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Classification of independent components of EEG into multiple artifact classes 

Abstract 

In this study, we aim to automatically identify multiple artifact types in EEG. 

We used multinomial regression to classify independent components of EEG 
data, selecting from 65 spatial, spectral, and temporal features of independent 
components using forward selection. The classifier identified neural and five 
non-neural types of components. 

Between subjects within studies, high classification performances were 
obtained. Between studies, however, classification was more difficult. For 
neural vs. non-neural classifications, performance was on par with previous 
results obtained by others. 

We found that automatic separation of multiple artifact classes is possible 
with a small feature set. 

Our method can reduce manual workload and allow for the selective removal 
of artifact classes. Identifying artifacts during EEG recording may be used to 
instruct subjects to refrain from activity causing them. 

Introduction 

EEG data is generally contaminated by artifactual, non-neural electrical 
activity stemming from non-physiological sources such as electrical 
background noise and loose electrodes, and physiological sources such as 
subjects’ heartbeat, muscle or eye movements. Such non-neural activity can, to 
some extent, be separated from the data using Independent Component 
Analysis (ICA), which is a widely used method in data analysis (Hyvärinen and 
Oja 2000; Comani et al. 2004; Di et al. 2007; C. M. Kim et al. 2003; Kong et al. 
2008; Tsai and Lai 2009). Particularly, it is commonly used for pre-processing 
and analyzing EEG data (Erfanian and Erfani 2004; Acar, Makeig, and Worrell 
2008; Ullsperger and Debener 2010). ICA extracts spatial patterns with 
statistically independent behavior over time from the raw EEG 
data (Hyvärinen and Oja 2000). These patterns and their corresponding time 
series are referred to as independent components (ICs). 

Non-neural activity in EEG is typically considered a nuisance and the main 
purpose of separating it from the data using ICA is to exclude it by 
filtering (Jung et al. 2000). Other approaches to cleaning data include 
identifying heavily contaminated channels or epochs of EEG data, and then 
removing such channels or epochs prior to analysis (Nolan, Whelan, and Reilly 
2010; Ypparila et al. 2004; Citi, Poli, and Cinel 2010). Unfortunately, this may 
lead to unnecessary data loss. Simultaneous reordings of e.g. the 
electrooulogram (EOG) and electrocardiogram along with EEG can also be 



used to remove artifats (Nolan, Whelan, and Reilly 2010; Fatourechi et al. 
2007; He, Wilson, and Russell 2004) but this approach is not useful for all 
types of artifacts and requires the additional labor of mounting auxiliary 
sensors. Therefore, we only consider approaches using ICA based solely on 
EEG data in the current study. 

State of the art 

Presently, classification of ICs for artifact detection in EEG is often done 
manually in a time-consuming and subjective process. While work on fully 
automated supervised classification methods has increased over the past 
years, most of this work has focused on the binary problem of distinguishing 
between neural and non-neural ICs (Winkler, Haufe, and Tangermann 2011; 
Tangermann et al. 2009; Mognon et al. 2010; LeVan, Urrestarazu, and Gotman 
2006; Bartels, Shi, and Lu 2010; Viola et al. 2009; Halder et al. 2007), some 
using multiple classes as an intermediate step (Mognon et al. 2010; Bartels, 
Shi, and Lu 2010; Halder et al. 2007) with only few studies evaluating 
performance for the multi-class problem (Viola et al. 2009; Halder et al. 2007). 

Several studies have used simulated artifacts as a ground truth to which they 
compare their automatic classification e.g. (Nolan, Whelan, and Reilly 2010; 
Delorme, Sejnowski, and Makeig 2007). This is problematic as real artifacts 
may affect data in ways different from the simulation. Therefore, we limit our 
review to those studies that compare performance with human experts’ 
classifications of real artifacts in real data. 

The most important factor in performance evaluation is generalization. For a 
method to be fully automated it should perform well when tested on data from 
a study that was not used to train the method. Automatic thresholding at e.g. a 
pre-determined Z-score for a certain feature is one approach that allows 
this (Nolan, Whelan, and Reilly 2010; Mantini et al. 2008). Another approach is 
to train a classifier on data from one study and make sure that it performs 
well on data from another study. This would allow the method to be trained 
once and then applied to new data without manual intervention. Few studies 
have tested supervised classifiers for artifact detection at this level of 
generalization, and only for the binary problem of distinguishing artifactual 
from neural ICs (Winkler, Haufe, and Tangermann 2011; Mognon et al. 2010). 

Winkler, Haufe, and Tangermann (2011) built a classifier based on an initial 
pool of 38 features from the spatial, spectral, and temporal domains. They 
compared several classification methods and found that regularized linear 
discriminant analysis with three spectral, one temporal, and two spatial 
features obtained the best classification results. We describe most of the 
features in their initial pool in detail in [app:feats]. They reported error rates 
of 8.9% and 14.7% within and between studies, respectively. The method 
ADJUST (Mognon et al. 2010) uses Gaussian densities for classification and 
incorporates features from the spatial and temporal domains of ICs. ADJUST 



employs class-specific classifiers for eye blinks, vertical eye movements, 
horizontal eye movements and generic discontinuities (non-biological 
artifacts) to solve the classification problem by classifying an IC as being non-
neural if one or more class-specific classifiers labeled it as artifactual. The 
evaluation measure reported for ADJUST was the percentage of data variance 
explained by correctly classified ICs. On test data, the ADJUST performance 
measure was 99.0%, 96.0%, 99.2% and 97.7% for the class-specific classifiers 
for blinks, vertical eye movements, horizontal eye movements, and generic 
discontinuities, respectively. In classifying neural vs. non-neural ICs, the 
ADJUST performance measure was 95.2%. Several classes were considered in 
ADJUST, and so the method is appropriate to be used for multi-class 
classification purposes. Since an IC may be assigned to several classes, ADJUST 
can, strictly speaking, not be tested in the multi-class problem in its current 
form. 

