace of Ri,k has rank k. For i = 1, 2, . . . k−1,
the left nullspace of Ri,k is at least k − i. For i1 < k, the matrix Ri1q,k has
its �rst k − i1 rows equal to 0. Therefore, for i0 < k − i1 the left nullspace of
Ri1q+i0,k is at least k − i1. However, this also holds for Ri1q−i0,k. Now we can
count the total left nullity to obtain that left corank of all matrices is at least
k+ 2

(
k
2

)
+ 2

∑k−1
i=1 (2

(
k−i
2

)
+ (k− i)(i+ 1)). This is equal to k3. Corollary 3.2.11

implies the second statement of the theorem. �

Like in the previous section we will prove equality for q = 2h and q = p. As in
the previous section we will use the matrix of binomial coe�cients B(k, h, r).
However since the entries of R alternate in sign we need some preliminary the-
orems.

Definition 5.2.18 Let k, h, r be integers. We de�ne

B′(k, h, r) :=

(
(−1)−v+u

(
k

r + h− v + u

))
0≤u,v≤h

.

Theorem 5.2.19 The matrices B(k, h, r) and B′(k, h, r) have the same rank.

Proof.

The matrix B′(k, h, r) is obtained by multiplying every second row and every
second column of the matrix B(k, h, r) by −1. �

Theorem 5.2.20 Let q be a power of 2 or a prime. If 1 ≤ k ≤ q
2 , then

the code (Γ2, RS(I, k) : RS(I, k)) has dimension k3. If q
2 ≤ k ≤ q, then

(Γ2, RS(I, k) : RS(I, k)) has dimension (q2 − 1)(2k − q) + (q − k)3.

Proof.

We will prove that all nonzero rows of Ri,k are independent, which makes the
bound in Theorem 5.2.17 sharp. The technique we will use is similar to the
techniques in Lemmas 5.1.21 and 5.1.22.

Let i = i1q + i0, 0 ≤ i0 ≤ q − k. In this case, the �rst k − i1 − 1 rows of
R(i1+1)q+i0,k are 0. The other i1 + 1 rows contain B′(i1, i0, i1) as the submatrix
corresponding to the �rst k columns of R(i1+1)q+i0,k. From [Mat08] we know
this submatrix has full rank.
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Since the �rst k− i1 − 1 rows of R(i1+1)q,k are 0, the matrix B′(i1, i0, i1) is also
a full rank submatrix of R(i1+1)q+i0,k where 0 ≤ i0 ≤ q − (i1 + 1).

Finally, we consider the case i1q ≤ i1q + i0 ≤ (i1 + 1)q, where (i1 + 1) ≤ k ≤ q
2

and i0 ≥ q − i1. The matrix Ri1q+i0,k has q − i0 rows with binomial coe�cients
(−1)j

(
i1
j

)
and k+i0−q rows with binomial coe�cients (−1)j

(
i1+1
j

)
. The columns

of R corresponding to the nonzero binomial coe�cients (−1)j
(
i1+1
j

)
are the

columns from k to i0 and the columns corresponding to the nonzero binomial
coe�cients (−1)j

(
i1
j

)
are the columns from i1 + 1 to q − 1. Therefore, Ri1q+i0,k

has B′(i1+1, i0, i0−k) as a submatrix on the �rst columns and B′(i1, q−i0, q−i1)
on the last. Therefore, Ri1q+i0,k has full rank.

The rank for the matrices Ri,k where i has not been determined so far follows
from the fact that Ri,k and Rq2−1−i,k have the same rank. This proves the
theorem from 1 ≤ k ≤ q

2 . Corollary 3.2.11 implies the theorem is true for q
2 . �

5.2.1 Parameters of (Γ2, RS(I, k) : RS(I, k))

We use the following theorem from [HJ11] and [RS06] to estimate the minimum
distance of the graph codes (Γ2, RS(I, k) : RS(I, k)).

Theorem 5.2.21 The minimum distance of (Γ2, RS(I, k) : RS(I, k)), de-
noted by D, satis�es the following:

• D ≥ (q − k + 1)((q − k + 1)2 − (q − k)).

• D ≥ (q2 − 1)(q − k + 1)
q−k+1−√q
q−√q .

For the case q = 4 and k = 2, the bounds on the minimum distance are D ≥
32 + (32−2) = 16 and D ≥ 15∗3∗ 1

2 = 23. A direct computation shows D = 31.
In this case, we can obtain an improvement from the derived footprint bound
as given in [Gei08]. From the monomials of the form XiT j which generate
(Γ2, RS(I, 2) : RS(I, 2)) we obtain D ≥ 28. A direct computation shows this is
a [60, 8, 31]F4

code.

As in the previous section for the graph code (Γ2, RS(I, 3) : RS(I, 3)) we have
the graph code bound D ≥ 6. This bound is sharp since the code is a [60, 29, 6]F4

code. The bound in [Gei08] gives D ≥ 4.
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5.3 Iterative encoding

A forcing set is a subset S of the edges of a graph G with the property that
any codeword of any graph code (G,C1 : C2), with C1 and C2 as MDS codes, is
determined by the values at the positions in S. In particular S is independent
of the endpoint labeling functions.

Definition 5.3.1 Let G an (n1, n2)-regular graph. Let k1 ≤ n1 and k2 ≤ n2.
Let T ⊆ E(G). We say T is (k1, k2)-closed if T satis�es:

∀v ∈ V1(G) #(T ∩ E(u)) ≥ k1 → E(v) ⊆ T,

∀u ∈ V2(G) #(T ∩ E(u)) ≥ k2 → E(u) ⊆ T.

That is if there are at least k1 edges incident to v ∈ V1(G) contained in T, then
the whole of E(v) is contained in T. Also holds similarly for u ∈ V2(G).

To �nd a (k1, k2)closed set which contains a subset of edges, say S ⊂ E(G) one
can check all vertices to see if they have k1 (or k2) incident edges in S. Then
one de�nes S1 as the set of edges in S plus those edges incident to a vertex with
k1 (or k2) incident edges in S. Then one does the same with S1 to get an S2

and so on. This process terminates, and the �nal result is a (k1, k2) closed set
containing S. In fact we prove that by doing this, we get the smallest closed
set containing S. The sets Si in the proof are constructed by adding one set of
incident edges at a time, but this makes no di�erence.

Theorem 5.3.2 Let G an (n1, n2)-regular graph. Let k1 ≤ n1 and k2 ≤ n2.
Let S ⊆ E(G). There exists a unique smallest (k1, k2)-closed set containing S.

Proof.

We de�ne Z as follows Z = S ∪E(z1)∪E(z2)∪ . . .∪E(za), where the subset Z
sati�es:

• Z0 = S.

• Zi := S ∪ E(z1) ∪ E(z2) ∪ . . . ∪ E(zi) satis�es Zi ∩ E(zi+1) ≥ k1 or
Zi ∩ E(zi+1) ≥ k2 depending on zi+1 ∈ V1(G) or zi+1 ∈ V2(G).

• Z is (k1, k2)-closed.
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We claim that if Z ′ is another (k1, k2)-closed containing S then it must also
contain Z. Suppose Z ′ is (k1, k2)-closed and Z contains S. Now suppose Z 6⊆ Z ′
then there exists Zi such that Zi ⊆ Z ′ but Zi+1 6⊆ Z ′, but since Zi∩E(zi+1) ≥ k1
or Zi ∩E(zi+1) ≥ k2 depending on zi+1 ∈ V1(G) or zi+1 ∈ V2(G) it follows that
Zi+1 ⊆ Z ′. Therefore, Z ⊆ Z ′. �

Definition 5.3.3 Let G an (n1, n2)-regular graph. Let k1, k2 be integers
satisfying k1 ≤ n1 and k2 ≤ n2. Let S ⊆ E(G). We de�ne the unique smallest
(k1, k2)-closed set containing S as the (k1, k2)-closure of S. We denote it by
clk1,k2(S). If clk1,k2(S) = E(G) we say S is an (k1, k2) forcing set.

The following theorem relates the size of a (k1, k2) forcing set of G with the
dimension of a graph code with [n1, k1, d1] and [n2, k2, d2] MDS component
codes.

