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Abstract

Background: Development of novel antibacterial drugs is both an urgent healthcare necessity and a partially
neglected field. The last decades have seen a substantial decrease in the discovery of novel antibiotics, which
combined with the recent thrive of multi-drug-resistant pathogens have generated a scenario of general concern. The
procedures involved in the discovery and development of novel antibiotics are economically challenging, time
consuming and lack any warranty of success. Furthermore, the return-on-investment for an antibacterial drug is
usually marginal when compared to other therapeutics, which in part explains the decrease of private investment.

Results: In this work we present antibacTR, a computational pipeline designed to aid researchers in the selection of
potential drug targets, one of the initial steps in antibacterial-drug discovery. The approach was designed and
implemented as part of two publicly funded initiatives aimed at discovering novel antibacterial targets, mechanisms
and drugs for a priority list of Gram-negative pathogens: Acinetobacter baumannii, Escherichia coli, Helicobacter pylori,
Pseudomonas aeruginosa and Stenotrophomonasmaltophilia. However, at present this list has been extended to cover
a total of 74 fully sequenced Gram-negative pathogens. antibacTR is based on sequence comparisons and queries to
multiple databases (e.g. gene essentiality, virulence factors) to rank proteins according to their potential as
antibacterial targets. The dynamic ranking of potential drug targets can easily be executed, customized and accessed
by the user through a web interface which also integrates computational analyses performed in-house and
visualizable on-site. These include three-dimensional modeling of protein structures and prediction of active sites
among other functionally relevant ligand-binding sites.

Conclusions: Given its versatility and ease-of-use at integrating both experimental annotation and computational
analyses, antibacTR may effectively assist microbiologists, medicinal-chemists and other researchers working in the
field of antibacterial drug-discovery. The public web-interface for antibacTR is available at ‘http://bioinf.uab.cat/
antibactr’.
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Background
Since their initial discovery and application during the
early 20th century, antibiotics have been playing a key role
in public health worldwide. These ‘miracle drugs’ have
contributed significantly to the increase in life expectancy
since the end of World War II. Besides curing infec-
tions, they also prevent amputations and blindness and
are involved in multiple healthcare procedures such as
joint-replacement, surgery, new cancer treatments, etc
[1]. However, after peaking during the 1960’s, the dis-
covery of new antibiotics has fallen off dramatically. The
present scarcity of novel antibiotics becomes a major
health concern in light of the remarkable ability of bacte-
ria to rapidly evolve resistance mechanisms which erode
the therapeutic effect of known antibiotics [2]. Nowa-
days multi-drug-resistant bacterial infections are increas-
ing in both developing and developed countries and in
both community and nosocomial settings [3]. It has been
reported that a number of pathogens, including Staphylo-
coccus aureus,Mycobacterium tuberculosis, Pseudomonas
aeruginosa, Acinetobacter baumannii and some Enter-
obacteriaceae have developed resistance to a wide range
of antimicrobial agents at an alarming rise, with some
strains becoming truly pan-resistant [4,5]. However, phar-
maceutical companies have not been investing in the
development of new antibacterial drugs with correspond-
ing efforts, mainly due to economic criteria that favour
other therapeutic areas with better return-on-investment
ratios [6,7]. The few antibacterial agents that have been
launched during the last decade (e.g. linezolid, dapto-
mycin) have a good activity against Gram-positive bac-
teria such as methicillin-resistant S. aureus (MRSA) and
vancomycin-resistant enterococci [8]. However, cases of
resistance for these new Gram-positive antibiotics have
been reported recently as well [9].
The situation is worse for Gram-negative bacteria, such

as P. aeruginosa and A. baumannii, which are common
among nosocomial infections [10] and for which no new
antibiotics have reached advanced stages of development
[1]. In addition, with the increase in the prevalence of
extended spectrum β-lactamase (ESBL)-producing Enter-
obacteriaceae, the use of carbapenems, a potential alter-
native to treat infections caused by these microorganisms,
is leading to the emergence of multi-drug-resistant Enter-
obacteriaceae including resistance to carbapenems [11].
This scenario emphasizes the relevance of initiatives

focused on the discovery of novel targets and antibacte-
rials for combating Gram-negative pathogens. Here, we
describe a tool (antibacTR: antibacterial Target Rank-
ing) to support the initial stages of selection of potential
antibacterial-drug targets, developed within the context of
two such initiatives. antibacTR integrates a database with
a pipeline that ranks and filters proteins according to a set
of criteria commonly associated to antibacterial targets.