A few studies have addressed multi-class identification of artifacts (Viola et al. 
2009; Mantini et al. 2008) at the level of across-subject-generalization within 
a study. This level of generalization could certainly also be useful as it would 
allow automatic artifact classification of future subjects once manual 
classification of some subjects has been achieved. 

Viola et al. (2009) introduced the method CORRMAP, which solely uses the 
scalp map of an IC to classify it as representing a blink, a lateral eye 
movement, or the heartbeat. CORRMAP classifies an IC using the correlation 
between the spatial topography of the IC and template topographies from ICs 
with known classes. If the correlation is higher than a certain threshold, which 
can either be set manually or determined automatically, then the IC is 
classified as being of the same class as the template IC. 

In Viola et al.’s study, classification rates were calculated for electrode 
configurations with 30, 68, and 128 channels for three classes: blinks, lateral 
eye movements, and heartbeats. The mean correlation over electrode arrays 
between CORRMAP and human experts for these three classes were 0.90, 0.88, 
and 0.47, respectively. The classification rates for blinks and lateral eye 
movements were higher for the less dense electrode arrays, while 
classification of heartbeats improved with denser electrode arrays. 

A new fully automated method using the same principle as CORRMAP, of using 
the correlation between spatial maps as sole feature, has recently been 
presented (Bigdely-Shamlo et al. 2013) for the identification of eye-related 
ICs. An area under the receiver operating characteristics (ROC) curve of 0.993 
was obtained on ICs from a study that was not used during training. This 
result shows that the principle behind CORRMAP is a very promising method 
for automatic artifact identification at the highest level of generalization, 
namely across studies. 



Mantini et al. (2008) used thresholding of a single feature, the approximate 
entropy of IC time series, to classify ICs of MEG as non-cerebral biological 
artifacts (low approximate entropy), neural (medium approximate entropy) 
or environmental noise components (high approximate entropy). They 
obtained very good results with the area under the ROC curves being above 
0.9 with labels by human experts as ground truth. As this method separates 
artifacts into biological and non-biological ICs it does address the multi-class 
problem but it is unknown whether it is suitable for a further division of these 
classes into more specific classes such as lateral eye movements versus eye 
blinks. 

Purpose of study 

By distinguishing between multiple types of artifacts such as eye movements 
and the electrical heartbeat artifact, more diverse uses of an automatic 
classification method can be imagined since some artifacts may be 
informative for some purposes, or it may be desirable to remove only some 
artifact types. The heartbeat, for example, may be an informative signal in 
some settings, or eye-related ICs could be used to detect drowsiness. 
Automatic detection and identification of multiple types of artifacts during 
EEG recording would also allow researchers to instruct subjects to refrain 
from the activity causing those artifacts. 

The purpose of the study is to develop a multi-class artifact detection system 
covering four diverse artifact classes: eye blinks, horizontal eye movements, 
heartbeat artifacts and muscle artifacts, as well as ICs consisting of mixed 
neural and artifactual activity. Importantly, we test the performance of the 
system at two levels of generalization: between subjects within a study and 
between studies. A good performance across subjects would allow a classifier 
to be trained for the first subjects in a study, and then used to automatically 
classify ICs for the subsequent subjects. A good performance across studies 
would mean that the classifier can be used on arbitrary studies and subjects 
without re-calibration. We are also interested in determining the features 
most relevant to classifying ICs. Hence we aim to answer the following 
research questions: 

1. Which features are important for a high performance in multi-class 
classification of ICs? 

2. Is it possible to distinguish between multiple classes of ICs between 
subjects within a study? 

3. Will a classifier generalize between studies? 



Data 

Two data sets containing manually labeled ICs were kindly made available by 
Scott Makeig, Julie Onton and Klaus Gramann (Onton and Makeig 2009; 
Gramann, Tollner, and Muller 2010). 

[tab:data] 

One data set was acquired for the purpose of studying the EEG during different 
emotional states (Onton and Makeig 2009). Subjects were seated in a dimly lit 
room with eyes closed, imagining emotional states. This study contained 
recordings from 34 subjects from a Biosemi1 250 channel active reference 
system (Onton and Makeig 2009). Channels that showed highly abnormal 
activity had been removed manually before performing ICA, leaving 134-235 
channels for each subject. The ICA decompositions for this data were obtained 
by “full-rank decomposition by extended infomax ICA” (Onton and Makeig 
2009). The 34 data sets were between eight and eighty-eight minutes long 
after concatenating the recordings for the various emotions imagined. We will 
refer to this data set as the Emotion data or study. The other data set was 
recorded to investigate how attention is guided early in visual processing. 
This was recorded from 64 scalp channels “referenced to Cz and re-referenced 
off-line to linked mastoids” from 12 subjects during a visual task (Gramann, 
Tollner, and Muller 2010). ICA was performed with the implementation of the 
ICA infomax algorithm in the Brain Vision Analyzer software from Brain 
Products GmbH2. The data sets we had access to were between 56 and 66 
minutes long for the different subjects. We will refer to data from this study as 
the Cue data or study. The data sets are summarized in Table [tab:data]. 

The two data sets differed in various ways (see Table [tab:data]). The number 
of electrodes was much higher in the Emotion study than in the Cue study, 
implying a higher spatial sampling of the EEG. The Emotion study also 
contained more subjects, resulting in a total of almost ten times as many ICs in 
the Emotion study as in the Cue study. Also, different sampling rates and 
analogue filters were used and the lengths of recordings differed. 
Additionally, the experimental tasks differed. In the Emotion study, an eyes-
closed task was performed while a task requiring responses to visual cues was 
used in the Cue study. These differences are likely to cause covariate shifts in 
the data, i.e. differences in distributions of features between training data and 
future data (Sugiyama and Kawanabe 2012), in the features across studies if 
features are calculated naively from the raw data. We discuss how we handle 
this issue in Section [sec:methods]. 