Theorem 5.3.4 Suppose G is an (n1, n2) regular bipartite graph. Let C1 be
an MDS code of length n1 and dimension k1 and let C2 be an MDS code of length
n2 and dimension k2. Let S be a (k1, k2) forcing set of G. Then (G,C1 : C2) is
linearly isomorphic to (G,C1 : C2)S and dim(G,C1 : C2) ≤ #S.

Proof.

Consider (G,C1 : C2)S , the projection of (G,C1 : C2) onto S. There is a
linear map from (G,C1 : C2) to (G,C1 : C2)S where we map the codeword
c = (ci)i∈E(G) to the vector cS = (ci)i∈S . We will prove the kernel is zero di-
mensional. Let c be a codeword of (G,C1 : C2) which is mapped to the zero
codeword of (G,C1 : C2)S . Therefore, ci = 0 for i ∈ S. For each v ∈ V1(G) once
we know ci = 0 for k1 edges of E(v), we know ci = 0 for all edges of E(v). For
each u ∈ V2(G) once we know ci = 0 for k2 edges of E(u) are zero, we know
ci = 0 for all edges of E(u). Therefore the set of zero positions of the codeword
c is clk1,k2(S). Since S is a (k1, k2) forcing set of G all positions of c have the
entry zero.

Since the linear map (G,C1 : C2) to (G,C1 : C2)S has a trivial kernel, punc-
turing (G,C1 : C2) on S is a linear isomorphism between (G,C1 : C2) and
(G,C1 : C2)S . Therefore, the dimension of (G,C1 : C2) is equal to the dimen-
sion of (G,C1 : C2)S which is at most #S. �

The hypothesis that the component codes are MDS can't be relaxed. In this
case, one can �nd graph codes where the dimension of the graph code is larger
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than the size of the forcing set. For example:

Example 5.3.5 Let G be the 4-cycle. Any single edge of G constitutes a
(1, 1) forcing set. We use the following endpoint labelings for a graph code
over G: the edges (1, 2) and (3, 4) get label 1 for both endpoints and the edges
(2, 3) and (1, 4) get label 2 for both endpoints. This is an endpoint labeling
of the cycle. Let C = Span((1, α)), the graph code (G,C : C) is the code
Span((1, α, 1, α)). But if we let C ′ = Span((1, 0)). The graph code (G,C ′ : C ′)
is the code Span({(1, 0, 0, 0), (0, 0, 1, 0)}).

We also get a corollary to Theorem 5.3.4. We may encode (G,C1 : C2) iteratively
from a codeword in (G,C1 : C2)S where S is a (k1, k2) forcing set of G and C1

and C2 are MDS codes of dimensions k1 and k2 respectively. Once some positions
of the codeword in (G,C1 : C2)S have been determined, it might be possible
to determine the positions of some other neighborghood which has at least k2
but not n2 positions determined. The other possibility is that it might not be
possible to extend the entries of the code in this way, but we will prove this is
not the case.

Theorem 5.3.6 Suppose G is an (n1, n2) regular bipartite endpoint labeled
graph. Let C1 be an MDS code of length n1 and dimension k1 and C2 an
MDS code of length n2 and dimension k2. Let S be a (k1, k2) forcing set of G.
Then a codeword c′ ∈ (G,C1 : C2)S may be extended uniquely to a codeword in
(G,C1 : C2) using only the conditions that (G,C1 : C2)E(v) ≡ C1, for v ∈ V1(G)
and (G,C1 : C2)E(v) ≡ C2, for u ∈ V2(G).

Proof.

Let S be a (k1, k2) forcing set. There exist S0, S1, . . . , Sm ⊆ E(G) satisfying:
S0 = S, Sm = E(G) and for i = 1, 2, . . . n either the set Si = Si−1∪E(ui) where
k1 ≤ #(Si−1 ∪ E(vi)) < n1 and vi ∈ V1(G) or the set Si = Si−1 ∪ E(ui) where
k2 ≤ #(Si−1 ∪ E(ui)) < n2 and ui ∈ V2(G).

Let φSi
denote the linear map from (G,C1 : C2) to (G,C1 : C2)Si . Since Si is a

(k1, k2) forcing set of G then φSi
is a linear isomorphism.

Let φS(c) = c′ ∈ (G,C1 : C2)S = (G,C1 : C2)S0 . Now suppose that we have
extended c′ to φSi

(c) ∈ (G,C1 : C2)Si and we want to prove that we can extend
it uniquely to a codeword of (G,C1 : C2)Si+1 . The only possibility is to extend
φSi(c) to φSi+1(c) because the positions in Si+1\Si are determined by the entries
in φSi(c) and those positions are exactly the entries of φSi+1(c). �
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5.4 Twisted Γ1

Now we assume q is a square prime power and r =
√
q. We de�ne a graph Γt

which is closely related to Γ1.

Definition 5.4.1 We de�ne the graph Γt as the following bipartite graph.
The vertex set V1(Γt) := V1(Γ1) = {(x, y) ∈ Fq × Fq}. Likewise the vertex set
V2(Γt) := V2(Γ1) = {(a, b) ∈ Fq × Fq}.

We de�ne E(Γt) := {((x, y), (a, b)) ∈ V1(Γt)× V2(Γt) | arx+ br − y = 0}.

Note that Γt is also (q, q) regular bipartite graph on the same vertices as Γ1.
In fact both graphs are isomorphic. The only di�erence is that the incidence
relation ax + b − y is twisted with the �eld involution to obtain the relation
arx + br − y = 0, and since we are working within Fq we also obtain another
relation axr + b − yr = 0. This twist changes signi�cantly the graph codes
(Γt, RS(Fq, k) : RS(Fq, k)) under the following endpoint labeling.

Definition 5.4.2 We use the following bijections to make a (q, q)-regular
endpoint labeled bipartite graph with Γt.

∀(a, b) ∈ V2(Γt), φ(a,b) : Fq → E((a, b))

φ(a,b)(x) = (x, arx+ br, a, b)

∀(x, y) ∈ V1(Γt), χ(x,y) : Fq → E((x, y))

χ(x,y)(a) = (x, y, a, yr − axr)

We have found the following dimensions of (Γt, RS(Fq, k) : RS(Fq, k)) and (k, k)
forcing sets of the following sizes:

q = 4

k K #S
1 1 1
2 10 10
3 33 33
4 64 64
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q = 16

k K $S
1 1 1
2 9 9
3 36 37
4 101 103
5 208 211
6 357 361
7 549 554
8 784 790
9 1061 1068
10 1381 1389
11 1744 1751
12 2149 2156
13 2596 2600
14 3081 3081
15 3585 3585
16 4096 4096

q = 9

k K #S
1 1 1
2 9 9
3 37 37
4 91 91
5 172 172
6 280 280
7 414 414
8 568 568
9 729 729

T. Høholdt and J. Justesen proved that for r ≤ k ≤ q − r the dimension of
(Γt, RS(Fq, k) : RS(Fq, k)) in the cases where k = 2r − 1, 3r − 2, . . . q − r + 1

is q2k k−rq−r +
(
r+1
2

)2
+ 1 with techniques shown in this chapter. It seems the

dimension of the graph code (Γt, RS(Fq, k) : RS(Fq, k)) is optimal or almost
so. However, a proof has eluded us so far.
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Chapter 6

A�ne Grassmann and
Grassmann Codes

The Grassmannian is a mathematical object relevant in Algebra, Geometry and
Combinatorics. In this chapter, we de�ne the Grassmannian, Grassmann codes
and a�ne Grassmann codes. We also de�ne some graphs such that Grassmann
codes and a�ne Grassmann codes are Tanner codes over these graphs in a
natural, nontrivial way.

6.1 Minimum weight Codewords of CA(`,m)⊥

The codes CA(`,m)⊥ were introduced in chapter 2 as an example of an evaluation
code. We repeat their de�nition for the bene�t of the reader. In this chapter
we de�ne m := `+ `′.

