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Abstract: We extend the functionality of a low-cost CW diode laser 
coherent lidar from radial wind speed (scalar) sensing to wind velocity 
(vector) measurements. Both speed and horizontal direction of the wind at 
~80 m remote distance are derived from two successive radial speed 
estimates by alternately steering the lidar probe beam in two different lines-
of-sight (LOS) with a 60° angular separation. Dual-LOS beam-steering is 
implemented optically with no moving parts by means of a controllable 
liquid-crystal retarder (LCR). The LCR switches the polarization between 
two orthogonal linear states of the lidar beam so it either transmits through 
or reflects off a polarization splitter. The room-temperature switching time 
between the two LOS is measured to be in the order of 100 μs in one switch 
direction but 16 ms in the opposite transition. Radial wind speed 
measurement (at 33 Hz rate) while the lidar beam is repeatedly steered from 
one LOS to the other every half a second is experimentally demonstrated – 
resulting in 1 Hz rate estimates of wind velocity magnitude and direction at 
better than 0.1 m/s and 1° resolution, respectively. 

©2014 Optical Society of America 

OCIS codes: (010.3640) Lidar; (140.5960) Semiconductor lasers; (230.3720) Liquid-crystal 
devices. 
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1. Introduction 

As light sources of coherent lidar systems for wind sensing, narrow-linewidth semiconductor 
(diode) lasers operating in the eye-safe telecom wavelength regime (λ ~1.55 μm) have been 
proven as compact and cheaper alternative to fiber lasers [1–3]. These attractive features can 
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potentially be used as leverage for developing cost-efficient lidar sensors for the wind energy 
industry, which is becoming more and more interested in laser Doppler anemometry 
applications from wind resource assessment (both in development and operational sites) [4] to 
wind turbine control [5, 6]. The advantages are derived from the fact that diode lasers are 
readily mass-producible through the well-established microelectronics fabrication technology. 
Furthermore, a fiber laser customarily needs to work in tandem with an additional optical 
amplifier (e.g. erbium-doped fiber amplifier) to achieve the required average CW output 
power in wind lidars – typically ~1 W. This power level is now achievable with a single chip-
integrated master-oscillator (tapered) power-amplifier semiconductor laser (MOPA-SL) [2]. 

The linewidth of diode laser is typically broader than that of fiber lasers. Nonetheless, 
previous laboratory investigations into diode laser linewidth requirements in CW coherent 
lidar have found that measurement at distances beyond the coherence region is still feasible if 
the laser phase fluctuations are overwhelmed by target speckle fluctuations [7]. This means 
that modest laser linewidth comparable to the target speckle bandwidth can be used even at 
probing distances outside the traditional coherence region. We have recently verified this for 
aerosol target (characterized by 1 - 2 MHz speckle bandwidth) by experimentally comparing 
the performance of two CW coherent MOPA-SL lidars with both systems measuring the 
radial wind speed at ~85 m distance. One lidar has a laser linewidth comparable to the target 
speckle bandwidth and the other lidar has an order of magnitude narrower linewidth [8]. 

All previous demonstrations of our MOPA-SL based CW coherent lidar have been limited 
to single line-of-sight (LOS) measurements [1–3, 8]. Hence, only the scalar radial wind speed 
component can be measured by the lidar. In this work, we design and implement an improved 
wind sensor that extends the functionality of our MOPA-SL wind lidar to measurements of 
both magnitude and direction of the wind velocity (vector). The vector measurement principle 
as well as the design, implementation, and experimental characterization of the enhanced lidar 
are discussed in the following sections. 

