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Abstract

In this paper we apply a susceptible-infected-susceptible (SIS) epidemic model to analyse data dissemination in opportunistic

networks with heterogeneous setting of transmission parameters, as established in author’s previous paper ? . We obtained the esti-

mation of the final epidemic size assuming that amount of data transferred between network nodes possesses a Pareto distribution,

implying scale-free properties. In this context, more heterogeneity in susceptibility means the less severe epidemic progression,

and, on the contrary, more heterogeneity in infectivity leads to more severe epidemics — assuming that the other parameter (either

heterogeneity or susceptibility) stays fixed. The results are general enough to be useful for estimating the epidemic progression

with no significant acquired immunity — in the cases where Pareto distribution holds.
c© 2014 The Authors. Published by Elsevier B.V.
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1. Introduction

Investigating epidemic spreading in heterogeneous populations is a fairly hot topic today, as obtaining analytical

results in such models can be somewhat challenging. In 2012, Artem S. Novozhilov provided an analytical proof
? that for SIR (Susceptible-Infected-Recovered model) heterogeneity of susceptibility is inversely proportional to

epidemic spreading speed, and heterogeneity of infectivity is proportional to spreading speed, and derived a formula

for estimating the final epidemic size.

In 2013, Benjamin Morin had suggested that extending these results for SIS (Susceptible-Infected-Susceptible

model) is not feasible, as “the reentry into the susceptible class causes the distributed equations to be completely

unsolvable in any meaningful way”? . However, we were able to achieve this (for a specific, though common, distri-

bution), provided that either susceptibility or infectivity is fixed, and the other parameter remains heterogeneous.
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2. Constructing data dissemination model in the terms of epidemic theory for heterogeneous population

Let’s give a standard description of the data dissemination process in terms of the epidemic theory for heteroge-

neous populations.

Let s(t, ω1) and i(t, ω2) be the densities of the susceptible (e.g. willing to accept data) and infectious (transmitting

data) nodes respectively. The number of susceptible and infected nodes is described by the following function:

S (t) =
∫
Ω1

s(t, ω1)dω1,

I(t) =
∫
Ω2

i(t, ω2)dω2.

where Ω1 and Ω2 are the sets of values of parameter ω1, ω2.

For these two subsets the probability density functions (PDFs) are given by

p1(t, ω1) =
s(t, ω1)

S (t)
, p2(t, ω2) =

i(t, ω2)

I(t)
.

In general form the dynamics of such system is described by the following equations:

∂

∂t
s(t, ω1) = s(t, ω1) · F1(s(t, ω1), i(t, ω2)),

∂

∂t
i(t, ω2) = i(t, ω2) · F2(s(t, ω1), i(t, ω2)), (1)

where the initial conditions are

s(0, ω1) = S 0 p1(0, ω1), i(0, ω2) = I0 p2(0, ω2).

The functions F1 and F2 define the dynamics of interacting subgroups of susceptible and infectious users, which

depends on the time, parameters, densities of both users subsets and their sizes. The important fact is that these func-

tions cannot depend on the density functions explicitly, and have a special form. Applying the theory of heterogeneous

populations? , we assume that this form must satisfy some additional requirements. In particular, we assume that:

Fi(s(t, ω1), i(t, ω2)) = fi(S , I, ϕ1(t), ϕ2(t)) + ϕi(ωi)gi(S , I, ϕ1(t), ϕ2(t)), (2)

where ϕi, fi, gi are given functions,

ϕi(t) =
∫
ωi

ϕi(ωi)pi(t, ωi)dωi, i = 1, 2.

Integrating the first equation in (1) for ω1 and the second one for ω2, and using (2), we obtain the following system:

Ṡ = S · [ f1(S , I, ϕ1(t), ϕ2(t)) + ϕ1(t)g1(S , I, ϕ1(t), ϕ2(t))],

İ = I · [ f2(S , I, ϕ1(t), ϕ2(t)) + ϕ2(t)g2(S , I, ϕ1(t), ϕ2(t))]. (3)

Thus, the dynamics of this system depends only on the total size of I and S and ϕi(t) and can be obtained explicitly

if we know ϕi(t).
Let’s introduce auxiliary variables qi(t) as the solutions of the differential equations
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dqi(t)
dt
= gi(S , I, ϕ1(t), ϕ2(t)), i = 1, 2.