Definition 6.1.1 Let M be an ` × `′ matrix, where ` ≤ `′. Suppose I is a
subset of {1, 2, . . . , `} and J ⊆ {1, 2, . . . , `′}. Suppose #I = #J = h ≤ r. Let
MI,J denote the submatrix of M obtained by taking the rows speci�ed by I and
the columns speci�ed by J. An h-minor of M is the determinant of an h × h
submatrix of M. The minor determined by I and J is denoted by det(MI,J).
When h = ` we omit I from the notation. The 0-minor is de�ned as 1.
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Consider the set of ` × `′ matrices over Fq, M`×`′(Fq). We identify M`×`′(Fq)
with the set of points of the a�ne space A(``′,Fq). We associate to this a�ne
space the polynomial ring Fq[X]. The polynomial ring is de�ned in the ``′

indeterminates of the matrix X := (Xi,j)1≤i≤`,1≤j≤`′ .

Definition 6.1.2 Let X := (Xi,j)1≤i≤`,1≤j≤`′ be an ` × `′ matrix in the
indeterminates Xi,j . For 0 ≤ h ≤ ` we denote ωh(X) as the set of all h-minors
of X. We de�ne the a�ne Grassmann code, CA(`,m), as the a�ne variety code
C(Fq[X], SpanFq (ω0(X) ∪ ω1(X) ∪ . . . ∪ ωh(X))).

From [BGH12] we know that CA(`,m)⊥ is generated by its minimum weight
codewords. Additionally, over F2 the minimum distance d(CA(`,m)⊥) is 4. Over
other �elds, d(CA(`,m)⊥) is 3. Now we study the minimum distance codewords
of CA(`,m)⊥. First we need the following lemma about the automorphisms of
CA(`,m).We denote the group of nonsingular `×`matrices over Fq by GL`(Fq).

Lemma 6.1.3 [BGH12] Suppose B ∈ GL`(Fq), A ∈ GL`′(Fq) and the matrix

U ∈M`×`′(Fq). Suppose f ∈ SpanFq (ω0(X) ∪ ω1(X) ∪ . . . ∪ ωh(X)). Then, the

map M 7→ BMA + U where M ∈ M`×`′(Fq) induces an automorphism of
CA(`,m) which is the map

evFq [X](f(X)) 7→ evFq [X](f(BXA+U)).

We denote the map M 7→ BMA + U by σB,A,U. The group of such maps is
denoted by H(`,m). We also look at two subgroups of H(`,m), the group of
matrix products, σB,A,0 and the group of matrix translations σI`,I`′ ,U. The full
automorphism group is determined in [GK13], but for us H(`,m) su�ces.

Definition 6.1.4 Let Ei,j denote the `× `′ matrix whose (i, j)�th entry is 1
and all other entries are 0 and Dρ := E1,1 +E2,2 + · · ·Eρ,ρ.

Lemma 6.1.5 Let M be an `× `′ matrix of rank ρ. Then there exists matrices
B ∈ GL`(Fq), A ∈ GL`′(Fq) such that σB,A,0(M) = Dρ.

6.1.1 A�ne Grassmann codes over Fq, q 6= 2

Now we consider the case where q 6= 2. Over nonbinary �elds the weight 3 code-
words generate CA(`,m)⊥. We characterize all minimum weight codewords.
From this characterization we can count the minimum weight codewords geo-
metrically and consider the a�ne Grassmann codes as a Tanner code from the
minimum weight codewords.
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Theorem 6.1.6 Let c be a codeword of weight 3 of CA(`,m)⊥ where supp(c)
equals {N1,N2,N3} and cN1

= 1, cN2
= a 6= 0, and cN3

6= 0. There exists
a translation in H(`,m) such that the image of c under this translation, the
codeword c′, satis�es supp(c′) = {0,D1,

a
a+1D1} and the nonzero coe�cients of

c′ are c′0 = 1, c′D1
= a, c′ a

a+1D1
= cN3

= −(a+ 1).

Proof.

Suppose c satis�es the hypothesis of the theorem. We let c′ be the image of c
under σI`,I`′ ,−N1

. Therefore supp(c′) is {0,N2−N1,N3−N1}. To simplify the
notation we let M = N2 −N1 and N = N3 −N1. The nonzero coe�cients of
c′ are c′0 = 1, c′M = a and c′N = cN3

6= 0. Now we examine the conditions given
by c · d = 0 for d ∈ CA(`,m).

First, let d be (1, 1, . . . , 1). The condition c ·d = 0 is c′0+c′M+c′N = 0. Therefore,
c′N = −(a+ 1) 6= 0 and a 6= −1.

Now let f = det(X{i},{i}) and let d = evFq [X](f(X)) In this case, the condition
c · d = 0 is equivalent to aMi,j − (a+ 1)Ni,j = 0. This implies Ni,j = a

a+1Mi,j .
Therefore, N equals a

a+1M.

To �nish the proof, let f = det(XI,J) where f is a 2-minor. Let d be the code-
word corresponding to the evaluation of f. The condition c · d = 0 is equivalent
to af(M) − (a + 1)f(N) = 0. But N = a

a+1M. Therefore, we rewrite c · d = 0

as af(M)− (a+ 1)f( a
a+1M) = 0, which implies, f( a

a+1M) = ( a
a+1 )2f(M). The

original equation is now af(M)−(a+1)( a
a+1 )2f(M) = 0.We can eliminate a as a

common factor in both terms and reduce the equation to f(M)−( a
a+1 )f(M) = 0.

But this is equal to 1
a+1f(M) = 0. Since 1

a+1 6= 0, then f(M) = 0. Since all
2-minors of M vanish then M has rank 1. Lemma 6.1.5 implies there exists
σB,A,0 ∈ H(`,m) such that σB,A,0(M) = D1. �

Theorem 6.1.7 There are

q``
′
(q − 2)(q` − 1)(q`

′ − 1)

3!

codewords of weight 3 in CA(`,m)⊥.

Proof.

Theorem 6.1.6 implies that the support minimum weight codeword of CA(`,m)⊥

is a subset of 3 elements of a set of the form SpanFq (M) + U, where M is a
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matrix of rank 1.

There are (q`−1)(q`
′
−1)

(q−1)2 sets of the form SpanFq
(M), where M is a matrix of

rank 1. For each linear subspace of matrices, there are q``
′−1 possible translates

SpanFq
(M) +U. At each translate there are

(
q
3

)
supports of a minimum weight

codeword, and for each support there are q− 1 minimum weight codewords. �

Note that this formula also works for the number of weight 3 codewords of
CA(`,m)⊥ over F2. That is the formula evaluates to 0 for q = 2.

6.1.2 Dual A�ne Grassmann codes over F2

Using the automorphisms in H(`,m) we can look at the codewords of CA(`,m)⊥

of weight 4. If the support of c ∈ CA(`,m)⊥ is the set {M1,M2,M3,M4}.
then for any h-minor f , f(M1) + f(M2) + f(M3) + f(M4) = 0. We study the
restrictions imposed on the pairwise distinct matrices M1,M2,M3,M4.

Lemma 6.1.8 Let c ∈ CA(`,m)⊥ such that supp(c) = {M1,M2,M3,M4}
then, there exists a codeword c′ ∈ CA(`,m)⊥ such that its support set supp(c′)
is {0,M1 +M4,M2 +M4,M3 +M4}.

Proof.Take c′ as the image of c under the automorphism σI`,I`′ ,M4 . �

Now we will look at the conditions given by f(0)+f(M1)+f(M2)+f(M3) = 0.

Lemma 6.1.9 Let c ∈ CA(`,m)⊥. Suppose supp(c) = {0,M1,M2,M3} then,

M1 +M2 = M3.

Proof.

Let f = det(X{i},{j}). Since f(0) + f(M1) + f(M2) + f(M3) = 0 we have that
(M1)i,j + (M2)i,j = (M3)i,j . This implies M1 +M2 = M3. �

Lemma 6.1.10 Let c ∈ CA(`,m)⊥. Suppose supp(c) = {0,M1,M2,M1+M2}.
If the rank of M1 is ρ then there exists a codeword c′ ∈ CA(`,m)⊥ such that its
support supp(c′) is {0,Dρ,M,Dρ +M}.
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Proof. This is a direct consequence of Lemma 6.1.5. �

Now we look at the restrictions the 2-minors impose on ρ and M when we have
a codeword c ∈ CA(`,m)⊥ whose support is {0,Dρ,M,Dρ + M}. Over F2 the
(1, 1)-th entry of eitherM or Dρ+M is zero, thus without loss of generality we
assume for the remainder of this section that (M)1,1 = 0.