The approach is based on protein sequence comparisons,
for which we developed an unbiasedmeasure described in
the Methods Section.
The interface used to interrogate the database and

access the results has the form of a web-based tool,
which has been developed following the suggestions of
the experimentalists involved in the two target-discovery
initiatives. It includes access to thousands of three-
dimensional protein-structure models that can be visu-
alized and downloaded for further analysis through the
web-interface. To further exploit the structural models, we
incorporated a predictive approach that evaluates puta-
tive ligand-binding pockets in terms of their potential to
affect protein function upon ligand binding [12,13]. Links
to DrugBank [14] and the Virulence Factors DataBase
(VFDB) [15], as well as predictions of active-site residues
are provided as well. It should be noted that the final
aim of the tool is both to rank proteins according to the
chosen set of criteria (with weights defined by the user)
and to provide for each protein in the ranked list infor-
mation that could be relevant to antibacterial-drug-target
selection. Clearly, the drug-target property is the result
of a complex combination of a variable number of non-
universal factors, some of which having opposite sign for
different types of targets or mechanisms. Thus, this is
a tool to support target discovery efforts, not a target-
prediction tool. In other words, it will not spare the user
from scanning and evaluating a large number of proteins,
it will simply provide him/her with additional means to
do it.
All measurements and predictions are pre-computed,

which allows the application to return full rankings and
links to the relevant information within seconds. This
characteristic distinguishes our tool from similar ones
such as the UniDrug-Target (UDT) database, which can
be used to perform comparative analyses online with
computation at time of request [16]. Besides execution
speed, our approach differs from UDT and related ones
such as the Prokaryotic-genome Analysis Tool (PGAT)
[17] in its focus. While these tools succeed at providing
comparative-analysis means that can be used through a
web-interface, our dynamic approach focuses on speed,
ease of use and an integrative solution that allows the user
to quickly scan putative antibacterial targets and relevant
information such as three-dimensional structural models
and other predictions, while the comparative analysis is
just one of the underlying features.
Other researchers have focused on extensive, manu-

ally curated analyses of a single organism and strain, like
Shanmugham and Pan [18] on Mycobacterium abscessus
ATCC 19977. Instead, we have chosen to sacrifice part of
the depth of our analysis to cover a much larger selec-
tion of pathogens. The methodology presented here was
originally developed for two specific projects and their
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target bacteria, including three of the big four Gram-
negative pathogens in relation to systemic infections,
i.e. Escherichia coli, Klebsiella pneumoniae, Acinetobac-
ter baumannii and Pseudomonas aeruginosa [4]. However,
we have now expanded the coverage to include 74 Gram-
negative pathogens, which should make the system useful
to many more researchers in the field. Through this arti-
cle, we describe the approach and make the web-based
tool publicly available.

Results
Computational target-ranking pipeline
Typically, one of the first steps in a target-discovery
project is to readily select, among thousands of pro-
teins composing the pathogens’ proteomes, those with the
highest chance of becoming useful therapeutic targets.
Following the lines defined by previous studies [19], we
developed an algorithm to score and rank potential drug
targets in pathogenic organisms by evaluating a modular
set of criteria that are commonplace in antimicrobial-
development efforts [7]: 1) the presence of the protein
in different pathogens, 2) evolutionary conservation, 3)
essentiality, 4) presence of isoforms and paralogs in the
proteome, 5) similarity to human proteins. We imple-
mented a set of five weighted scores that cover these
criteria and defined a scoring function combining them.
The first two concepts were incorporated as two inde-