2. Operational principle of the dual-LOS wind lidar 

To extend the lidar functionality to measure both wind speed and azimuthal direction, a two-
LOS laser wind sensor (which we named “WindEye”) is proposed as shown in Fig. 1. It is an 
improved version of the single-LOS diode laser lidar and is subdivided into two modules: an 
optical transceiver head and a control unit. Like its predecessor (e.g. setup in our previous 
work [3]), the WindEye’s optical transceiver incorporates an optical circulator to: (1) transmit 

 
Fig. 1. The WindEye – a dual-LOS wind lidar. It makes use of an optical circulator/switch 
(OCS) to non-mechanically steer the transmitted laser beam to either LOS1 or LOS2 and to 
direct the received backscatter to the photodetector (PD). A field-programmable gate array 
(FPGA) unit calculates the lidar signal power spectra. The laser, controllers, power supply unit 
(PSU) and FPGA-based data processor are linked to the two-eyed optical transceiver by 10 m 
long fiber and electrical cables. The inset shows a sketch of the WindEye mounted on a 
turbine. 
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a large fraction of the laser power (~500 mW) to the target, (2) tap a tiny fraction (~0.1%) of 
the laser power to form a local oscillator, and (3) direct the local oscillator and the Doppler 
shifted target-backscatter radiation to a photodetector. Power spectral density (PSD) plots 
from 512-point time series (75 MHz sampling) of the photodetector output signal (i.e. beat 
signal oscillating at mean Doppler shift frequency fD) are averaged to estimate the radial 
speed vLOS at 33 Hz rate using: 

 LOS Dv .
2

f
λ=  (1) 

To maintain our lidar’s advantages (i.e. low cost and simplicity), we have come up with 
an optical design that circumvents the duplication of key lidar subcomponents except for the 
telescope. The WindEye employs two fixed-focus telescopes (each focus at ~85 m distance 
with a probe length of ~25 m) for launching laser beams interchangeably in two horizontal 
lines-of-sight (LOS1 and LOS2) with 60° separation angle. A pair of successive 
measurements of vLOS1 and vLOS2 consequently allows for estimation of both magnitude and 
direction of the wind vector using simple trigonometry. This method increases in accuracy if 
the wind flow is more laminar – such as those typically found at hub height in flat terrain and 
offshore wind farms. We envision the use of a WindEye mounted on the turbine’s nacelle to 
preview the changes in the average direction of the incoming wind for improved yaw control. 
Other commercially available wind lidar systems incorporate the speed-and-direction 
functionality into their products (e.g. ZephIR of Natural Power and Galion of SgurrEnergy) 
by means of mechanical beam-scanners [5]. ZephIR is based on rotating (Risley) prisms 
while Galion relies on a pair of mirrors independently turned around two orthogonal axes. 
Both motorized beam-scanners are however expensive, bulky and prone to wear and tear. Our 
approach makes use of a low-cost non-mechanical beam-steering system based on a few off-
the-shelf optical components as illustrated in Fig. 2. Using a controllable liquid-crystal 
retarder (LCR), a polarization beam splitter and a pair of stationary mirrors, a beam-steering 
function is integrated with the optical circulator – creating an optical circulator/switch. 

The LCR acts as a half-wave plate when a 2 kHz square wave drive voltage, ~1.5 V (rms), 
is applied – changing the incident linear p-polarized beam to an s-polarized beam that is 
reflected off the beam splitter. The input p-polarized beam is unchanged by the LCR and 

 

Fig. 2. Non-mechanical beam-steering system with a liquid-crystal retarder (LCR). The LCR 
with a 10 mm clear aperture is electronically addressed to either preserve the input beam 
polarization state (p-polarized for high LCR drive voltage) or change it to its orthogonal 
counterpart (s-polarized for low drive voltage). p-polarized (/s-polarized) beam is transmitted 
through (/reflected off) the polarization beam splitter and deflected by a mirror to send the 
beam along LOS1 (/LOS2). Both LOS1 (green dashed line) and LOS2 (red dashed line) make 
an angle 30α = °  with the lidar axis (black dashed line). A blue arrow illustrates a possible 

orientation of the wind velocity vector 

v  with an azimuthal direction φ relative to the lidar 

axis (φ is positive for this particular example). 
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transmitted through the beam splitter if the drive voltage is 25 V (rms). Thus, measurement of 
vLOS2 is activated by the low LCR voltage while measurement of vLOS1 gets triggered by the 
high LCR voltage. According to its specification, the LCR has a wavefront distortion of 

/10λ≤  and an insertion loss of 0.2 dB (single pass). Both are sufficiently low and allow us 
to maintain good heterodyne efficiency as exemplified by the results below. The 0.5 W 
incident beam onto the LCR is collimated to a 1/e2 diameter of 2 mm resulting in a power 
density well below the LCR damage threshold of 500 W/cm2 specified by the manufacturer. 