                                                        

1http://www.biosemi.com/ 

2http://www.brainproducts.com/ 

http://www.biosemi.com/
http://www.brainproducts.com/


Both studies contained ICs labeled by experts with the labels “eye blink”, 
“neural”, “heart”, “lateral eye movement”, and “muscle”. Two experts, one in 
each study, performed the manual classification of ICs. Figure [fig:scalpmaps] 
shows examples of scalp maps from the different classes. Neural ICs are the 
ICs that correspond to activity generated by neural sources within the brain. 
ICs with the label “heart” represent the electrical heartbeat artifact. The ICs 
that were not labeled represented, based on visual inspection, mixed ICs 
containing both artifactual and neural signals. We will refer to the unlabeled 
ICs as “mixed” ICs. We chose to include mixed ICs in our analysis since mixed 
ICs will almost always be present in real data. Not including this class would 
then force mixed ICs to be classified as one of the four artifact, or neural 
classes. Since mixed ICs have different characteristics from neural ICs, it is 
likely that many would be classified as artifactual. This is undesirable since 
mixed ICs also contain traces of neural activity, meaning that the removal of 
mixed ICs would imply a loss of neural activity in data. The inclusion of mixed 
ICs can also be seen as a step toward making the classifier mimic human 
expert classifications as much as possible. 

[fig:scalpmaps] 

Some types of ICs are much more common than others, which presents a 
challenge to classification methods as described in Section [sec:methods]. 
Mixed ICs, for example, make up the majority of available ICs. The numbers 
and proportions of the different types of ICs in each study are shown in 
Figure [fig:classprops]. 

[fig:classprops] 

Methods 

Figure [fig:classifierflowchart] shows the pipeline used to train and validate 
our IC classifier. Each of the steps is described in detail in the remainder of 
this section. 

 

Processing pipeline for ICs from EEG data. The abbreviations CV and MNR stand 
for cross-validation and multinomial regression, both explained in 
section [sssec:classification]. 



[fig:classifierflowchart] 

We first discuss the steps taken during pre-processing to avoid covariate 
shifts between studies due to differences in experimental setups. Next, we 
discuss our feature set. We then describe our classification and feature 
selection procedures. Finally, we outline how we investigated the research 
questions posed in the introduction. 

Pre-processing 

Different EEG studies use different sampling rates, analogue filters, and 
electrode arrays during recordings, and durations of recordings vary. If 
features that are influenced by such differences are used, it is improbable that 
a classifier will generalize across studies. 

Higher sampling rates enable spectral features to be determined for higher 
frequencies. Likewise, different analog filters during recording of EEG cause 
the spectral content of signals to vary systematically. To avoid such 
differences, we filter and resample all signals before calculating features. We 
require that any data given as input was recorded with a sampling rate of at 
least 200Hz, and that the analogue filter used during recording had a low edge 
of 3Hz or lower and a high edge of 90Hz or higher. With these requirements in 
place, it is safe to band-pass filter the signal between 3Hz and 90Hz and 
downsample all input signals to 200Hz. This ensures that all feature 
calculations are performed on signals with the same spectral content. 

Different durations of recordings entail different uncertainties in the 
calculation of temporal and spectral features. Invariance to this effect is 
achieved by using the means and variances of temporal and spectral 
characterstics of the signal over one-second intervals as temporal and 
spectral features. 

Some features are based on distances between electrodes and are thus clearly 
influenced by electrode array density. We require that recordings were 
performed using an array with at least 64 electrodes to ensure a good spatial 
coverage. We spatially downsample all scalp maps to the 10-20 system 
electrode array with 64 electrodes. The spatial downsampling is performed 
with Gaussian kernels using spherical distances between electrodes. We use a 
standard deviation of 0.5 cm and a head radius of 9 cm. 

Before calculating features derived from the spatial distribution of an IC, we 
standardized the spatial map. Each column of the mixing matrix was 
standardized to have variance one and mean zero. This ensures that only 
patterns in the spatial map, and not its scale, determine the features 
calculated. This is desirable since the magnitude of the mixing matrix cannot 
be uniquely determined due to an inherent ambiguity in the scaling of the 
mixing matrix and the matrix of activation time series of ICs. We also 
standardized time series before calculating temporal and spectral features. 



Features 

An IC consists of a scalp map containing the contribution of the IC to each EEG 
channel, and a time series that shows how active the spatial pattern is over 
time. To quantify the characteristics of an IC, features based on both the 
spatial and temporal representations have been shown to be 
relevant (Winkler, Haufe, and Tangermann 2011; Mognon et al. 2010; Viola et 
al. 2009). Spectral (frequency domain) characteristics of the time series have 
also been shown to be informative (Winkler, Haufe, and Tangermann 2011). 
Hence we use features from the spatial, temporal, and spectral domains. We 
included most of the features described in two recent studies of the binary 
classification problem (Mognon et al. 2010; Winkler, Haufe, and Tangermann 
2011). Descriptions of features are given in [app:feats]. Before training we 
standardized the features in the training set to have mean zero and variance 
one. We standardized the test data using the mean and variance from the 
training data, which is the standard approach (Jayalakshmi and 
Santhakumaran 2011; Hastie, Tibshirani, and Friedman 2009). 

Classification 

We used the linear classifier multinomial logistic regression (MNR) since this 
was found to obtain good results and linear classifiers are desirable both for 
their interpretability and fast training. Linear classifiers have previously 
shown good performance in the binary classification of ICs (Winkler, Haufe, 
and Tangermann 2011). 