pendent scores, measuring the conservation of the protein
among Gram-negative organisms and among different
strains of the same species, respectively. Conservation
among strains is a basic requirement for target considera-
tion. Conservation amongGram-negative species is highly
desirable as it enables the development of broad-spectrum
solutions and increases economic viability. In addition,
well conserved targets will presumably have low toler-
ance to mutations, decreasing the chance of resistance to
emerge by this type of mechanism.
Essential proteins, which inhibition compromises bac-

terial viability, are potential antibacterial targets by defi-
nition. We implemented a binary score by marking genes
known to be essential from previous experimental work
[20].
The remaining two scores are given negative weights.

If the protein under consideration has isoforms and/or
paralogs the pathogen may readily develop resistance by
functional substitution, and the effect of the antibac-
terial may be also reduced by competitive binding to
non-essential forms. We considered similarity to human
proteins negative as well, since close human homologs
to the target may interact with the drug, giving rise to
unwanted side-effects.
The scoring and ranking scheme, partially following

the work of White and Kell [19] provides an advantage
when compared to static selection or filtering approaches

[16,21]. In our case, if further experimental analysis
reveals that a given protein is not suitable as a drug target,
work can continue with the next protein in the ranking.
Moreover, it would be straightforward to incorporate new
criteria into the ranking scheme if needed.
The pipeline to which each proteome of interest was

subjected is illustrated in Figure 1, which summarizes the
approach.

Sequence-based analysis
Currently, the database covers 74 Gram-negative
pathogens, including 224 distinct strains. In the case of
Acinetobacter baumannii, Escherichia coli, Helicobacter
pylori, Pseudomonas aeruginosa and Stenotrophomonas
maltophilia, which are pathogens distinguished by their
prevalence in community and/or nosocomial infections
and the incidence of drug-resistant isolates [3,10], we
included all available fully sequenced strains (82 strains,
which conform a ‘priority set’). As for the rest of the
species, we included all strains that were marked as
‘human pathogens’ in HAMAP (142 strains) [22]. This
query data set was compared against the human proteome
and a reference set of 770 Gram-negative proteomes (494
distinct species), by means of the BLASTPGP program
[23] using default parameters. BLASTPGP searches are
very fast, however resulting E-values depend on the align-
ment itself and on other parameters such as the size of the
database scanned. We needed unbiased similarity scores
between proteins matched during the sequence-based
search to keep results valid in case of further increasing
the size of the data sets. To attain this objective, we fur-
ther aligned BLASTPGP matches (E-value <= 0.0001)
using the Smith-Waterman algorithm and calculated
‘normalized sequence similarity scores’ (NS). NS values
were then used to pre-compute toxicity, presence of iso-
forms or paralogs and the two conservation scores for
each protein in the query data set, as described in further
detail in the Methods Section.

Queries to external databases
Besides comparative analysis, a round of database queries
was also performed to integrate additional information.
Thus, protein sequences were compared to the list of
known drug-targets available at the DrugBank database
[14] and sequence-based searches were also performed
against virulence factors available at the Virulence Factors
DataBase (VFDB) [15]. Out of the total 777,585 proteins
in the query data set, 375,016 matched a known target in
DrugBank (48%) and 193,135 proteins matched a known
virulence factor at VFDB (25%). This information was not
incorporated as ranking scores, but it is available through
the web-interface described below for researchers to eval-
uate themselves the relevance of such matches in each
particular case.
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Figure 1 Pipeline flowchart. Each proteome of interest was subjected to the computational pipeline depicted in the flowchart. Each protein
sequence is compared using BLASTPGP against: (1) the human proteome to look for similarities that could lead to toxicity, (2) other Gram-negative
bacteria to estimate the evolutionary conservation, (3) its own proteome to find isoforms and paralogs that could reduce effectivity and promote
resistance, (4) the database of essential genes (DEG). The results of these queries are combined into a scoring function as described in the main text.
To integrate further relevant information, protein sequences are also queried against known drug targets (DrugBank) and virulence factors (VFDB). In
a complementary manner, active sites are predicted as well and, if proper structural templates are found, the protein structure is modeled by
homology. If the structure is modeled successfully, ligand-binding sites are predicted and analyzed as described in the main text. The pipeline’s
output is a ranked list of the organism’s proteins based on the comparative genomics analysis (i.e. essentiality, evolutionary conservation, toxicity
and paralogs scores) with links to external databases (VFDB and DrugBank) and when possible, to the corresponding structural modeling and
analysis results.