For every pair of (positive-valued) vLOS1 and vLOS2 estimates, the magnitude 

v  and 

direction φ of the wind velocity vector shown in Fig. 2 can be derived by solving a system of 
two equations (to avoid ambiguity, we assume α − π/2 < φ < π/2− α where α shown in Fig. 2 
is always positive). The first equation gives the projection of vector 


v  onto the lidar axis: 

 
( )LOS1 LOS2v v

cos ,
2cos

φ
α

+
=

v  (2) 

and the other supplies the component along the orthogonal direction: 

 
( )LOS2 LOS1v v

sin .
2sin

φ
α

−
=

v  (3) 

For 30 ,α = °  ( )LOS1 LOS2cos 3 v v 3φ = +
v  and LOS2 LOS1sin v v .φ = −

v  

3. Characterization of the LCR based beam-steering system 

To evaluate the switching characteristics of the new dual-LOS lidar, we measured the optical 
power of the beam transmitted out of the two telescope exit apertures (Fig. 1) as the LCR is 
repeatedly switched between the two LOS every half a second. The alternating modulation of 
the beam power for LOS1 and LOS2 is shown in Fig. 3 with the corresponding LCR drive 
voltage. These results show that the switching time constants to reroute the transmitted beam 
from LOS1 to LOS2 is longer (τ12 = 16 ms) than for the opposite direction (τ21 = 100 μs). It is 
worth to note that next-generation LCRs with stabilizing polymer materials are already 
commercially available and can provide switching speeds in the order of 100 μs in both 
directions. Nonetheless, the present asymmetry in the switching time constants is not critical 
in our current system, since the target update rate is in the order of 1 Hz for wind field 
magnitude and direction measurement. 

 
Fig. 3. (Top) Measured relative power of the laser beam versus time, alternately transmitted 
along LOS1 (green) and LOS2 (red), along with the corresponding LCR drive voltage (gray) 
that enables this non-mechanical lidar beam-steering mechanism. (Bottom) Time constants for 
switching the beam from LOS1 to LOS2 and vice versa (i.e. τ12 and τ21) are estimated by fitting 
exponential decay curves to the relative beam power transitions at 0.5 s and 0.0 s, respectively. 
The measurements were performed at an ambient temperature of 25 °C. 
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As shown in Fig. 1, a field-programmable gate array (FPGA) unit is used to perform real-
time lidar spectral analysis. The FPGA continuously calculates the PSD of the photodetector 
signal every 6.83 μs (a sampling rate of 75 MHz consisting 512 sample points) and averages a 
few thousands of these spectra to produce 33 Hz PSD plots regardless of the LCR’s state. 
Two examples of the 33 Hz PSD plots are illustrated in Fig. 4. The first plot is for the case 
when the LCR drive voltage is high (i.e. LOS1 is active) and the second is when the LCR 
drive voltage is low (LOS2 is active). The former gives a mean fD = 5 MHz while the latter 
clearly has a lower fD = 3 MHz which is indicative that the wind velocity vector is more 
closely aligned along LOS1 than along LOS2. As can be predicted from Fig. 3, it is observed 
that some 33 Hz PSD plots generated at times very close to the switch transitions contain two 
Doppler peaks that actually mixed the individual peaks from the LOS1 and the LOS2 
measurements. This ambiguous situation (or crosstalk) occurs often for the slow transition 
(LOS1 to LOS2) but is also observed in the opposite switch direction. To mitigate this issue, a 
filtering algorithm is introduced which simply drops two 33 Hz PSD plots for every switching 
event – one before and one after a transition. A 10 s video clip of the 33 Hz PSD plots while 
the LCR is alternately switched is linked to Fig. 4 and shows the result after applying the 
filtering algorithm. 