As is evident from Figure [fig:classprops], the class of mixed ICs makes up the 
large majority of ICs in both studies. Thus a classifier would achieve a high 
classification rate by classifying all ICs as mixed. This problem of imbalanced 
classes is well known, and various approaches to solving it have been 
proposed (Zadrozny, Langford, and Abe 2003; López et al. 2012). We weighted 
observations by the reciprocal of their class proportion during training such 
that the penalty of misclassification was higher for ICs from smaller classes. 
This weighting scheme can be considered a proxy for optimizing balanced 
accuracy. Balanced accuracy is a performance measure that weighs all classes 
equally since it is defined as the mean over classes of the proportion of correct 
classifications in each class. In the binary case, balanced accuracy is thus the 
mean of specificity and sensitivity. 

Previous studies on the binary classification problem found that only few 
features are necessary to distinguish between classes (Winkler, Haufe, and 
Tangermann 2011; Tangermann et al. 2009; Mognon et al. 2010). This 
motivated us to investigate research question 1 of whether only few features 
are sufficient in the multi-class problem as well. This was done in a two-level 
cross-validation (CV). In the outer level, leave-one-subject-out CV was 
performed over the 34 subjects in the Emotion data. In each outer fold, 
features were chosen using forward selection in an inner 5-fold stratified CV 



by adding features to an MNR model until the test error stopped decreasing. 
The use of stratified CV ensured that class proportions were as equal as 
possible across partitions. For each feature, we counted the number of outer 
CV folds in which it was selected. This number reflects the importance or 
pertinence of the feature. We then created 35 sets of features consisting of the 
features that had been selected in at least 0, 1, 2, …, 34 outer CV folds. For each 
subject, the classifier was trained on each of these feature sets using the 33 
other subjects, and tested on the left-out subject. The classes of ICs predicted 
for each subject in this manner were used to calculate a balanced accuracy for 
each feature set. As the best feature set we chose the sparsest feature set with 
acceptable performance. 

Investigation of research questions 

Research question 1, concerning the features important for multi-class 
classification, was investigated by comparing classification performances with 
different feature sets. These feature sets were the ones constructed using the 
Emotion data as described in Section [sssec:classification]. The Emotion data 
was also used to choose the best feature set. To evaluate the sensitivity of the 
classification performance to the choice of features, balanced accuracies were 
calculated in leave-one-subject out CV on the Cue data and across-study 
training and testing for each feature set constructed from the Emotion data. If 
new ICs to be classified have short time series, spectral and temporal features 
will likely be badly determined. In such cases, the exclusive use of spatial 
features would be preferable. For this reason, we also tested the classifier 
using only the spatial features. 

Both research questions 2 and 3 were investigated using the feature set 
determined based on Emotion data. We investigated research question 2, 
concerning between-subject generalization within studies, through the leave-
one-subject-out CV schemes on both the Emotion and Cue data sets. A high 
classification performance when testing on a subject not used during training 
would signify that it is possible for a classifier to generalize across subjects 
within a study, meaning that each class of ICs exhibits certain characteristics 
independently of the specific subject. 

To answer question 3, concerning between-study generalization, we trained a 
model on each data set using the features selected using the Emotion data. The 
models were then tested on all subjects from the other study. A good 
performance on subjects from the other study would indicate that the 
classifier is able to generalize across studies. We used confusion matrices to 
inspect the classification performance of the classifiers on a class-by-class 
basis. We also used the balanced accuracy rate to evaluate performance and 
compare to classification performances obtained by others. 



Results 

Figure [fig:barplot] shows the number of times each feature was chosen by 
forward selection in the leave-one-subject-out CV scheme performed on the 
Emotion data. The balanced accuracies obtained using the features chosen in 
at least 15, 20, 25, 28, or 34 outer folds are also shown. The feature sets 
constructed using the thresholds 15, 20, 25, 28, and 34 contain 32, 23, 14, 14, 
and 3 features, respectively. The two 14-feature sets are identical. 

Figure [fig:balaccsatthresholds] shows the balanced accuracies obtained with 
each of the 35 feature sets. The variability of the curves in 
Figure [fig:balaccsatthresholds] gives an idea of how sensitive the 
classification performance is to the choice of feature set. 

Figure [fig:threshconfmat] shows the confusion matrices that arose from using 
the 32-feature set, the 23-feature set, the 14-feature set, and the 3-feature set 
in a leave-one-subject-out CV on Emotion data. This figure is included to show 
that the class-wise performances are stable over the different feature sets. 

Figure [fig:confusionmatsspatial] shows the confusion matrices obtained in 
leave-one-subject-out CV on both studies, and with cross-study training and 
testing using only the spatial features in the initial pool of features. This figure 
is shown to illustrate the classification performance that can be expected if 
only short time series of ICs are available, in which case non-spatial features 
may be unreliable. 

Figure [fig:confusionmats] shows the class-wise classification performances 
when the classifier with the feature set containing 14 features is used. The 
confusion matrix in the top row shows the performance with leave-one-
subject-out evaluation on the Cue data and the two confusion matrices in the 
bottom row show the cross-study performances. This figure details the class-
wise performances, which cannot be derived from the balanced accuracy rates 
shown in Figure [fig:balaccsatthresholds]. 

 

Barplot showing the number of folds each feature was chosen by forward 
selection in leave-one-subject-out CV on the emotion data (34 subjects). 

[fig:barplot] 



 

Balanced accuracy obtained with different feature sets constructed by varying 
the number of CV folds features must have been selected in to be included. The 
dashed line shows the cut-off chosen based on the blue curve. This choice led to a 
feature set containing 14 features. 

[fig:balaccsatthresholds] 

[fig:threshconfmat] 

[fig:confusionmatsspatial] 

[fig:confusionmats] 

Discussion 

Before analyzing the classification performance obtained by our classifier we 
discuss the classification performance of human experts, which sets the upper 
bound on the performance we might hope to achieve. 