Three-dimensional homologymodeling
Researchers evaluating prospective drug targets may
benefit from the availability of protein structural data.
For the organisms in the priority set, we performed a
large-scale homology modeling of all protein sequences
for which we found valid structural templates as explained
in the Methods Section. In total, we generated three-
dimensional homology models for 136,141 proteins (cov-
ering 47% of the priority set). This number was obtained
after discardingmodels presenting less than 30% sequence
identity (target-template) or G-factors below -1.00 [24].
All models were generated by means of the MODELLER
program [25] using default parameters.
To save computational power, proteins belonging to

other strains were not modeled automatically. However, if
the user is interested in obtaining one of such homology
models, we have implemented an option at the web-
interface for automatic submission of the selected model-
ing task.

Active-site prediction
To further add relevant information on putative targets,
we applied a sequence-based approach [26] to predict
the location of active-site residues. The method is based
on comparing query sequences to homologs for which

the position of the active site has been annotated. After
analyzing the whole query set (777,585 proteins), this pro-
cedure predicted the location of active-site residues for
90,482 proteins (11.6%).
Proteins with a predicted active site display a link to the

details of the prediction in the web interface described
below.

Pocket analysis
For proteins for which we could build a three-dimensional
homology model, we predicted the location of ligand-
binding sites on the structure using LIGSITEcs [27].
We further analyzed the ligand-binding sites using two
previously developed methodologies which estimate the
regulatory potential of particular ligand-binding pockets.
When possible, the structural conservation of predicted
pockets was measured considering the evolutionary
record of the protein family, given that conserved pock-
ets may have a relevant biological role [12]. Furthermore,
using Normal Mode Analysis we estimated the effect of
ligand binding on overall protein flexibility, a measure
which has been used in combination with structural con-
servation to predict the location of allosteric sites [13].
As described below, the user can visualize the protein
structure and predictions online.
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Interface and access to results
Interactive access to results is available through the web-
interface at ‘http://bioinf.uab.cat/antibactr’.
This interface allows the user to select the organisms

and strain of interest, set custom weights to the different
scores and then proceed to calculate the corresponding
ranking. If the user wishes to ignore a specific ranking
parameter, a weight of 0 (zero) can be applied. The system
has been built in such a way that normalization of scores
is performed only among the selected set of strains and
parameters. To further facilitate the analysis of results, the
user may also limit the amount of top-ranked entries that
are displayed. Once the ranking procedure is finished (it
takes a few seconds), the ranking is printed to the browser.
An option is available for downloading the ranking to the
local computer in tab-delimited text format, useful for
researchers interested in further processing the data. Tar-
gets are displayed in ranked order and individual scores
are shown for each protein after normalization but prior
to weighting. A brief description of the biological function
is displayed for each protein but, to facilitate immediate
access to full annotation and other relevant data, a link
to the related Uniprot entry is provided as well [28]. In
cases where the target shows sequence similarity to an
already known drug target or virulence factor, the cor-
responding links are also provided. In addition, specific
links with details on predicted active sites and homol-
ogy models are given. If a homology model is supplied,
the user may download model coordinates in PDB for-
mat and target-template alignments generated during the
modeling process, along with sequence identity, DOPE
score and other relevant modeling data [25]. Furthermore,
available protein structures can be visualized using Jmol
(http://www.jmol.org) along with the results of the pocket
analysis previously described [13].

User query sequences
Besides the ranking of complete proteomes, researchers
may want to look at the ranking of a few selected proteins
of their particular interest. To achieve this functionality,
we added the possibility to include the user’s own query
sequences in an optional field. These sequences are then
compared using BLASTPGP against our query data set
(224 strains). Scoring and ranking proceed as normally,
but results are then displayed only for significant hits
within our data set. Details of this BLASTPGP search are
also available to the user.