From the results of Karev and others? , the current means of ϕi(ωi) are determined by the formulae:

ϕi(t) =
dMi(0, λ)

dλ

∣∣∣∣∣
λ=qi(t)

1

Mi(0, qi(t))

and satisfy the conditions:

d
dt
ϕi(t) = gi(S , I, ϕ1(t), ϕ2(t))σ2

i (t),

where σ2
i (t), are the current variances, Mi(0, λ) are the moment generating functions (MGFs) of the initial distri-

butions of ϕi(t, ωi), i = 1, 2.

So, the analysis of infinite-dimensional model (1) is reduced to the analysis of ODE system (3) with small number

of dimensions, and we need to know just the MGFs of the initial distributions.

2.1. SIS model

Suppose now that susceptibility and infectivity are distributed heterogeneously. Let β1(ω1) be the transmission

parameter that encompasses the information on the probability of a successful contact and the contact rate for suscep-

tible users, β2(ω2) be the transmission parameter for infected users. Simplifying, we assume that the parameters of

the two those subgroups are independent, i.e.,

β(ω1, ω2) = β1(ω1)β2(ω2).

The number of non-infected users with the value of susceptibility ω1 infected by users with the infectivity value

ω2, is given by

β1(ω1)s(t, ω1)β2(ω2)i(t, ω2).

The total change in the infectious subpopulation with parameter value ω2 is

β2(ω2)i(t, ω2)

∫
Ω1

β1(ω1)s(t, ω1)dω1.

A similar equation can be obtained for the infected sub-population:

β1(ω1)s(t, ω1)

∫
Ω2

β2(ω2)i(t, ω2)dω2.

Combining the above assumptions we obtain the following SIS model for heterogeneous population:

∂

∂t
s(t, ω1) = −β1(ω1)s(t, ω1)

∫
Ω2

β2(ω2)i(t, ω2)dω2 + γi(t, ω2)

= −β1(ω1)s(t, ω1)β2(t)I(t) + γi(t, ω2),

∂

∂t
i(t, ω2) = −β2(ω2)i(t, ω2)

∫
Ω1

β1(ω1)s(t, ω1)dω1 − γi(t, ω1)

= β2(ω2)i(t, ω2)β1(t)S (t) − γi(t, ω1). (4)
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where

β1(t) =
∫
Ω1

β1(ω1)ps(t, ω1)dω1,

β2(t) =
∫
Ω2

β2(ω2)pi(t, ω2)dω2. (5)

The model should be supplemented with initial conditions

s(0, ω1) = S 0 ps(0, ω1), i(0, ω1) = I0 pi(0, ω2).

where ps(0, ω1), pi(0, ω2) are the PDFs in the initial time t = 0.

According to the mechanism of reduction mentioned above, we can change this infinite-dimensional system to the

equivalent ordinary system of differential equations:

Ṡ = −β1(t)β2(t)S I + γI,

İ = β1(t)β2(t)S I − γI,
q̇1(t) = −β2(t)I,

q̇2(t) = β1(t)S . (6)

where

βi(t) = ∂λ ln Mi(0, λ)|λ=qi(t). (7)

Mi(0, λ) are the MGFs in the time t = 0, i = 1, 2.

Theorem 1. Let S (1)(t), S (2)(t) be the solutions of (6) with the initial conditions that satisfy (σ(1)
1

)2(0) > (σ(2)
1

)2(0)

for the distributions of susceptibility, all other initial conditions being equal. Then there exists an ε > 0 such that

S 1(t) > S 2(t) for all t ∈ (0, ε).

Proof. Differentiating the first equation in the system (6) with fixed infectivity, we obtain

S̈ = −˙β1(t)β2(t)S I − β1(t)˙β2(t)S I − β1(t)β2(t)Ṡ I − β1(t)β2(t)S İ + γİ. (8)

At t = 0 we observe that
˙β1(0) is proportional to σ2

1(0) and all other summands are equal by assumption. Thus, at

the initial time moment, S̈ 1(0) > S̈ 2(0) which proves the first part. The second part is proved in a similar way.

This means that the more heterogeneous the susceptible hosts the less severe the disease progression (under the

condition of fixed infectivity) and the opposite proposition (if susceptibility is fixed) is true: the more heterogeneous

the infective class in infectivity, the more severe the disease progression.

2.2. Exact solution for SIS model

The system (6) could be represented as the nonlinear second order differential equation with variable coefficients:

İ = β(t)I
(
I − β(t)N − γ

β(t)

)
, (9)
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where β(t) = −β1(t)β2(t) for which (7) holds.