Performance of human experts 

As the true underlying content of ICs, i.e. the ground truth, is unknown, we can 
only rely on classifications made by expert human observers when training 
and testing classifiers. Several studies have found that the agreement between 
human experts is generally less than perfect and that it differs for different 
types of artifacts (Viola et al. 2009; Winkler, Haufe, and Tangermann 2011; 
Klekowicz et al. 2009). Although the agreement between experts is likely 
dependent on the particular method of ICA, the information available to the 
experts, the particular data sets and how experts are instructed to classify 
ambiguous cases, there seems to be a good agreement between studies on the 
inter-expert agreement rate (Viola et al. 2009; Winkler, Haufe, and 
Tangermann 2011; Klekowicz et al. 2009). 

Viola et al. (2009) had 11 independent experts classify ICs as eye blinks, 
lateral eye movements and heartbeat artifacts based solely on the scalp maps 
of ICs. The data came from three independent studies and observers were 
under the constraint that a maximum of three ICs could be identified as 
containing one particular artifact type. In terms of the binary correlation the 



inter-expert agreement was very high for eye-blinks (0.82 – 1.00), high but 
more variable for lateral eye movements (0.55 – 0.93) and low and very 
variable for heartbeat (0.02 – 0.73). 

Winkler, Haufe, and Tangermann (2011) had 2 experts classify ICs from a 
single study as artifactual or neural based on their spectrum, time series and 
spatial distribution on the scalp and found that the error rate was 10.6%. 
They also had one expert re-label the ICs from another study two years after 
the same expert’s first labeling of the same data. The error rate between the 
two labelings was 13.2%. This is not much higher than the agreement between 
experts and the disagreement may thus reflect the inherent difficulty of the 
task rather than differences in technique or approach by different observers. 

Klekowicz et al. (2009) made 22 comparisons between expert classifications 
(artifact vs. neural) based on the EEG time series from 7 polysomnographic 
recordings and found an agreement of 0.92 in terms of the area under curve of 
the best fitting ROC curve. Of the 22 comparisons, four were between 
classifications made by the same expert at different points in time. From their 
figures (Figure 6 in their article) these agreements were high compared to the 
agreement between different observers. Hence, their reported overall 
agreement between human classifications is a high estimate of the agreement 
between human experts. 

The imperfect agreement between human experts should be kept in mind 
when evaluating automatic artifact detection systems as inter-expert 
agreement sets the upper limit for what we can hope to achieve through 
automatic classification. It is very promising that several studies have 
reported a good agreement between automatic IC classification and human 
experts, close to the agreement between experts. 

Evaluation of classifier 

Feature selection 

In Figure [fig:balaccsatthresholds], the blue curve shows the average leave-
one-subject-out CV performance on the Emotion data, the same data used to 
construct the feature sets. This is also the curve used to determine the feature 
set to use in the classifier. The feature set resulting from requiring that 
features must have been included in 28 CV folds or more was chosen as the 
best feature set since classification performance starts to consistently 
decrease at this threshold. This feature set includes 14 features, consisting of 
nine spatial, two spectral, and three temporal features. The red and blue 
curves are biased upwards since testing for these curves was performed on 
the Emotion data, which was used to choose the feature sets, implying that the 
feature sets contain features especially well suited to describing ICs of 
different classes in the Emotion data. At threshold zero, when all features are 
included, there is no bias since no features were chosen based on the Emotion 
data at this point. Figure [fig:balaccsatthresholds] shows that, when training 



and testing on subjects from the same study (blue and green curves), the 
performance is stable for most feature sets until the number of features 
becomes too small. This indicates that, within a study, overfitting to subjects 
in the training data is not a problem, even for the relatively small amount of 
data present in the Cue study. The lack of upwards or downwards trends in 
the performance when training on Emotion data and testing on Cue data (cyan 
curve) indicates that the Emotion study contains sufficient data that 
overfitting is avoided. Conversely, when training on Cue data and testing on 
Emotion data (red curve), the performance peaks with feature sets that are 
neither too small nor too large. One explanation of this is that there is not 
enough data in the Cue data set to prevent overfitting when very large feature 
sets are used. Another explanation is that, since features were chosen based 
on Emotion data, small feature sets help the model home in on characteristics 
that best discriminate classes of ICs in Emotion data. All curves indicate that 
underfitting occurs with feature sets that are too small. In summary, 
Figure [fig:balaccsatthresholds] shows that the classification performance is 
quite robust to the specific choice of threshold when training and testing on 
subjects from the same study, whereas the performance is sensitive to the 
choice of threshold when training on one study and testing on the other study. 

The inclusion of both spatial, spectral, and temporal features in nearly all 
feature sets (Figure [fig:barplot]) shows that all three types of features carry 
information on the classes of ICs. The features included in the 14-feature set 
are shown in Table [tab:features], arranged according to the classes they 
should be good at detecting. 

For the spatial feature set, the within-study performances were very similar to 
those obtained with the 14-feature set (compare confusion matrix (c) in 
Figure [fig:threshconfmat] and confusion matrix (a) in 
Figure [fig:confusionmats] to confusion matrices (a) and (b) in 
Figure [fig:confusionmatsspatial]). In the between-study case, the 
performance improved when testing on Cue data and decreased when testing 
on Emotion data (compare confusion matrices (b) and (c) in 
Figure [fig:confusionmats] to confusion matrices (c) and (d) in 
Figure [fig:confusionmatsspatial]). However, the performance when testing on 
Emotion data with the 14-feature set is biased upwards since features were 
chosen using the Emotion data. Thus the decrease seen when testing on 
Emotion data with the spatial feature set might be artificial, indicating that 
spatial features may be sufficient if across-study generalization is to be 
improved. 