Discussion
Large-scale comparison of organisms at the genome level
is a technique common to many fields of biology and
medicine. In the past years complex approaches involv-
ing phylogenetic and metabolic studies have been pub-
lished [29,30]. However, comparative genomics initiatives

in drug discovery have been criticized for their limited
success in finding new active compounds [31,32]. Yet,
comparative genomics and proteomics continue to shed
light on the workings of bacterial drug-resistance and
virulence [33,34].
Far from attempting to solve the problem of tar-

get identification in one strike, our motivation was to
implement a straightforward computational approach
that would prove useful as an initial filtering and rank-
ing step, aiding researchers in the quest for novel drug
targets.
At the time of this writing no equivalent tool to the one

presented here is available, however a few servers provide
slightly related functionalities and could be used in a com-
plementary fashion. For example the Prokaryotic-genome
Analysis Tool (PGAT), developed by Brittnacher and col-
laborators is a general comparative genomics tool focused
particularly on comparing different strains of the same
species [17]. PGAT allows the user to carry out a series
of interesting analyses including information onmetabolic
pathways, but it does not provide specific drug-target
related information, unlike the UniDrug-Target (UDT)
database which clearly focuses on that aspect [16]. The
latter presents candidate targets as proteins which are
present in pathogenic bacteria but absent in commen-
sal strains. This is a reasonable approach which in our
tool can be achieved by setting a negative value for the
strain conservation score and it is also one of the functions
available at PGAT. However, given its focus on pathogen-
specific proteins UDT’s approach tends to discard evo-
lutionary conserved proteins, such as many well known
broad-spectrum targets [35].
The amount of well known and characterized protein

drug targets is currently in the order of hundreds [35].
To illustrate the potential of the tool presented here,
we provide a few examples of already known antibac-
terial targets. Certain proteins involved in the replica-
tion of DNA are targeted by fluoroquinolones [35,36].
For example, Ciprofloxacin targets DNA topoisomerase 4
subunit B and DNA gyrase subunit A. Even though resis-
tance to fluoroquinolones has been observed in pathogens
with mutations in these proteins, new compounds with
antibacterial activity on the resistant strains are being
developed by studying these targets [37]. These pro-
teins appear on the top 3% of the full proteome ranking
for Escherichia coli K12 (positions 68 and 158, respec-
tively) when we build the ranking using default param-
eters. This is because both proteins are essential, show
high levels of evolutionary conservation but low similar-
ity to human proteins (minimal potential toxicity) and
present no isoforms or paralogs according to our pipeline
parameters.
Beyond filtering and ranking targets, researchers can

also gain insight into potential targets through the

http://bioinf.uab.cat/antibactr
http://www.jmol.org
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structural analysis methods we have implemented into
the tool. For example, peptide deformylase [Swiss-
Prot:Q9I7A8] from Pseudomonas aeruginosa is an essen-
tial protein targeted by the antibiotic Actinonin [38]. This
protein is ranked at position 81 among the complete
Pseudomonas aeruginosa proteome (top 2%) when using
default parameters. Our pipeline automatically builds
three-dimensional homology models when possible, it
then predicts putative ligand-binding sites and evaluates
their potential to regulate protein activity as described
previously [13]. In this case, the structural analysis (which
is pre-calculated and available through the web-interface)
predicts one of the putative ligand-binding sites to signifi-
cantly affect protein flexibility as shown in Figure 2.When
we superimpose the automatically generated homology
model with the known structure of the protein bound
to the antibiotic ([PDB:1LRY] RMSD 0.5) the position
of the cavity predicted to be significant matches pre-
cisely the location of the antibiotic molecule. This cavity
is also considered relevant from an evolutionary perspec-
tive, as it shows 100% of structural conservation within its
domain family according to the corresponding automatic
analysis [12]. The structural conservation of this pocket
was to be expected, since it is the protein’s active site.