Lemma 6.1.11 Let c ∈ CA(`,m)⊥ such that supp(c) = {0,Dρ,M,Dρ + M}.
Then Mi,i = 0.

Proof.

Note that by hypothesis (M1,1) = 0. First, we consider f = det(X{1,i},{1,i})
where 1 < i ≤ ρ. In this case,

f(0) = 0, f(Dρ) = 1, f(M) = M1,iMi,1, f(M+Dρ) = Mi,i + 1 +M1,iMi,1.

The condition f(0) + f(Dρ) + f(M) + f(M+Dρ) = 0 implies Mi,i = 0.

Now, we consider the 2-minor f = det(X{1,i},{1,i}) where i > ρ. In this case,

f(0) = 0, f(Dρ) = 0, f(M) = M1,iMi,1, f(M+Dρ) = Mi,i +M1,iMi,1.

The condition f(0) + f(Dρ) + f(M) + f(M+Dρ) = 0 implies Mi,i = 0. �

Lemma 6.1.12 Let c ∈ CA(`,m)⊥ such that supp(c) = {0,Dρ,M,Dρ + M}.
Suppose both i, j > 1 and i > ρ or j > ρ, then Mi,j = 0.

Proof.

We consider the 2-minor f = det(X{1,i},{1,j}) where i > ρ or j > ρ. In this case,

f(0) = 0, f(Dρ) = 0, f(M) = M1,jMi,1, f(M+Dρ) = Mi,j +M1,jMi,1.

The condition f(0) + f(Dρ) + f(M) + f(M+Dρ) = 0 implies Mi,j = 0. �

We have now proven that there is a codeword in CA(`,m)⊥ with support in
{0,Dρ,M,Dρ + M} then the entries of the four matrices is 0 outside of the
ρ× ρ submatrix given by Dρ. Now we prove that ρ has to be small.
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Lemma 6.1.13 Let c ∈ CA(`,m)⊥ such that supp(c) = {0,Dρ,M,Dρ + M}.
Then ρ = 1 or ρ = 2.

Proof.

Since the matrices in the support of c are di�erent, Dρ 6= 0, which implies
ρ > 0. Now we will assume ρ ≥ 3 and obtain a contradiction, namely M 6= 0.
We consider the 2-minor f = det(X{1,i},{1,j}) where 1 < i < j ≤ ρ (Note that
1 < i < j ≤ 2 is impossible). In this case,

f(0) = 0, f(Dρ) = 0, f(M) = M1,jMi,1, f(M+Dρ) = Mi,j +M1,jMi,1.

The condition f(0)+f(Dρ)+f(M)+f(M+Dρ) = 0 impliesMi,j = 0. Similarly,
we may prove Mj,i = 0 where 1 < i < j ≤ ρ.

Now we have not determined the entries ofM on the �rst row and �rst column,
except M1,1.

Now consider the 2-minor f = det(X{1,ρ},{i,ρ}) where 1 < i < ρ (Note that
1 < i < 2 is impossible). Note that Lemma 6.1.11 implies Mρ,ρ = 0. In this
case,

f(0) = 0, f(Dρ) = 0, f(M) = M1,ρMi,ρ, f(M+Dρ) = M1,i +M1,ρMi,ρ.

The condition f(0)+f(Dρ)+f(M)+f(M+Dρ) = 0 impliesM1,ρ = 0. Similarly
we may prove Mi,1 = 0.

Therefore, if ρ ≥ 3 then all the entries of M are 0, which is a contradiction. �

Now we classify the weight 4 codewords of CA(`,m)⊥.

Theorem 6.1.14 Let c be a codeword of CA(`,m)⊥. Suppose supp(c) is equal
to {M1,M2,M3,M4}. There exists a permutation in the group H(`,m) such
that the image of supp(c) is one of the following:

i) {0,D1,E1,2,D1 +E1,2},

ii) {0,D1,E2,1,D1 +E2,1},

iii) {0,D1,E1,2 +E2,1,D1 +E1,2 +E2,1}.

Proof.
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We have already established that for supp(c) = {M1,M2,M3,M4} there ex-
ists a permutation in H(`,m) such that the image of {M1,M2,M3,M4} is
{0,Dρ,M,Dρ + M}, where ρ = 1 or ρ = 2 and Mi,j = 0 for i = j and for
i ≥ 3 or j ≥ 3. If ρ = 1 then, M ∈ spanF2

({E1,2,E2,1}). This implies the
image of supp(c) is in the required form. If ρ = 2 then, exactly one of M or
Dρ+M is a zero of the 2-minor f = det(X{1,2},{1,2}). Since bothM andDρ+M
only have nonzero entries at the positions (1, 1), (1, 2), (2, 1), (2, 2) all other 2-
minors vanish at the four matrices. Therefore, the matrix which is a zero of
f = det(X{1,2},{1,2}) is a matrix of rank 1. We may �nd an automorphism in
H(`,m) to map the rank 1 matrix to D1. �

The three cases in the above theorem are representatives of all possible orbits
of supports of weight 4 codewords of CA(`,m)⊥ arising under the action of the
group H(`,m). This means we can describe any support of a minimum weight
codeword rather explicitly. We state this in the following corollary:

Corollary 6.1.15 The support of a minimum weight codeword of CA(`,m)⊥

is among one of the following three distinct classes of supports:

i) {U,U+ bT1 a1,U+ bT1 a2,U+ bT1 (a1 + a2)},

ii) {U,U+ bT1 a1,U+ bT2 a1,U+ (b1 + b2)Ta1},

iii) {U,U+ bT1 a1,U+ bT1 a2 + bT2 a1,U+ (bT1 a1 + bT2 a1 + bT1 a2)}.

Here U ∈ M`×`′(F2), while {a1,a2} ⊂ F`
′

2 and {b1, b2} ⊂ F`2 are two pairs of
linearly independent vectors. Conversely, any such set occurs as the support set
of a minimum weight codeword in CA(`,m)⊥.

Proof.

Acting on the three representatives from Theorem 6.1.14 with σU,A,B gives a
description of all possible support sets. The matrix M := BD1A is of the form
M = bT1 a1 for certain non-zero vectors b1,a1. In fact, bT1 is the �rst column
of B and a1 is �rst row of A. Similarly, BE1,2A = bT1 a2 and BE2,1A = bT2 a1,

with bT2 (resp. a2) the second column of B (resp. the second row of A). Note
that b1 and b2 (resp. a1 and a2) necessarily are linearly independent, since B
(resp. A) is an invertible matrix. (This shows the �rst part of the corollary.)
Since A and B may be chosen freely any set of the given three forms occurs as
the support set of a minimum weight codeword. �
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A geometric description of this corollary is that the support sets lie on a coset
of certain subspaces of M`×`′(F2) of dimension two. The subspaces are not
arbitrary, but are generated by matrices of a speci�c form. This enables us to
count the number of weight 4 codewords in CA(`,m)⊥.

Corollary 6.1.16 The number of minimum weight codewords of CA(`,m)⊥

is

(2` − 1)(2`
′ − 1)2δ−2

3

(
(2`−1 − 1) + (2`

′−1 − 1) + 3(2`−1 − 1)(2`
′−1 − 1)

)
.

Proof.

We �rst count the number of possible supports of type i). As the �rst step we
determine the number of possibilities for the 2-dimensional subspace

W1 := {0,bT1 a1,b
T
1 a2,b

T
1 (a1 + a2)}.

We may choose b1 in 2` − 1 distinct ways. Rather than choosing the vectors
a1 and a2, we simply choose a 2-dimensional subspace of F`

′

2 . This can be done
in (2`

′ − 1)(2`
′ − 2)/6 ways. For W1 there are the following number of possible

choices:
(2` − 1)(2`

′ − 1)(2`
′−1 − 1)

3
.