Let’s β(t)N − γ = α(t), then (9) could he rewritten as:

İ + α(t)I = β(t)I2, (10)

and we can see that this is the Bernoulli differential equation with known exact solutions.

Indeed, dividing all terms of the equation by I2, we obtain

İ I−2 + α(t)I−1 = β(t), (11)

Performing the substitution z(t) = I−1 and differentiating, we have

dz
dt
= −I−2 dI

dt
.

Then, the equation (11) can be reduced to the linear form:

dz
dt
− α(t)z = −β(t),

or, going back to the original notation,

dz
dt
= (γ − β1(t)β2(t)N)z + β1(t)β2(t). (12)

The differential equation (12) can be solved by Lagrange (continuous variation) method or by the method of

integrating factors. Thus, to find the exact solutions of the system (6), we only need to know the value of the functions

β1(t) and β2(t), that is the MGF of parameters susceptibility and infectivity.

In general form the solution of this equation can be found as:

I(t) =
exp
∫ t

1
(γ − β(φ)N)dφ

C − ∫ t
1
β(ε) exp

∫ ε
1

(γ − β(φ)N)dφdε
. (13)

In the case with the constant transmission coefficients all non-trivial solutions of the equation (9) tend to the

equilibrium I(t) = βN−γ
β

if t → +∞. But for the variable coefficients case this doesn’t hold. However, if the improper

integrals
∫ t

1
(γ − β(φ)N)dφ and

∫ t
1
β(ε) exp

∫ ε
1

(γ − β(φ)N)dφdε diverge when t → +∞, then all non-zero solutions tend

to the equilibrium.

2.3. On the final epidemic size with one distributed transmission parameter

Novozhilov’s Theorem 2.1 makes some assumptions on the existence of the MGFs for the initial distribution? .

In particular, Mi(0, λ) are the MGFs in the time t = 0, i = 1, 2, as long as the derivatives on the right hand side of

(7) exist. Dealing with distributions of more general nature, where MGFs exist only for some values of the parameter,

requires more care.

It’s clear that βi(t) ≥ 0, I ≥ 0, S ≥ 0. Thus, according to the last two equations of the above system, the quantities

q1(t) and q2(t) are monotonically decreasing resp. increasing. The initial values vanish: q1(0) = q2(0) = 0; thus

q1(t) ≤ 0, q2(t) ≥ 0 for all t ≥ 0.

This allows us to prove the following:
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Theorem 1. Let β2 is a constant and the initial distribution of β1 be a distribution with the moment generating function
M(λ), λ ≤ 0, such that H(λ) = ∂λ ln M(λ) has finite limits for λ↗ 0 and λ→ −∞.

Suppose that there is a limit
I∞ = lim

t→+∞ I(t) � 0.

Then the following equation holds:
β2χS∞ = γ,

where χ = lim
λ→∞H(λ).

An example of a probability distribution with these properties is Pareto distribution with starting value ξ and degree

α > 1. The MGF of the Pareto distribution exists only for λ ≤ 0 and is equal to

M(λ) = α(−ξλ)αΓ(−α,−ξλ), λ < 0,

extended by continuity to λ = 0.

We obtain

H(λ) = ∂λ ln M(λ) = −α
λ
+
ξeξλ(−ξλ)−α−1

Γ(−α,−ξλ) ,
which has a finite limit

ξα

α − 1

as λ↗ 0 and a finite limit ξ as λ→ −∞.

Proof. The system of ODEs (6) can be derived by repeating the Novozhilov’s proof of Theorem 1? , using the fact

that q1(t) ≤ 0 for all t ≥ 0 and extending H(λ) by continuity to λ = 0 if needed.

Just as in Theorem 4? , we use the first integrals of the system to obtain the final epidemic size. Indeed, from the

second equation we obtain
d
dt

ln I = β2q̇2 − γ,
thus

I
I0

= eβ2q2(t)−γt.

From this we immediately get

q̇1 = −β2I0eβ2q2(t)−γt,

q̇2 = H(q1(t))(N − I0eβ2q2(t)−γt).

Suppose now there is a limit

I∞ = lim
t→+∞ I(t) � 0.

Then, using that H(λ)→ χ, λ→ −∞, we get

q̇2(t)→ N − I∞ = S∞χ.

On the other hand, β2q2(t) − γt and its derivative both have finite limits, and therefore the limit of the derivative is

equal to 0:

β2χS∞ = γ.
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