Figure 2 Peptide deformylase, automatic structural modeling
and pocket analysis. The spheres displayed on the homology model
of Pseudomonas aeruginosa peptide deformylase [Swiss-Prot:Q9I7A8]
(based on template [PDB:1N5N]) represent putative ligand-binding
sites as predicted by the automatic pocket analysis. The orange
sphere marks the only cavity predicted to significantly affect overall
protein flexibility. To illustrate the relevance of this prediction, we
show the location of the antibiotic ligand (in ‘sticks’ representation)
after superimposing the homology model to the known structure of
the antibiotic-bound protein [PDB:1LRY] (RMSD 0.5 Å). The position of
antibiotic Actinonin matches precisely the cavity marked by the
procedure. The same cavity is also estimated to be very well
conserved at the structural level (100% presence in the protein family).

Briefly, this case illustrates how in the situation of a poorly
characterized protein, our automatic structural analysis
may pinpoint not only the potential of the protein as a
drug target, but the precise location of the drug-binding
pocket.
Another interesting example is 3-oxoacyl-[acyl-carrier-

protein] synthase III, which is involved in fatty-acid
synthesis. This protein is targeted by Cerulenin, with anti-
fungal effects, and it is a potential antibacterial target as
well [39-41]. It is ranked by our pipeline at position 49
(top 2%) among the full proteome of Escherichia coli K12
because it is essential and well conserved, showing in prin-
ciple no toxicity (similarity to human proteins). Further-
more, structural analysis reveals one single pocket that
could affect the protein’s function by perturbing its over-
all flexibility, as shown in Figure 3. When we evaluate the
structural prediction performed on the homology model
by superimposing the known structure of the inhibitor-
bound protein, we observe that in this case the match of
the cavity’s geometric center is not as precise as in the
previous example of peptide deformylase. Nevertheless,
visual inspection shows that the large cavity indicated by
the pocket structural analysis is indeed occupied by the

Figure 3 Automatic structural modeling and pocket analysis
of 3-oxoacyl-[acyl-carrier-protein] synthase 3. The spheres
displayed on Escherichia coli’s 3-oxoacyl-[acyl-carrier-protein]
synthase 3 [Swiss-Prot:P0A6R0] homology model (based on template
[PDB:1UB7]) represent putative ligand-binding sites as predicted by
the automatic pocket analysis. The orange sphere marks the only
cavity predicted to significantly affect overall protein flexibility. This
predicted position occupies the same cavity and is very close (4.1 Å)
to the known inhibitor molecule (in ‘sticks’ representation) after
superimposing the homology model to the known structure of the
inhibitor-bound protein [PDB:1MZS] (RMSD 1.1 Å). This shows how
automatic homology modeling and pocket analysis are combined to
correctly identify a regulatory cavity.
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inhibitor, so that the automatic procedure would again
be pointing the researcher in the right direction, even
if no inhibition information would have been available
a priori.
Of course, multiple other factors beyond the reach

of a mere computational approach participate in defin-
ing a protein as a good antibacterial target. Indeed the
final outcome of clinical trials can hardly be predicted
[31]. However, we considered relevant to infer how well
the pipeline presented in this work ranks already known
targets. We gathered all known targets of ‘approved’
drugs, as annotated in DrugBank [14], that belonged to
any of the strains analyzed in this work. We found a
total of 57 proteins identified through their Uniprot ID
[28]. Of those 57, a majority (48) belong to Escherichia
coli K12. When we proceed to rank this organism’s pro-
teome, half of the known drug targets appear at the top
10% of the ranking. The distribution of the 48 known tar-
gets in the ranking of Escherichia coli K12 is displayed
in Figure 4. It is interesting to note that the first half or
top 10% correspond to essential proteins. Since essential-
ity is a binary score (i.e. genes may be essential or not),
it divides the ranking in two sections as can be seen in
the histogram (Figure 4). This illustrates the difficulty of
a priori ranking antibacterial targets, since even though
essentiality is considered a very desirable property for any
candidate target [32,42,43], it only represents half of the
known targets in this organism. Moreover, assessing gene
essentiality is not a trivial task, given that in vitro results
do not always correlate with gene essentiality determined
in vivo [43].