Since each W1 has exactly 2δ−2 distinct cosets, this gives a total of

2δ−2(2` − 1)(2`
′ − 1)(2`

′−1 − 1)

3

possibilities for the support in case i). Similarly in case ii) one obtains

2δ−2(2`
′ − 1)(2` − 1)(2`−1 − 1)

3

possibilities.

The last case left to investigate is case iii). We �rst wish to determine the
number of possibilities for

W2 := {0,bT1 a1,b
T
1 a2 + bT2 a1,b

T
1 a1 + bT1 a2 + bT2 a1}.

Note that W2 contains exactly one matrix of rank one, which is determined
uniquely by choosing b1 and a1 since q = 2. Therefore, the rank one matrix can
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be chosen in (2` − 1)(2`
′ − 1) distinct ways. The vector b2 (resp. a2) should

be chosen linearly independent from b1 (resp. a1) and there are as such 2`
′−2

(resp. 2`
′ − 2) possibilities. However, di�erent choices can give rise to the same

subspace W2. If
bT1 a2 + bT2 a1 = bT1 a

′
2 + (b′2)Ta1,

then
bT1 (a2 + a′2) = (b2 + b′2)Ta1,

implying that a2+a′2 = 0 and b2+b′2 = 0 or that a2+a′2 = a1 and b1 = b2+b′2.
Similarly, if

bT1 a1 + bT1 a2 + bT2 a1 = bT1 a
′
2 + (b′2)Ta1,

then either a′2 = a1 + a2 = 0 and b′2 = b2 = 0 or a′2 = a2 and b′2 = b1 + b2.
This brings the total number of possibilities for the choice of W2 to:

(2` − 1)(2`
′ − 1)(2` − 2)(2`

′ − 2)

4
.

The rest of the counting is then done as before. Adding all contributions from
the three cases together, one obtains the corollary. �

We can use the classi�cation theorem to count the number of codewords of
weight 4 in each orbit of the automorphism group. Although once we could
generate CA(`,m)⊥ with its weight 4 codewords meant that we could consider
CA(`,m) as a Tanner code using De�nition 3.3.5. We went through the trouble
of classifying and counting the weight 4 codewords of CA(`,m)⊥ for several
reasons. Empirically, we have decoded CA(`,m) by using the weight 4 codewords
of CA(`,m)⊥ and the iterative decoder coming from the Tanner graph. Therefore
for decoding purposes, as well as for the geometry given by the codewords of
CA(`,m)⊥ of weight 4, we are interested in counting the codewords which contain
a 1 in a �xed position, as well as counting the codewords in which two �xed
positions contain 1. For this purpose, we have the following theorem.

Theorem 6.1.17 The number of minimum weight codewords in CA(`,m)⊥

which contain a 1 in position 0 equals

(2` − 1)(2`
′ − 1)

3

(
(2`−1 − 1) + (2`

′−1 − 1) + 3(2`−1 − 1)(2`
′−1 − 1)

)
.

To �nd the number of codewords with support in the pair 0,D1, we will use the
following lemma.

Lemma 6.1.18 Let {0,D1,A,D1+A} and {0,D1,B,D1+B} be two distinct
sets of supports of codewords of CA(`,m)⊥. Then {0,D1,A + B,D1 + A + B}



80 A�ne Grassmann and Grassmann Codes

is also the set of support of a codeword of CA(`,m)⊥. Moreover, the number of
minimum weight codewords in CA(`,m)⊥ which contain a 1 in positions 0,D1

equals 2`+`
′−2 − 1.

Using similar arguments we obtain the following theorem.

Theorem 6.1.19 The number of minimum weight codewords in CA(`,m)⊥

which contain a 1 in positions 0,D2 equals 22 − 1.

6.1.3 A�ne Grassmann codes as Tanner codes

Since we have determined the minimum weight codewords of CA(`,m)⊥ we can
use this information to study CA(`,m) as a Tanner code in a natural way. For
the binary case we can use De�nition 3.3.5 to make a bipartite graph with the
minimum weight codewords of CA(`,m)⊥. Clearly, CA(`,m) is the Tanner code
coming from this graph and a [4, 3, 2] component code. In the remainder of this
section we focus on the nonbinary case, i.e. q 6= 2.

Definition 6.1.20 A line of M`×`′(Fq) is a set of the form SpanFq
(M)+U,

where M,U ∈ M`×`′(Fq) and M has rank 1. We denote the set of lines by

L(M`×`′(Fq)).

Note that there are (q`−1)(q`
′
−1)

(q−1)2 q``−1 lines. Each matrix of M`×`′(Fq) is con-

tained in (q`−1)(q`
′
−1)

(q−1)2 lines. Each line contains q matrices. We can construct a

graph relating the matrices and the lines as follows.

Definition 6.1.21 We de�ne Γ3 as follows. The vertices in V1(Γ3) are the
matrices in M`×`′(Fq). The vertices in V2(Γ3) := L(M`×`′(Fq)). The edges
E(Γ3) := {(A, SpanFq

(B) +C) | A−C ∈ SpanFq
(B)}. We call Γ3 the point�

line graph of the a�ne Grassmannian.

We use the following labelings to make Γ3 a ( (q`−1)(q`
′
−1)

(q−1)2 , q)-regular bipartite

endpoint labeled graph.

For each line SpanFq
(B) +C �x α ∈ F∗q . The labeling φSpanFq (B)+C assigns to

A = γαB+C the Fq element γ. Now we have the following theorem.
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Theorem 6.1.22 For q 6= 2

CA(`,m) = (Γ3, RS(Fq, 2)).

Proof.

Let c be a codeword of CA(`,m). Consider the values of the codeword c at
the line SpanFq

(B) + C ∈ L(Γ3). Let α1 ∈ F∗q be the nonzero element cho-
sen for φSpanFq (B)+C. We may apply an automorphism of H(`,m) to consider

the values of a codewords c′ on the line SpanFq (E1,1). Let α2 be the nonzero
element chosen for φSpanFq (E1,1). Since there is an automorphism which maps

γα1B + C to γα2E1,1, the labeling φSpanFq (B)+C(γα1B + C) = γ is equal

to φSpanFq (E1,1)(γα2E1,1) = γ. The codeword c′ evaluates to a codeword in

RS(Fq, 2) over the line SpanFq (E1,1) we have that CA(`,m) ⊆ (Γ3, RS(Fq, 2)).

For the reverse implication we prove CA(`,m)⊥ ⊆ (Γ3, RS(Fq, 2))⊥ as fol-
lows: A weight 3 codeword of CA(`,m)⊥ has support completely contained
inside a line SpanFq

(B) + C ∈ L(Γ3). Therefore, it is also a parity check of
(Γ3, RS(Fq, 2))⊥. The subcode of weight 3 codewords of CA(`,m)⊥ is contained
in (Γ3, RS(Fq, 2))⊥. Since the code generated but the weight 3 codewords is the
full code CA(`,m)⊥, we have that CA(`,m)⊥ ⊆ (Γ3, RS(Fq, 2))⊥. �

Unfortunately, we have not been able to use this description to decode CA(`,m)
completely.

6.2 Codewords of C(`,m)⊥

Definition 6.2.1 Let V := Fmq . We de�ne G`,m as the set of all ` dimen-
sional subspaces of V.

Definition 6.2.2 We denote #G`,m by
[
m
`

]
q
.

A counting argument shows

[
m

`

]
q

=

`−1∏
i=0

qm−i − 1

q`−i − 1
.
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Closely related to the a�ne Grassmann codes are the Grassmann codes which
we de�ne now.

Definition 6.2.3 Let m be an integer. Suppose ` ≤ m. For each W ∈ G`,m
pick an `×m matrix whose rowspace is W. Denote this matrix by MW . Denote
the set of all such chosen matrices as M(G`,m). Let Y be an ` ×m matrix on
the `m indeterminates Yi,j . We de�ne the Grassmann code C(`,m) as the a�ne
variety code C(M(G`,m), SpanFq (det `(YJ))).