[tab:features] 

Classification performance with the 14-feature set 

The following discussion of the classification performance is based on the 
results given for the classifier with the 14-feature set. 



When classifying ICs in the within-study case into only two classes, artifactual 
or non-artifactual, we obtain balanced accuracy rates of 0.90 and 0.95. This is 
comparable to performances obtained by others. Balanced accuracy rates of 
0.91 and 0.79 were obtained in Winkler, Haufe, and Tangermann (2011) 
and LeVan, Urrestarazu, and Gotman (2006), respectively, while Halder et al. 
(2007) and Bartels, Shi, and Lu (2010) report balanced accuracy rates above 
0.90 without giving the exact numbers. Likewise, our classifier performs on 
par with others in the binary across-study case, obtaining balanced accuracy 
rates of 0.88. In the across-study case, Winkler et al. obtained a balanced 
accuracy of 0.86 (Winkler, Haufe, and Tangermann 2011). These accuracy 
rates compare well with the inter-expert agreement seen in previous 
studies (Viola et al. 2009; Winkler, Haufe, and Tangermann 2011; Klekowicz 
et al. 2009). 

In the following, we discuss the multi-class performance. This is visualized in 
confusion matrix (c) in Figure [fig:threshconfmat] for the leave-one-subject-
out CV on the Emotion data, and in Figure [fig:confusionmats] for the leave-
one-subject out CV on the Cue data and the cross-study training and testing. 
The performance on the class of lateral eye movements is high. This could be 
expected since eye-related ICs have previously been classified well by many 
others (Mognon et al. 2010; Viola et al. 2009; Bigdely-Shamlo et al. 2013). For 
the blink class, however, difficulty is experienced when training on Cue data 
and testing on Emotion data. This could be due to the low number of 
observations (14) of the blink class in the Cue data, making it difficult for the 
classifier to learn a good characterization of this class. The high performance 
on the neural class is also in good agreement with that found by 
others (Winkler, Haufe, and Tangermann 2011; Mognon et al. 2010). When 
tested on Cue data, heartbeat ICs tended to be misclassified as neural. 
Difficulty with the heartbeat class has also been observed in previous work 
including this class, both for an automatic classifier and for human 
experts (Viola et al. 2009). The high degree of confusion between the classes 
of muscle and mixed ICs may partly be explained by the shared characteristic 
of highly peaked scalp maps in these two classes compared to the other 
classes. The class most often confused with other classes is that of mixed ICs, 
which is not surprising since mixed ICs are ICs that do not clearly belong to 
one class, but may contain characteristics of several classes. The classification 
of some mixed ICs as neural is arguably difficult to avoid as the contrast 
between neural and mixed will be based on a threshold, which may be poorly 
defined. 

In general, the classifier performs better when trained on other subjects 
within the same study than when trained on subjects from another study. High 
classification performances with balanced accuracies of 93% and 80% for the 
Emotion and Cue data, respectively, were found in the within-study cases. 
Evaluation between studies, however, gave balanced accuracies of 74% and 
62% when testing on Emotion and Cue data, respectively. Data from more 



studies would probably help the between-study performance approach the 
within-study performance. Another way to improve the across-study 
performance could be to take into account the distributions of feature values 
in the test data set compared to the training data set. 

Quality of ICA decomposition 

Since the quality of an ICA decomposition depends on the pre-processing of 
data before running ICA, the usefulness of a classifier also depends on the pre-
processing steps. If data is subjected to ICA with little pre-processing, many 
ICs are likely to be either mixed or noisy representations of individual classes. 
Since such ICs are difficult to classify, the performance of the classifier is likely 
to decrease. If ICs are truly mixed, classification into separate classes is not 
possible even for human experts. A future approach to tackling such cases 
could be to use the class probabilities given by MNR to decide how to handle 
mixed ICs. If, for example, an IC classified as mixed is also given somewhat 
high probabilities of representing blinks and lateral eye movements, the IC 
could be classified as being generally eye-related and discarded. On the other 
hand, mixed ICs could be retained if the probability of the neural class is above 
some pre-defined threshold. 

Online capability 

The reasonable performance of the classifier makes it possible to use it for 
online monitoring of artifact occurrence while recording EEG. A rule of thumb 
states that about 20× 𝒏𝟐 samples are necessary to perform an ICA of 𝒏 
channels (Ullsperger and Debener 2010). Hence an ICA and classification of 
resulting ICs can be performed every 𝟐𝟎 × 𝒏𝟐/𝒇 seconds, where 𝒇 is the 
sampling rate. With 64 channels and a sampling rate of 512Hz, three minutes 
of recorded EEG provides sufficient data for an ICA decomposition. Using the 
runica algorithm in EEGLab (Delorme and Makeig 2004) with at most 50 
iterations, an ICA decomposition can be calculated in less than two minutes 
and calculating the features for an IC takes less than one minute. By 
distributing the feature calculations for the ICs over several threads, classified 
ICs can be provided online at a lag of about six minutes. 

