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Application of incremental algorithms to CT image
reconstruction for sparse-view, noisy data

Sean Rose1, Martin S. Andersen2, Emil Y. Sidky1, and Xiaochuan Pan1

Abstract—This conference contribution adapts an incre-
mental framework for solving optimization problems of in-
terest for sparse-view CT. From the incremental framework
two algorithms are derived: one that combines a damped
form of the algebraic reconstruction technique (ART) with
a total-variation (TV) projection, and one that employs a
modified damped ART, accounting for a weighted-quadratic
data fidelity term, combined with TV projection. The
algorithms are demonstrated on simulated, noisy, sparse-
view CT data.

I. INTRODUCTION
In iterative image reconstruction (IIR) there can be

a large disconnect between practical iterative algorithms
and the optimization problems that motivate their design.
Particularly for image reconstruction from sparse-view
CT data with its associated ill-conditioned linear system
model, the number of required iterations for accurate
solvers of relevant optimization problems can be much
greater than 1,000. When iteration numbers are this large,
the trajectory of the image estimates can be quite impor-
tant because practical application of IIR dictates iteration
numbers on the order of ten – well short of convergence.
The usual strategy for obtaining useful images rapidly

is to employ algorithms that process the data sequentially
[1,2]. In particular, for sparse-view CT we have been de-
veloping the adaptive-steepest-descent - projection-onto-
convex-sets (ASD-POCS) algorithm [3], which is sequen-
tial in that it employs ART for the data agreement step.
The algorithm has been shown to yield useful images
at low iteration numbers [4]. While we have also used
ASD-POCS for accurate solution of constrained TV-
minimization, the algorithm is not guaranteed to converge
and parameter selection is not straight-forward when ac-
curate solution is desired.
Recently, an incremental framework [5,6] has been

developed from which sequential iterative algorithms can
be derived that both yield useful images at low iteration
numbers and converge to the solution of a designed
optimization problem. The reason why such a framework
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can be helpful for IIR algorithm development is that many
design principles such as maximum entropy, maximum
likelihood (ML), and sparsity exploitation are a form of
optimization. It is not clear that truncating the iteration
of the optimization problem solver will yield images
that reflect the intentions of the designed optimization
problem. With the incremental framework, where initial
convergence is rapid, there may be a stronger link between
early image estimates and the solution to the designed
optimization.
In this work, we motivate and investigate the use of

TV-constrained data-discrepancy minimization for sparse-
view image reconstruction from noisy CT data. Two
different data agreement terms are compared: a Euclidean
distance between estimated data and input data, and a
weighted quadratic where the weighting reflects the model
used for generating the simulated noise. Accurate solution
of the designed optimization, solved using the Chambolle-
Pock (CP) algorithm, is compared to image estimates
obtained at low iteration numbers for algorithms derived
from the incremental framework.

II. METHODS

Using a generic linear model for X-ray projection

g = X f , (1)

ideal gradient magnitude image (GMI) sparsity exploiting
image reconstruction is formulated as

f∗ = arg min
f

∥∇f∥1 such that X f = g, (2)

where X is the system matrix representing X-ray pro-
jection; f is the image, g is the sinogram; ∇ is a finite
differencing implementation of the spatial gradient of the
image; and the objective function ∥∇f∥1 is the TV of
the image f . The specified optimization problem seeks,
among all images that agree with the data perfectly, the
one with minimum TV. When noise or other inconsistency
is present in the data, the strict equality of Eq. (2) cannot
be satisfied and this constraint must be relaxed

f∗ = arg min
f

∥∇f∥1 such that ∥X f − g∥2 ≤ ϵ, (3)

where ϵ is a parameter of the optimization that puts a
tolerance on the allowable data discrepancy. While this
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optimization problem can be used for GMI sparsity-
exploiting image reconstruction, it is somewhat inconve-
nient in that the parameter ϵ must be searched.
For this work, we formulate the GMI sparsity exploiting

optimization with a constraint on the TV instead of the
data discrepancy

f∗ = arg min
f

1

2
∥X f − g∥22 such that ∥∇f∥1 ≤ γ, (4)

where now the parameter γ constrains the image TV. This
form is particularly convenient for phantom studies to
test the effectiveness of GMI sparsity-exploiting image
reconstruction, because γ can be set to the value derived
from the test phantom. In this way, both ideal and noisy
data studies can be conducted using Eq. (4). In the ideal
case the data fidelity term can be driven to zero, while
in the noisy case the objective minimum will likely be
nonzero and positive. Moreover, employing a TV con-
straint allows easy comparison of GMI sparsity-exploiting
image reconstruction with different data fidelity terms. As
an example of such an alternative, which we investigate
below, we employ the maximum-likelihood data fidelity
for uncorrelated Gaussian noise