 

Fig. 4. Power spectral density (PSD) of the lidar photodetector output signal when LOS1 is 
active (top) and when the lidar switches to LOS2 (bottom). PSD plots are given in units of the 
shot noise background. For each LOS, the radial wind speed is directly proportional to the 
estimated center frequency of the Doppler peak (e.g. 5 MHz for LOS1 and 3 MHz for LOS2 
for the above plots). The time stamp of each plot is shown on their upper right corner. An 
accompanying video clip (Media 1) is included to show the 33 Hz lidar spectra for a period of 
10 s while the beam switches from one LOS to another every half a second. Assuming laminar 
flow, equal radial wind speeds are obtained when the wind vector is parallel to the lidar axis 
(or symmetry axis between LOS1 and LOS2). 

4. Determining the wind velocity vector (magnitude and direction) 

An outdoor experiment is performed during which the wind direction is mostly within the 60° 
sector defined by LOS1 and LOS2 of the WindEye lidar system. After applying the 
abovementioned filtering algorithm to the 33 Hz PSD plots gathered during the experiment, a 
large fraction of the total lidar data remains and is used to generate 1 Hz averages of vLOS1 and 
vLOS2 using Eq. (1). The temporal variations of vLOS1 and vLOS2 over a 50 minute period are 
shown in Fig. 5 (top). Using Eq. (2) and Eq. (3), the corresponding magnitude 


v  and 
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direction φ of the wind velocity vector are also plotted in Fig. 5 (bottom). The data shows that 
for the first half hour, vLOS1 is mostly greater than vLOS2 (resulting in φ < 0) until around 06:38 
when the two plots cross over (corresponding to φ = 0). For the remainder, the situation is 
reversed (i.e. φ > 0). Astute readers can further note two outlying data points for the relative 
wind direction ( + 60° at around 06:18 and –60° at 06:40). These outliers can be ignored since 
they correspond to instances when zero values are assigned by default to vLOS1 and/or vLOS2 
when the lidar spectra have poor signal-to-noise ratio, which makes radial speed estimates 
unreliable. For yaw control applications, the objective is to minimize φ  assuming that the 

lidar axis is well aligned with the rotor axis of the turbine. A further examination of the 1 Hz 
data also shows that the achieved resolution is less than 0.1 m/s for the velocity magnitude 
and better than 1° for the wind direction. 

 

Fig. 5. Plots of the 1 Hz radial wind speed data for LOS1 and LOS2 (top) and the 
corresponding estimates for the magnitude and direction (measured relative the lidar axis) of 
the wind velocity vector. Time axis is in units of hours:minutes. 

5. Conclusion and outlook 

We have demonstrated a novel diode laser wind lidar with a dual line-of-sight beam-steering 
capability without moving parts. Non-mechanical steering of the beam is accomplished by a 
liquid-crystal polarization switch working in conjunction with a polarization beam splitter. 
This work demonstrates that successive pairs of spatially resolved radial speed measurements 
along two horizontal lines-of-sight at –30° and + 30° of the lidar symmetry axis can be used 
to determine the magnitude and direction of the wind velocity vector at a remote distance 
(nearly 100 m away from the instrument), assuming a relatively laminar flow. As a further 
extension of this work, we are in the process of validating the performance of the low-cost 
diode laser wind velocity lidar over extended periods (i.e. months) and under various 
meteorological conditions by conducting side-by-side comparison with state-of-the-art sonic 
anemometers as reference in situ wind sensors. The non-mechanical beam-steering scheme 
demonstrated here for a CW lidar can also be applied to a pulsed lidar as long as the energy 
density of the beam incident on the liquid-crystal retarder is less than the damage threshold of 
the device. Lastly, the dual-LOS lidar may also be used to measure light depolarization by 
atmospheric particles. 

Acknowledgment 

The authors would like to acknowledge the financial support from the Energiteknologisk 
Udviklings- og Demonstrations Program (EUDP) J.nr. 641012-0003. 

 

#213496 - $15.00 USD Received 8 Aug 2014; revised 13 Oct 2014; accepted 14 Oct 2014; published 21 Oct 2014
(C) 2014 OSA 3 November 2014 | Vol. 22,  No. 22 | DOI:10.1364/OE.22.026674 | OPTICS EXPRESS  26679