Conclusion 

The presence of artifactual activity in EEG recordings is problematic in the 
analysis of data. While different approaches to removing such noise exist, 
these are either subjective and require lengthy manual processing of data or 
distinguish only between two classes. In this paper, we described an approach 
to automatic multi-class classification of artifactual ICs of EEG data. We 
considered neural ICs and five artifact classes: eye blinks, heartbeat, lateral 
eye movements, muscle, and mixed neural and artifactual activity. Using an 
initial pool of 65 spatial, spectral, and temporal features invariant to 



experimental setup, we investigated which features were important for 
classification of ICs. We found that features from all three spatial, spectral, and 
temporal domains carried information important for classification. However, 
we also saw that classification with a feature set consisting of only the spatial 
features had very similar performance to the 14-feature set when evaluating 
the classifier within studies. Across studies, the performance increased with 
the spatial feature set when testing on Cue data. The performance decreased 
when testing on Emotion data, but this was compared to the upwards biased 
performance estimate obtained with the 14-feature set chosen based on 
Emotion data. The classifier generalizes well across subjects within studies, 
whereas across-study generalization is more challenging. Collapsing the 
multi-class classifications into binary classifications (artifact or neural), we 
obtain classification performances comparable to those found in previous 
studies both within and between studies (Winkler, Haufe, and Tangermann 
2011; Mognon et al. 2010; LeVan, Urrestarazu, and Gotman 2006; Bartels, Shi, 
and Lu 2010; Viola et al. 2009; Halder et al. 2007). Thus the proposed 
classifier can be used for binary or multi-class classification interchangeably. 
The classification performance and speed of obtaining classified ICs allows 
online use of the classifier to detect artifacts while recording EEG so that 
subjects can be instructed to refrain from activity producing the detected 
types of artifacts. Although some artifacts such as the heartbeat are 
unavoidable, others may be mitigated in some paradigms, e.g. ERP studies, by 
the experiment being paused to allow subjects to blink or make them aware of 
muscle tension. Additionally, multi-class classification of artifactual ICs can 
make researchers aware of overly many artifacts of some class automatically. 
If possible, the experimental setup could then be redesigned to minimize the 
risk of such artifacts, e.g. by adjusting seating arrangements for participants to 
reduce eye and muscle tension. Additionally, the classifier could be used to 
identify artifacts typical of individual subjects in a short pilot run before 
performing an experiment. 

We provide Matlab code for feature calculation and MNR classifiers trained on 
different feature sets online at 
http://www2.imm.dtu.dk/~lffr/publications/IC_MARC.zip. We hope that this 
will encourage others to further explore automatic classification of artifactual 
ICs and use this technique to ease data cleaning. 
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Features 

The 65 features of ICs used for classification are listed here. All these features 
are sign-invariant since the sign-ambiguity of spatial maps and time series of 
ICs cannot be resolved through normalization. 

Spatial 

• (GD) Generic discontinuity measure Mognon et al. (2010). This measure 
as used in ADJUST Mognon et al. (2010) is defined as 
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, 

  where 𝒚𝒎 is the location of the 𝒎𝒕𝒉 electrode on the scalp, 𝒂𝒎 is the 
activation of the 𝒎𝒕𝒉 electrode by the IC, and 𝒄 is the number of 
electrodes. Hence this measure gives a high value if the IC activates any 
electrode a lot more than the neighboring electrodes, indicative of e.g. a 
loose electrode. 

  We use a slightly modified version of this measure to make the second 
term a weighted average. Our measure is defined as 
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• (SED) Spatial eye difference Mognon et al. (2010). Absolute value of the 
difference between activation of electrodes around the left and right eye 
areas. The left eye area is defined to lie between the angles −𝟔𝟏𝒐 and 
−𝟑𝟓𝒐 with a radius larger than 0.3 (where the head radius is assumed to 
be one, the convention in EEGLab). The right eye area is defined to lie 
between the angles 𝟑𝟒𝒐 and 𝟔𝟏𝒐, also at a radius larger than 0.3. Zero 
degrees is towards the nose and positive 𝟗𝟎𝒐 is at the right ear. 

• (SAD) Spatial average difference Mognon et al. (2010). This feature is 
defined as the absolute value of the mean of frontal electrode activations 
minus the absolute value of the mean of posterior electrode activations. 
The frontal area is defined to be the electrodes with absolute angles less 
than 𝟔𝟎𝒐 and radii larger than 0.4. The posterior area consists of the 
electrodes with absolute angles larger than 𝟏𝟏𝟎𝒐. 

• (varFront and varBack) Variance of activation of frontal and posterior 
electrodes Mognon et al. (2010). 



• (lateralEyes) Absolute value of the difference between activation of 
electrodes around the left and right eye areas. The left eye area is defined 
as the mean over all electrodes, weighted by a Gaussian bell with center at 
the location of Fp1 in the 10-20 electrode system. The right eye area is 
defined as the mean over all electrodes, weighted by a Gaussian bell with 
center at the location of Fp2 in the 10-20 electrode system. The standard 
deviation of both Gaussian bells is set to be 1 cm and a head radius of 9 cm 
is assumed. 

• (verticalPolarity) Absolute value of the difference between activation of 
frontal and posterior electrodes. The frontal area is defined as the mean 
of all electrodes weighted by a Gaussian bell centered at the location of 
AFz in the 10-20 electrode system. The posterior area is defined as the 
mean of all electrodes weighted by a Gaussian bell centered at the 
location of POz in the 10-20 electrode system. The standard deviation of 
both Gaussian bells is set to be 2 cm and a head radius of 9 cm is assumed. 

• (lefteye, righteye, frontal, central, posterior, left, right) These features 
give the absolute values of the mean activations of electrodes in various 
areas of the scalp. Each area is defined as the mean over all electrodes, 
where the contribution from each electrode to the mean is weighted by a 
Gaussian bell. For the areas around the eyes (lefteye and righteye), the 
standard deviation of the Gaussian bell is 1 cm. For all other areas, it is 2 
cm. A 9 cm radius of the scalp is assumed. The Gaussian bells are centered 
at the locations of Fp1, Fp2, AFz, Cz, POz, C5, and C4, respectively. 

• (absMedTopog) The absolute value of the median of the values in the 
scalp map. 

• (cdn) Current density norm Winkler, Haufe, and Tangermann (2011). The 
current density norm is a measure of the complexity of the current source 
distribution of an IC. A high complexity of the current source distribution 
indicates that the source of the IC is difficult to locate inside the brain, and 
thus that it is likely to be an artifact. This was one of the six final features 
included in the classifier described in Winkler, Haufe, and Tangermann 
(2011), in which a more detailed description can be found. 