f∗ = arg min
f

1

2
(X f − g)T diag(v)−1(X f − g)

such that ∥∇f∥1 ≤ γ, (5)

where v represents the variance of the data noise model.
All of the optimizations stated above can be solved

by a first-order algorithm such as that of Chambolle and
Pock [7,8], but the required iteration number for a useful
image can be large. One can also employ the incremental
framework to derive sequential algorithms that solve both
Eqs. (4) and (5). Following Ref. [6], we write down in
Algorithm 1 an instance of an incremental algorithm for
the optimization problem in Eq. (5).

III. RESULTS

Fig. 1. Breast phantom for CT and its corresponding gradient-
magnitude image (GMI). Left is the linear attenuation map of the
phantom in the gray scale window [0.174,0.253] cm−1. Right is the
GMI [0.0,0.1] cm−1 that serves to illustrate that the test phantom is
sparse in the GMI.

Algorithm 1 Pseudocode for N steps of an incremental
algorithm instance for solving the TV-constrained opti-
mization problem in Eq. (5). Note that this algorithm
also applies to Eq. (4) by setting v = 1. The integer
M is the total number of measurements in the sinogram.
The parameters t0, ρ and α all affect rate of convergence,
but for the simulations here where iteration numbers are
low, ρ and α are fixed to one and zero, respectively.
The parameter t0 is determined by the value that yields
the smallest data discrepancy within a fixed number of
iterations. The parameter γ belongs to the optimization
problem, and for the simulations presented here it is
always set to the TV of the test phantom. The projection
in line 14, which finds the image closest to hM with TV
less than or equal to γ, is carried out by the CP algorithm
[7,8].

1: select algorithm parameters:
2: t0 ∈ (0,∞); ρ ∈ (0, 2); α ∈ [0, 1]
3: select TV constraint parameter γ
4: initialize f0
5: n← 0
6: repeat
7: h0 ← fn
8: tn ← t0/(n + 1)α

9: i← 0
10: repeat
11: hi+1 ← hi − ρxi

(xT

i
hi−gi)

∥xi∥2

2
+vi/tn

12: i← i + 1
13: until i ≥M
14: fn+1 ← ρproj{f |∥∇f∥1≤γ}(hM ) + (1− ρ)hM

15: n← n + 1
16: until n ≥ N

To demonstrate the utility of the Algorithm 1, we
conduct image reconstruction studies with ideal and noise
sparse-view projection data. The digital phantom shown
in Fig. 1 emulates breast CT and it consists of 256×256
pixel array. For the ideal data study, the projection data
are obtained by use of Eq. (1) so that the system matrix
employed in data generation and image reconstruction are
identical. The projection data consist of 100 projections
onto a 512-bin linear detector array. The source-detector
and source-isocenter distances are modeled to be 72cm
and 36cm, respectively. The sampling of this configuration
is clearly not sufficient for direct or implicit inversion of
Eq. (1) because the number of image pixels exceeds the
number of measurements.

a) Noiseless study: Exploiting GMI sparsity with
TV-constrained optimization, we solve Eq. (4) setting
γ = γ0, the true value obtained from the test phantom.
We state without showing results that the true phantom can
be recovered exactly in the numerical sense under these
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Chambolle-Pock

incremental

Fig. 2. Progression of image estimates for both CP and incremental
algorithms for the case of noiseless projection data. The iteration
number is indicated in each panel.

conditions. The more important point for our purpose is
how quickly can a useful image be obtained. We solve Eq.
(4) by use of both CP and the incremental instance shown
in Algorithm 1, setting v = 1. Intermediate iterates are
shown up to 50 iterations in Fig. 2. One can immediately
see the advantage of Algorithm 1 as a visually accurate
reconstruction appears already at 10 iterations while the
CP results are not close to the phantom for any of the
shown images. This difference is not specific to these two
algorithms. Rather it stems from a well-known feature of
algorithms that process the data sequentially versus those
that do not. The point of interest here is that we have
the rapid initial convergence with Algorithm 1, and as
the iterations continue the image estimate is guaranteed
to converge to a solution of Eq. (4).