The Grassmann codes were introduced in [Rya87a] and [Rya87b] for the binary
case and for general q in [Nog93]. Grassmann codes are a [

[
m
`

]
q
,
(
m
`

)
, q`(m−`)]q

code. Note that a speci�c C(`,m) code depends on the exact matrices in
M(G`,m). Therefore we may pick a single Grassmann code from a monomially
equivalent class. We also refer to the class of monomially equivalent codes as
Grassmann codes.

We may consider CA(`,m) as a projection of C(`,m). For M ∈ M`×`′(Fq) let
M' = (I`|M) ∈ M`×m(Fq). The h-minors, for 0 ≤ h ≤ ` of the indeterminate
`× `′ matrix X are also `-minors of the `×m matrix X' = (I`|X). We denote
the a�ne Grassmannian GA`,m := {W ∈ G`,m| MW = (I`|M) ∈ M`×m(Fq)}.
Therefore CA(`,m) is obtained from C(`,m) by evaluating the `-minors of the
matrices for the ` spaces in GA`,m.

From the properties of minors we know that d(C(`,m)⊥) > 2. In this section
we show d(C(`,m)⊥) = 3 and we classify the minimum weight codewords of
C(`,m)⊥. We begin with some de�nitions.

Definition 6.2.4 [Pan10]

Let Z ∈ G`−1,m and Z ∈ G`+1,m, where `+ 1 ≤ m. A line of the Grassmannian
is de�ned as:

πZ
′

Z := {W ∈ G`,m | Z ⊆W ⊆ Z ′}.

We denote the set of all such lines of the Grassmannian by L(G`,m).

Note that there are a total of
[
m
`

]
q

(q`−1)(qm−`−1)
(q−1)2 lines. Also, any line of the

Grassmannian is isomorphic to the line G1,2.

Definition 6.2.5 The graph Γ4 is the following (
[
m−`
1

]
q

[
`
1

]
q
, q + 1)-regular

bipartite graph: V1(Γ4) = G`,m, V2(Γ4) = L(G`,m) and the set of edges is

E(Γ4) := {(W,πZ′Z ) |W ∈ πZ
′

Z }. This graph is also known as the point�line
graph of the Grassmannian.
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Theorem 6.2.6 The group GLm(Fq) induces an automorphism of C(`,m) by
mapping W ∈ G`,m to G(W ) ∈ G`,m for G ∈ GLm(Fq). We will also consider
the induced map given by MV 7→MVG.

Now we can classify the support of a nonzero codeword of C(`,m)⊥.

Theorem 6.2.7 Let V,W and U in G`,m. Then V,W and U are the nonzero
positions of a codeword of a C(`,m)⊥ if and only if V , W and U belong to the
same line.

Proof.

First we prove the converse. Suppose V,W and U are in the line πZ
′

Z . Then
Z = V ∩ W ∩ U and Z ′ = spanFq

(V + W + U). Then, there exist x and y
such that V = SpanFq

(Z,x), W = SpanFq
(Z,y), U = SpanFq

(Z,x+y) and
the span of the three spaces is SpanFq (V +W +U) = SpanFq ({Z,x,y}). Since
the determinant is a multilinear function we may �nd matrix representatives:
MV ,MW and MU such that f(MV ) + f(MW ) − f(MU ) = 0 for any `-minor
f = det(YI). Since we have proven there is one Grassmann code, C(`,m)⊥,
which has V,W and U as support of a weight 3 codeword, we have also proven
it for any other monomially equivalent Grassmann code.

Now we prove the direct implication. Let V,W and U be three vector spaces in
G`,m such that, V , W and U represent the nonzero positions of a codeword of
a C(`,m)⊥. We represent the vector spaces by the matrices MV ,MW and MU .
The nonzero coe�cients of c are: cV , cW and cU .

We pick G ∈ GLm(Fq) such that MVG = (I`|0). Let J := {1, 2, . . . , `} and
consider the `-minor f = det(YJ). Since f(MV ) = 1 and cV , cW , cU are nonzero
then we may assume f(MW ) 6= 0. We apply row operations to MW such that
f(MW ) = 1. The row operations correspond to choosing di�erent representative
matrices of the elements in G`,m. After these row operations we have changed
the particular Grassmann code, but this is irrelevant since we have not �xed the
nonzero entries of c.

Now we assume cV = cU = 1, cW = −1. In addition we may assume f(MU ) 6= 1.
Since fJ(MW ) = 1 we apply G =

(
I` 0
C B

)
∈ GLm(Fq) simultaneously to all

matrices on the last m− ` columns of MV are unchanged but,



84 A�ne Grassmann and Grassmann Codes

MW =



1 0 · · · 0 0 · · · 0 n1,`+1 · · · n1,m
0 1 · · · 0 0 · · · 0 n2,`+1 · · · n2,m
... 0

. . . 0 0 · · · 0
... · · ·

...
0 0 · · · 1 0 · · · 0 1 · · · 0
... 0 · · · 0 1

. . . 0
... · · ·

...
0 0 · · · 0 0 · · · 1 n`,`+1 · · · n`,m


.

Let J ′ = J ∪ {`+ 1} \ {i}. If f = det(YJ′) is the `-minor on the columns of J ′,
then f(MV ) + f(MW ) − f(MU ) = 0. Thus f(MW ) = f(MU ) = 1. Therefore,
we may apply row operations to MU such that,

MU =



1 0 · · · o1,i 0 · · · 0 0 · · · o1,m
0 1 · · · o2,i 0 · · · 0 0 · · · o2,m
... 0

. . . 0 · · · 0
... · · ·

...
0 0 · · · oi,i 0 · · · 0 1 · · · oi,m
... 0 · · · oi+1,1 1

. . . 0
... · · ·

...
0 0 · · · o`,i 0 · · · 1 0 · · · o`,m


.

Note that f(MU ) = oi,i 6= 1. We will use the other `-minors to determine
the entries of MW and MU . From now on, we let 1 ≤ j ≤ `, and j 6= i and
`+ 1 < j′ ≤ m.

For J∗ = J∪{j′}\{i} and for an ordering of the elements of J∗ let f = det(YJ∗)
be the `-minor on the columns of J∗. If f(MW ) = 0 and f(MU ) = oi,j′ then,

MU =



1 0 · · · o1,i 0 · · · 0 0 · · · o1,m
0 1 · · · o2,i 0 · · · 0 0 · · · o2,m
... 0

. . . 0 · · · 0
... · · ·

...
0 0 · · · oi,i 0 · · · 0 1 · · · 0
... 0 · · · oi+1,1 1

. . . 0
... · · ·

...
0 0 · · · o`,i 0 · · · 1 0 · · · o`,m


.

For J∗ = J ∪ {`+ 1} \ {j} and f = det(YJ∗) we have that

f(MW ) =

∣∣∣∣ nj,i nj,`+1

ni,i ni,`+1

∣∣∣∣ and f(MU ) =

∣∣∣∣ oj,i oj,`+1

oi,i oi,`+1

∣∣∣∣ . Since we have deter-
mined that nj,i = oj,`+1 = 0 and ni,i = oi,`+1 = 1, we have f(MW ) = −nj,`+1
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and f(MU ) = oj,i. This implies

MU =



1 0 · · · −n1,`+1 0 · · · 0 0 · · · o1,m
0 1 · · · −n2,`+1 0 · · · 0 0 · · · o2,m
... 0

. . . 0 · · · 0
... · · ·

...
0 0 · · · oi,i 0 · · · 0 1 · · · 0
... 0 · · · −ni+1,`+1 1

. . . 0
... · · ·

...
0 0 · · · −n`,`+1 0 · · · 1 0 · · · o`,m


.

For J∗ = J ∪ {`+ 1, j′} \ {i, j} and f = det(YJ∗) we have that f(MW ) = nj,j′

and f(MU ) = oj,j′ . Therefore

MU =



1 0 · · · −n1,`+1 0 · · · 0 0 · · · n1,m
0 1 · · · −n2,`+1 0 · · · 0 0 · · · n2,m
... 0

. . . 0 · · · 0
... · · ·

...
0 0 · · · oi,i 0 · · · 0 1 · · · 0
... 0 · · · −ni+1,`+1 1

. . . 0
... · · ·

...
0 0 · · · −n`,`+1 0 · · · 1 0 · · · n`,m


.