Figure 4 Ranks distribution for known antibacterial targets. The
histogram displays the distribution of ranks for 48 DrugBank known
targets in Escherichia coli strain K12 within the complete proteome
ranking using default parameters. Target proteins known to be
essential according to DEG appear at higher ranking positions (solid
black), while non-essential proteins appear further down in the
ranking (hatch pattern).

Because the function that would unequivocally assign
target scores to proteins is highly complex and full
of unknowns, the pipeline presented here has been
developed with the sole aim to assist the selection of
prospective candidates, it is not meant to provide a final
or complete list of antibacterial targets. Very often, it
will not be used as a ranking tool but to retrieve target-
relevant information for a specific protein and evaluate
its pros and cons with respect to other potential candi-
dates. The versatility of the tool, with dynamic features
such as the assignation of relative weights at the user’s cri-
terion, and the availability of original information, such
as predicted, functionally relevant ligand-binding sites,
may prove valuable arguments for the microbiologist
or medicinal chemist researching on new antibacterial
targets.

Conclusions
We have developed a database and web-based tool for the
ranking of proteins from a set of user-selected bacterial
proteomes according to a series of antibacterial-drug-
target-like properties. Specifically, the tool evaluates (1)
the presence of the protein in other Gram-negative species
(currently 494) to assess conservation at this level and,
by extension, the potential spectrum of a drug targetting
this protein, (2) the identification of the protein as essen-
tial for bacterial survival or growth, (3) the presence of
homologs in the human genome to assess potential tox-
icity or side effects of a drug targetting this protein and
(4) the presence of paralogs or isoforms of the protein in
the same proteome, which could facilitate the develop-
ment of resistance and reduce effectivity. The user may
choose the weight of each of these four properties in
the ranking, including negative weights (e.g. for homol-
ogy to human and presence of isoforms or paralogs).
When available, the ranked proteins incorporate, as addi-
tional information, any found matches to proteins in the
DrugBank (i.e. known drug targets) and the Virulence
Factors Database (VFDB), as well as a model of the pro-
tein’s three-dimensional structure and an analysis of active
and regulatory sites to assess druggability of the poten-
tial target. This is currently the single resource combining
sequence-based and structural information for the identi-
fication of potential antibacterial-drug targets in multiple
genomes.
Currently, the database covers 74 Gram-negative

pathogens, including 224 distinct strains. The num-
ber of strains is particularly extended for Acinetobacter
baumannii, Escherichia coli, Helicobacter pylori, Pseu-
domonas aeruginosa and Stenotrophomonas maltophilia
(82 strains in total), which are found among a group
of Gram-negative pathogens distinguished by prevalence
in either community or nosocomial infections and inci-
dence of drug-resistant isolates. Additional strains and
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species will be added to the database in subsequent
updates.

Methods
Normalized sequence-similarity score (NS)
We used the BLASTPGP program [23] with default pa-
rameters to scan complete proteomes. Since BLASTPGP
E-values may vary depending on the size of the queried
database, we aligned all matched pairs and calculated their
Smith-Waterman similarity score [44]. We ignored align-
ments with scores lower than 100, as previously described
[45].
Given that the Smith-Waterman similarity score is

related to the size of the alignment, we divided the score
by the length of the alignment to obtain a normalized
sequence-similarity score (NS). The Smith-Waterman
algorithm computes an optimal local alignment, meaning
that the NS measure of similarity between two proteins
is equivalent to the similarity between their most closely
related pair of domains or regions.

Essentiality
Experimental information regarding gene essentiality is
available for a few organisms at the database of essential
genes (DEG) [20]. If a particular strain was not avail-
able at DEG, we mapped query proteins to essential
genes by using BLASTPGP. For each annotated essen-
tial gene in a related strain, we scanned the proteome
of interest and marked the best hit as an essential
gene. Only E-values of 1e-10 or better were considered
acceptable for this task. At the time of this writing, we
were only able to gather large-scale essential gene infor-
mation for: Acinetobacter baumannii, Escherichia coli,
Helicobacter pylori, Pseudomonas aeruginosa and Vibrio
cholerae.