b) Noisy study: For the remainder of the results, im-
age reconstruction is performed on simulated data includ-
ing noise. The same discrete-to-discrete model generates
the mean sinogram, but noise realizations are drawn from
a Gaussian distribution, where the covariance is taken to
be diagonal and the variance at each sample is the one over
the transmitted number of photons. The integrated incident

number of photons per view per detector bin is modeled
to be 2×105, corresponding to a fairly low intensity that
might be used in an actual breast CT scan. In this simu-
lation the only source of inconsistency is due to the noise
model, and we know exactly what probability distribution
function governs the noise realization selection. All other
sources of inconsistency: continuous object model, beam
hardening, scatter, partial volume averaging, etc., which
would be present in actual CT data are suppressed. In this
way, we can isolate and address two questions: (1) within
the parameters of the simulation what is the impact of
using the ML motivated weighted quadratic in Eq. (5)
as opposed to the isotropic quadratic of Eq. (4) in terms
of the solution to the respective optimization problems,
and (2) if there is difference between solutions of these
problems, will this difference be reflected in the images
generated by Algorithm 1 when the iteration is severely
truncated, i.e. 10 to 20 iterations.

isotropic: v = 1 weighted: v = 1/Nph

Fig. 3. Image standard deviation (top row, [0.0,0.005] cm−1) and mean
(bottom row, [0.174,0.253] cm−1) estimated from accurate solution of
Eq. (5) for 1000 realizations of noisy data. The left and right columns
correspond respectively to an isotropic data fidelity and a one-over-
transmission-intensity (1/Nph) weighted quadratic motivated by the
ML principle. The mean image RMSE from the truth is 2.19×10

−3

cm−1, left, and 2.10×10
−3 cm−1, right.

Employing the CP algorithm, the mean and standard
deviation of the solution to Eq. (5) using γ = γ0,
the true TV of the phantom, are estimated from 1000
noise realizations and are shown in Fig. 3. The bias for
both isotropic and ML weighting is low as both image
means are visually close to the phantom. The estimated
standard deviation images are more interesting, showing
structure that reflects the object. In both cases the image
standard deviation is reduced dramatically by the use
of the TV constraint except for at pixels near to those
corresponding to nonzero values of the phantom’s GMI.
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This phenomenon was also observed in the fully sampled
case in Ref. [9]. We do observe a difference in the
background of these images and it does appear that the
ML weighting yields a lower standard deviation in the
middle of the image. Going toward the image periphery,
the isotropic weighting appears to result in a slightly lower
standard deviation. Overall, the ML weighting lowers
the image standard deviation with respect to isotropic
weighting without increasing bias.

isotropic: v = 1 weighted: v = 1/Nph

Fig. 4. Same as Fig. 3 except that results are obtained after 20
iterations of Algorithm 1. For both isotropic and ML weighting, the
algorithm t0 is selected to yield the lowest value of the data fidelity at
the last iteration. The mean image RMSE from the truth is 3.14×10

−3

cm−1, left, and 2.21×10
−3 cm−1, right.

Turning to the use of Algorithm 1, we have verified
(results not shown) using a single noise realization that we
obtain an accurate solution to Eq. (5) in 1000 iterations.
The interest here, however, is in use of Algorithm 1 at low
iteration number. A parallel set of results are shown in
Fig. 4 obtained by use of Algorithm 1 and stopping at 20
iterations. Again the TV constraint is set to the phantom
TV, but because the iteration is truncated an additional
parameter t0 has a large effect on the reconstructed image.
For this preliminary work we have selected this parameter
as described in the figure caption, but there is a bias-
variance trade-off associated with t0, which would need
to be fully explored for a more complete understanding.
Nevertheless we do observe an effect of the different
weightings even though the iteration is severely truncated.
The ML weighting for the given t0 settings yields a
visually lower standard deviation background and a lower
RMSE between mean and phantom.

IV. SUMMARY
We have applied the incremental framework of Refs.

[5,6] to generate an algorithm instance of TV constrained,

data discrepancy minimization for CT image reconstruc-
tion. The algorithm yields an accurate solution to the
designed optimization problem at large iteration numbers
and can provide a useful image at low iteration numbers.
To demonstrate the utility of this framework, we apply the
algorithm to two different TV constrained optimization
problems with different data discrepancy terms. We ob-
serve with preliminary results from a controlled simulation
that at low iteration numbers we may be able to (1)
accurately recover the image from under-sampled data by
use of the TV constraint and (2) obtain a more favorable
variance-bias trade-off by use of the weighted quadratic
term.
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