For J∗ = J ∪ {j′} \ {j} and f = det(YJ∗) we have that f(MW ) = nj,j′ and
f(MU ) = oi,inj,j′ . Since f(MW ) = f(MU ) and oi,i 6= 1 we have f(MW ) = 0.
Therefore,

MW =



1 0 · · · 0 0 · · · 0 n1,`+1 · · · 0
0 1 · · · 0 0 · · · 0 n2,`+1 · · · 0
... 0

. . . 0 0 · · · 0
... · · ·

...
0 0 · · · 1 0 · · · 0 1 · · · 0
... 0 · · · 0 1

. . . 0
... · · ·

...
0 0 · · · 0 0 · · · 1 n`,`+1 · · · 0


.

MU =



1 0 · · · −n1,`+1 0 · · · 0 0 · · · 0
0 1 · · · −n2,`+1 0 · · · 0 0 · · · 0
... 0

. . . 0 · · · 0
... · · ·

...
0 0 · · · oi,i 0 · · · 0 1 · · · 0
... 0 · · · −ni+1,`+1 1

. . . 0
... · · ·

...
0 0 · · · −n`,`+1 0 · · · 1 0 · · · 0


.
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Now we perform row operations on MW to put it in the following form

MW =



1 0 · · · −n1,`+1 0 · · · 0 0 · · · 0
0 1 · · · −n2,`+1 0 · · · 0 0 · · · 0
... 0

. . . 0 · · · 0
... · · ·

...
0 0 · · · 1 0 · · · 0 1 · · · 0
... 0 · · · −ni+1,`+1 1

. . . 0
... · · ·

...
0 0 · · · −n`,`+1 0 · · · 1 0 · · · 0


.

Now that we have determined MV , MW and MW completely we can clearly
identify their rowspaces V , W and U. Note that all entries except those in row i
are the same for the three matrices. Therefore, dim(V ∩W ∩ U) = `− 1. Since
the i-th row of U is a linear combination of the i-th row of MV and W the fact
dim spanFq

(V +W +U) = `+ 1 follows. Which implies V , W and U belong to
the line given by V ∩W ∩ U and spanFq

(V +W + U). �

As a corollary we can easily count the minimum weight codewords of C(`,m)⊥.

Corollary 6.2.8 The code C(`,m)⊥ has

(q` − 1)(qm−` − 1)q

3!

[
m

`

]
q

codewords of weight 3.

Proof.

There are qm−`−1
q−1

[
m
`

]
q

[
`+1
`−1
]
q
lines in L(G`,m). Each line contains q+ 1 elements

of G`,m. Each of the
(
q+1
3

)
subsets of the lines is the support of a weight 3

codeword. For each set of 3 elements there are q − 1 codewords of weight 3. �

This is quite similar to the formula of weight 3 codewords of CA(`,m)⊥. We
end this section with a proof that the Grassmann codes are Tanner codes of Γ4.
Recall that for a linear space W ⊂ FAq and B ⊆ A we represent the projection

of W onto B by WB . Note that the elements of the Grassmannian are all codes

of dimension ` contained in F
{1,2,...,m}
q . For the purposes of this section, we shall

consider B = {1, 2, . . . , `}.
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Definition 6.2.9 We de�ne

G`−h`,m := {W ∈ G`,m | dimWB = h}.

Note that we may partition G`,m with the sets Gh`,m for h = 0, 1, . . . , `. Also note

that GA`,m = G0`,m.

Lemma 6.2.10 Let W ∈ Gh`,m where h > 0. There exist U, V ∈ Gh−1`,m such
that U, V and W lie on the same line.

Proof.

Let W ∈ Gh`,m where 0 < h. There exists x ∈ W such that the projection of x

onto B is 0. Since dimWB < ` there exists y ∈ Fq such that the projection of
y onto B is not in WB . We may assume W is of the form SpanFq

(T ∪ {x}).
Then U = SpanFq (T ∪ {x+ y}) and V = SpanFq (T ∪ {y}) belong to Gh−1`,m . �

Now we consider the weight 4 codewords of CA(`,m)⊥ over F2 as codewords of
C(`,m)⊥.

Lemma 6.2.11 Let c be a codeword of weight 4 of CA(`,m)⊥ over the binary
�eld. Then the support of c is equal to the symmetric di�erence of two lines of
G`,m with a point in common.

Proof.

From Theorem 6.1.14 we know that the support of the weight 4 codewords of
CA(`,m)⊥ over F2 follow in one of these three cases:

i) {0,D1,E1,2,D1 +E1,2},

ii) {0,D1,E2,1,D1 +E2,1},

iii) {0,D1,E1,2 +E2,1,D1 +E1,2 +E2,1}.

Note that the automorphism induced by X 7→ X+U of CA(`,m)⊥ is induced by

the induced automorphism (X|I`) 7→ (X|I`)
(
Im−` 0

U I`

)
of C(`,m). Additionally,

note that the automorphism X 7→ XA of CA(`,m)⊥ is induced by the automor-
phism (X|I`) 7→ (X|I`)

(
A 0
0 I`

)
and the automorphism X 7→ BX of CA(`,m)⊥ is
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induced by the automorphism (X|I`) 7→ (X|I`)
(
I` 0

0 B−1

)
. Therefore, the weight

4 codewords have the following positions in G`,m :

i) {(0|I`), (D1|I`), (E1,2|I`), (D1 +E1,2|I`)},

ii) {(0|I`), (D1|I`), (E2,1|I`), (D1 +E2,1|I`)},

iii) {(0|I`), (D1|I`), (E1,2 +E2,1|I`), (D1 +E1,2 +E2,1|I`)}.

Note that each pair of linear spaces {(0|I`), (D1|I`)}, {(E1,2|I`), (D1+E1,2|I`)},
{(E2,1|I`), (D1 +E2,1|I`)} and {(E1,2 +E2,1|I`), (D1 +E1,2 +E2,1|I`)} are con-
tained in a line of L(G`,m) and the third point of each line is (D1|I` −D1). �

Theorem 6.2.12 Let c be a codeword of weight 4 of CA(`,m)⊥ over a non-
binary �eld. Then the support of c is equal to the 3 points on a line of G`,m.

Proof.

From Theorem 6.1.14, we know that the support of the weight 3 codewords of
CA(`,m)⊥ over Fq have support in the orbit of {0,M, αM} whereM has rank 1.
As we saw in the proof of Lemma 6.2.11, we may consider the group of induced
automorphisms H(`,m) as the group of automorphisms of G`,m generated by(
Im−` 0

U I`

)
,
(
A 0
0 I`

)
and

(
I` 0

0 B−1

)
.We may apply an automorphism from H(`,m)

to obtain the set {0,E1,1, αE1,1}. We consider the corresponding positions in
G`,m given by the matrices {(I`|0), (I`|E1,1), (I`|αE1,1)}. Clearly, these three
points lie on the same line. �

Theorem 6.2.13 The code C(`,m)⊥ is generated by its minimum weight
codewords.

Proof.

Let W ∈ G`,m . The code CA(`,m)⊥ is generated by weight 3 codewords of
C(`,m)⊥. Let h > 0. For each W ∈ Gh`,m, we can �nd a codeword of weight 3 of

C(`,m)⊥ whose other two positions in its support lie in Gh−1`,m . This implies that
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we have #G`,m − #G0`,m independent codewords, in addition from those from

CA(`,m)⊥. Therefore, C(`,m)⊥ is generated by its weight 3 codewords. �

In order to express C(`,m) as a Tanner code, we need to consider the fact that
C(`,m) is not a single code, but a class of monomially equivalent codes. For
this pupose, we relax the de�nition of a Tanner code. A Tanner code should
not be considered as having a single �xed code as a component code for the
check nodes, but for each check node we pick, in addition to the labeling, a
monomially equivalent code to the component code C(1, 2). Most of the theory
of graph codes is consistent with this de�nition as well.

Corollary 6.2.14

C(`,m) = (Γ4, C(1, 2)).

Proof.