• (xcoord, ycoord, and zcoord) X, Y, and Z coordinates of dipole fit Winkler, 
Haufe, and Tangermann (2011). The dipole fit used returns a single 
dipole. 

• (ndipoleLabels) Number of anatomical areas associated with dipole fit. 

• dipoleResidualVariance 

• (2ddft) Average logarithm of band power in high frequencies of spatial 
pattern Winkler, Haufe, and Tangermann (2011). 



• (centralActivation) Logarithm of mean of absolute values of activations of 
central electrodes of IC Winkler, Haufe, and Tangermann (2011). 

• (borderActivation) Binary feature to detect scalp maps with highest 
activity at an edge of the pattern. The most active electrode is the 
electrode for which the IC has the highest absolute value of activation. If 
the most active electrode in the pattern is in an outer group of electrodes, 
the feature is defined to be 1. Also, if the local maximum of an outer group 
is at the edge of the group, and its activation differs by more than two 
standard deviations from the group mean, then the feature is defined to 
be 1, too. Otherwise, it is defined to be -1 Winkler, Haufe, and 
Tangermann (2011). 

• (logRangeSpatial) Logarithm of range of activation of electrodes. This was 
one of the six final features included in the classifier described 
in Winkler, Haufe, and Tangermann (2011). 

• (spatDistExtrema) Euclidean distance in 3D coordinates between the two 
electrodes with minimal and maximal activation. 

• (scalpEntropy) The entropy of the scalp map. 

Spectral 

• (theta, alpha, beta, gamma, gammamed, gammaelec and gammah) Mean 
over one-second intervals of the logarithm of band power in the 𝜽 (4-
7Hz), 𝜶 (8-13Hz), 𝜷 (13-20Hz), lower 𝜸 (21-30Hz), middle 𝜸 (30-45Hz), 𝜸 
around the power grid frequencies (both US and European) (46-65Hz), 
and higher 𝜸 (66-80Hz) bands. The average band power in the 𝜶-band was 
one of the six final features included in the classifier described 
in Winkler, Haufe, and Tangermann (2011). 

• (vartheta, varalpha, varbeta, vargamma, vargammamed, vargammaelec 
and vargammah) The variance over one-second intervals of the logarithm 
of the bandpower in the same bands as mentioned above. 

• (spectralEntropyAvg and spectralEntropyVar) The entropy of the power 
distribution over the bands mentioned above is calculated for one-second 
intervals of the time series. The feature spectralEntropyAvg is then the 
average over these one-second intervals, while spectralEntropyVar is the 
variance of the spectral entropy over the one-second intervals. 

• (lowFrequentPowerAvg and lowFrequentPowerVar) These features give 
the band power in the 𝜹 band (1-3Hz) relative to the total power in the 
time series. The spectrogram used for these features is calculated based 
on the downsampled but un-filtered time series since the filter removes 
frequencies lower than 3Hz. The spectrogram is calculated over one-
second intervals, and the power in the 𝜹 band divided by the power over 
all frequencies is then found. The feature lowFrequentPowerAvg is the 



mean over the one-second intervals of this ratio, and 
lowFrequentPowerVar is the variance over the one-second intervals. 

Temporal 

• (skew1sAvg and skew1sVar) The skewness was calculated for one-second 
intervals of the time series of ICs. The feature skew1sAvg is the average 
over these one-second intervals and skew1sVar is the variance over these 
intervals. The feature skew1sAvg for 15 second intervals was one of the 
six final features included in the classifier described in Winkler, Haufe, 
and Tangermann (2011). 

• (logRangeTemporalAvg and logRangeTemporalVar) The range 
(maximum value minus minimum value) was calculated for one-second 
intervals. The feature logRangeTemporalAvg is the average over these 
one-second intervals and logRangeTemporalVar is the variance. 

• (kurtosisAvg and kurtosisVar) As for the two above features, the feature 
kurtosisAvg is the average of the kurtosis in one-second intervals and 
kurtosisVar is the variance of the kurtosis in one-second intervals. This 
was also used in Winkler, Haufe, and Tangermann (2011). 

• (hurst1Avg, hurst2Avg, hurst3Avg, hurst1Var, hurst2Var and hurst3Var) 
We used the Matlab function wfbmesti in the Wavelet toolbox to get three 
different estimates of the Hurst exponent, which is a measure of the 
autocorrelation of a time series. These three estimates of the Hurst 
exponent are found for one-second intervals. The features hurst1Avg, 
hurst2Avg, and hurst3Avg are the averages over these intervals, and 
hurst1Var, hurst2Var, and hurst3Var are the variances over the intervals. 

• (var1sAvg and var1sVar) Again, the variance is found in one-second 
intervals of the time series. The features var1sAvg and var1sVar are the 
average and variance over these intervals, respectively. This was also 
used in Winkler, Haufe, and Tangermann (2011). 

• (maxFirstDerivAvg and maxFirstDerivVar) In each one-second interval, 
the maximum difference between consecutive values was found. The 
average over the intervals is maxFirstDerivAvg and the variance is 
maxFirstDerivVar. This was also used in Winkler, Haufe, and Tangermann 
(2011). 

• (maxAmplAvg adn maxAmplVar) In each one-second interval, the 
maximum amplitude (maximum absolute value in that interval) was 
found. The average over these intervals is maxAmplAvg and the variance 
is maxAmplVar. This was also used in Winkler, Haufe, and Tangermann 
(2011). 

• (timeEntropyAvg and timeEntropyVar) In each one-second interval, the 
entropy was found. The average over these intervals is timeEntropyAvg 



and the variance is timeEntropyVar. This was also used in Winkler, Haufe, 
and Tangermann (2011). 
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