Toxicity
An antibacterial drug acting on protein targets which are
similar to human proteins may also bind these causing
adverse effects and/or toxicity. We estimated the potential
toxicity of each putative target proportional to the largest
NS value obtained after pairwise alignment against the
whole human proteome.

Isoforms and paralogs
If a given drug target presents multiple isoforms or par-
alogs (‘variants’), the pathogen may readily develop resis-
tance by functional substitution mechanisms. It is also
possible that the drug may bind both the target and its
variants, thus decreasing the antibiotic effect. To assess
this parameter for each potential drug target, we counted
the amount of variants present in the same proteome. We
considered as variants of a protein all similar proteins with
a NS value equal or larger than 2.

Evolutionary conservation among Gram-negative
organisms
We defined a score to estimate the evolutionary con-
servation of potential targets across Gram-negative (GN)
organisms as follows:

GNCp =
i=n−1∑

i=1
max(NSp) (1)

Where GNCp is the Gram-negative conservation score
for protein p, computed by adding the highest NS value
(max(NSp)) obtained against each of the different GN
species (i) in the data set, with n being the total number of
GN species.

Conservation among strains
We estimated the evolutionary conservation of proteins
among different strains of the same species using the
following score:

SCp =
∑j=m−1

j=1 max(NSp)
m

(2)

where SCp is the strain conservation score for protein
p, computed by adding the highest NS value (max(NSp))
obtained against each other strain ( j) of the selected
species in the data set, withm the total number of distinct
strains of the particular species.

Scoring function and ranking of potential drug targets
Each of the different scores is normalized by the largest
value obtained across the selected organisms. Normalized
values are then multiplied by 100 to obtain percentages,
i.e. final scores range between 0 and 100.
Each independent score has an associated weight, which

can be negative or positive. These weighting values can
be set by the user. However, default values are provided
as follows. A priori negative features of a putative target
(i.e. Toxicity and Paralogs) are given a default weight of -
1, while positive features (e.g. Evolutionary conservation,
Essentiality) have a corresponding default weight of 1.
For each protein in the selected data set, normalized

scores are multiplied by their respective weights. The final
score for each protein is obtained by summing up all
weighted scores. Finally, all proteins in the selected data
set are ranked according to their final score in terms of
drug-target potential.

Comparative-genomics reference data set
Sequence data on Gram-negative (GN) organisms was
gathered for a total of 770 fully sequenced GN pro-
teomes covering 494 distinct species. GN bacteria species
were identified at ‘http://www.bacterialphylogeny.com/
bacteria.html’ and fully sequenced bacterial proteomes
at ‘http://www.uniprot.org/taxonomy’ using the query

http://www.bacterialphylogeny.com/bacteria.html
http://www.bacterialphylogeny.com/bacteria.html
http://www.uniprot.org/taxonomy
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string: ‘bacteria AND complete:yes’. A total of 770
bacterial strains were common to both listings. We
downloaded sequence data from ‘ftp://ftp.expasy.org/
databases/complete_proteomes/fasta/bacteria/’.

Known drug targets and virulence factors
Each proteome of interest was compared by means of
the BLASTPGP program [23], with default parameters,
against known drug targets available at DrugBank [14] and
virulence factors available at VFDB [15]. Proteins showing
a match with a BLASTPGP E-value <= 1e-2 display a link
to the related hits in the output table.

Three-dimensional homologymodels
An automated homology-modeling pipeline was imple-
mented based on the program MODELLER v9.5 [25].
Briefly, for a given protein sequence the system scans
a database of structural templates. It then proceeds to
generate homology models using the best possible set of
diverse templates that display at least 30% sequence iden-
tity. Finally, the best resulting models are selected using a
combination of DOPE and GA341 scores [25].
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