Let c be a codeword of C(`,m). Consider the values of the codeword c at any
line πZ

′

Z ∈ L(G`,m). Since πZ
′

Z = G1,2, the codeword c at πZ
′

Z is C(1, 2). There-
fore, there exists a vertexwise labelinng of Γ4 and some choices of monomially
equivalent codes to C(1, 2) such that C(`,m) ⊆ (Γ4, C(1, 2)). Since C(`,m)⊥ is
generated by its weight 3 codewords, and those weight 3 codewords have sup-
port in a line of the Grassmannian, and any weight 3 codewords on a line are
also a parity check for a G1,2 code on that line we have C(`,m)⊥ is contained in
(Γ4, C(1, 2))⊥ which �nishes the proof. �

6.2.1 Iterative encoding of Grassmann codes

In this section we adapt the (k1, k2) forcing set of a bipartite graph G to work
with Tanner codes instead of graph codes. Although everything can be stated
in terms of graph based codes and forcing sets on the edges of Γ4, we will give
a de�nition of everyting speci�cally for Tanner codes.

Now we introduce the concept of a forcing set. Essentially a forcing set is a set of
positions of the Tanner code (G,C) with the property that any codeword of any
Tanner code with any labeling and any MDS component code is determined by
the values at the positions corresponding to the forcing set or such a codeword
does not exist.
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Definition 6.2.15 Let G be an (n1, n2)-regular graph. Let k be an integer
satisfying k ≤ n2. Let T ⊆ V1(G). We say T is k-closed if T satis�es:

∀u ∈ V2(G) #(T ∩N (u)) ≥ k → N (u) ⊆ T.

That is, if there are at least k vertices adjacent to u ∈ V2(G) contained in T
then, all n2 vertices adjacent to u are also contained in T.

Theorem 6.2.16 Let G be an (n1, n2)-regular graph and pick k ≤ n2. Let
S ⊆ V1(G). There exists an unique smallest k-closed set containing S.

Proof.

We de�ne Z as follows:

• Z = S ∪N (u1) ∪N (u2) ∪ . . . ,N (ua),

• Z0 := S,

• Zi := S ∪N (u1) ∪N (u2) ∪ . . . ∪N (ui) ⊆ Z satis�es Zi ∩N (ui+1) ≥ k,

• Z is k-closed.

We claim that if Z ′ is another k-closed containing S then it must also contain
Z. Suppose Z ′ is k-closed and Z contains S. Suppose Z 6⊆ Z ′ then there exists
Zi such that, Zi ⊆ Z ′ but Zi+1 6⊆ Z ′. Since Zi ∩ N (zi+1) ≥ k, it follows that
Zi+1 ⊆ Z ′. Therefore, Z ⊆ Z ′. �

Definition 6.2.17 Let G be an (n1, n2)-regular graph. Let k be an integer
satisfying k ≤ n2. Let S ⊆ V1(G). We de�ne the unique smallest k-closed set
containing S as the k-closure of S. We denote it by clk(S). If clk(S) = V1(G)
we say S is an k forcing set.

The following theorem relates the size of a k forcing set of G with the dimension
of a Tanner code with an [n2, k2, d2] MDS component code.

Theorem 6.2.18 Suppose G is an (n1, n2) regular bipartite graph. Let C2 be
an MDS code of length n2 and dimension k2. Let S be a k forcing set of G Then
(G,C) is linearly isomorphic to (G,C)S and dim(G,C) ≤ #S.
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Proof.

Consider (G,C)S , the projection of (G,C) onto S. There is a linear map from
(G,C) to (G,C)S where we map c = (ci)i∈V1(G) to cS = (ci)i∈S . We will prove
the kernel is zero dimensional. Let c be a codeword of (G,C)) which is mapped
to the zero codeword of (G,C)S . Therefore, ci = 0 for i ∈ S. For each u ∈ V2(G),
once we know ci = 0 for k vertices of N (u), we know ci = 0 for all vertices of
N (u). Therefore, the set of zero positions of the codeword c is clk(S). Since S
is a k forcing set of G all positions of c have the entry zero.

Since the linear map (G,C) to (G,C)S has a trivial kernel, the dimension of
(G,C) is equal to the dimension of (G,C)S which is at most #S. �

We also get a corollary to Theorem 6.2.18. This corollary is that we may encode
(G,C) iteratively from a codeword in (G,C)S where S is a k forcing set of G
and C is an MDS code of dimension k.

Please note that we have mentioned nothing about encoding (G,C)S . Encoding
(G,C)S will probably also be di�cult. What we have proven is that once the
positions of the codeword in (G,C)S have been determined, it might be possible
to determine the positions of some other neighborghood which has at least k
but not n2 positions determined or might not be possible to extend the entries
of the code in this way. We will prove that once we have encoded (G,C)S then
those values can always be extended uniquely to (G,C).

Theorem 6.2.19 Suppose G is an (n1, n2) regular bipartite endpoint labeled
graph. Let C be an MDS code of length n2 and dimension k. Let S be a k forcing
set of G. Then, a codeword c′ ∈ (G,C)S may be extended uniquely to a codeword
in (G,C).

Proof.

The set S is a k forcing set. There exist S0, S1, . . . , Sm ⊆ V1(G) satisfying:
S0 = S, Sm = V1(G) and Si = Si−1 ∪ N (ui), where k ≤ #(Si−1 ∩ N (ui)) < n2
and ui ∈ V2(G).

Let φSi
denote the linear map from (G,C) to (G,C)Si . Since Si is a k forcing

set of G, then φSi
is a linear isomorphism.

Let φS(c) = c′ ∈ (G,C)S = (G,C)S0 . Now we suppose that we have extended
c′ to φSi(c) ∈ (G,C)Si and we want to prove that we can extend it uniquely to
a codeword of (G,C)Si+1 . The only possibility is to extend φSi(c) to φSi+1(c)
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because the positions in Si+1 \ Si are determined by the entries in φSi(c) and
those positions are exactly the entries of φSi+1

(c). �

Definition 6.2.20 Let e1, e2, . . . , em be a basis of Fmq . We de�ne S ⊆ G`,m
to be the set of the

(
m
`

)
spaces in G`,m generated by the

(
m
`

)
subsets of this set

of basis elements.

From the properties of the Plücker embedding, the ` spaces of S are information
set of the Grassmann code C(`,m). We will �nish this chapter by proving that
in fact, S is a 2 forcing set of Γ4 and that one may encode iteratively starting
from S.

Theorem 6.2.21 The set S is a 2-forcing set for Γ4.

Proof.

We prove it by induction on ` and m. For ` = 0, S = G0,m = {{0}} the theorem
is vacuously true. For m = `, S = G`,` = {F`q} the theorem is also vacuously
true.

Otherwise, we may suppose 0 < ` and ` < m. Let S be the
(
m
`

)
spaces in G`,m

generated by the standard basis vectors. Let Sm be the subset of S consisting
of the spaces containing em. Let Sm−1 be the subset of S, whose ` spaces do not
contain em.

By the induction hypothesis on m, the 2-closure of the vertex set Sm−1 is the
set of vertices Zm−1 = {W ∈ G`,m | W ⊆ Span({e1, e2, . . . , em−1})}. More-
over, by the induction hypothesis on `, the 2-closure of Sm is the set of `
spaces Zm = {W ∈ G`,m | em ∈ W}. Therefore, the 2-closure of S con-
tains both Zm−1 and Zm. Let W ∈ G`,m, but not in Zm−1 nor Zm. Therefore
W = Span(Z ∪ y + em) where Z is an ` − 1 space in Span({e1, e2, . . . , em−1})
and y ∈ Span({e1, e2, . . . , em−1}). If y ∈ U then, this contradicts the fact that
W 6∈ Zm. Then W is in the line containing Span(Z ∪ y) and Span(Z ∪ em).
Since Span(Z∪y) and Span(Z∪em) are contained in Zm−1∪Zm anyW ∈ G`,m
is in the 2-closure of S. �

We obtain the following corollary.

Corollary 6.2.22 The dimension of C(`,m) is optimal among all Tanner
codes on Γ4 with an MDS [q + 1, 2, q] code.
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