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Michard et al. (this issue) commented on certain 
aspects of the Alpine metamorphism and structural 
evolution of the Rif belt (Morocco) that were briefly noted 
in Vázquez et al. (2013). In particular, they criticize our 
interpretation of an extensional setting during the main 
metamorphic recrystallization of the Tanger-Ketama Unit 
that we considered related to slaty cleavage (S1) parallel to 
the lithological layering generated during the Cretaceous. 
Michard et al. (this issue) interpret the S1 syn-metamorphic 
foliation as being related to compressional folds, and the 
peak metamorphism temperatures, in the Lower Cretaceous 
sediments, as ranging between 200–300°C. Therefore, they 

conclude that recrystallization of the Ketama Unit occurred 
during Miocene thrust nappe tectonics. We explain our 
view in the following sections.

Compressional versus extensional metamorphism

The S1 slaty cleavage defined by illite and chlorite 
growth described by Vázquez et al. (2013, see their fig. 
3) is systematically parallel to the S0 bedding. We do 
not discuss the existence of a sub-horizontal cleavage 
related to reclined folds and associated with minor folds 
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in the appropriate lithologies that can be interpreted as 
compressional (Michard et al., this issue), we note only 
that this is a later crenulation cleavage (S2) superimposed 
on the previous S1 foliation.

Criticism by Michard et al. (this issue) on the 
compressional versus extensional character of the 
metamorphism is also based on their interpretation of 
the metamorphic conditions reached by the metapelitic 
sequence. They dismissed the change in grade classification 
proposed by Vázquez et al. (2013) as it “seems to result 
merely from a change in the laboratory protocol for 
measuring the cristallinity index (CI)”. However, illite 
crystallinity values need a standard calibration (Kisch, 
1991; Warr and Rice, 1994) that had not been carried out 
in the previous studies cited by Michard et al. (this issue). 
The calibrated illite crystallinity values (KI) indicate 
diagenetic to anchizonal conditions for the metamorphism 
of the Ketama Unit (Vázquez et al., 2013). In any case, 
such a change of scale (due to the necessity of proper KI 
calibration), is not critical at all for the conclusions reached 
by Vazquez et al. (2013) because they are not based on the 
absolute KI value, but on its geological distribution (see 
fig. 1 from the replay and fig. 5 in Vazquez et al., 2013).

According to the estimates of Merriman and Frey 
(1999) the transition from late diagenesis to low anchizone 
occurs at ~200ºC in a normal gradient (25–30ºC/km), 
whereas the same transition occurs at 230 ± 10ºC in low 
geothermal gradients (Potel et al., 2006). As pointed out 
by Michard et al. (this issue), zircon fission track (ZFT) 
results in these rocks indicate that the Tanger-Ketama Unit 
never surpassed temperatures of the total fission-track 
annealing (Azdimousa et al., 1998, 2003). Field-based 
studies yielded effective closure temperatures in zircons 
ranging between 210–240°C depending on the cooling rate 
(Zaun and Wagner, 1985; Hurford, 1986; Brandon et al., 
1998). Higher effective closure temperatures in zircons, as 
indicated in the comment, are estimated only in laboratory 
studies (330–350°C, see Yamada et al., 1995).

Overall, illite crystallinity (IC) and ZFT indicate that 
the Tanger-Ketama Unit rocks did not surpass 240ºC. 
However, as mentioned above, the critical point is the 
distribution of the KI values, which cannot be explained 
in the model by Michard et al. (this issue). Michard et al. 
(this issue) propose that the metamorphic recrystallization 
of the Ketama Unit occurred within an accretionary wedge 
(formed by the thickened Intrarif domain) that was buried 
beneath the internally folded flysch nappes during the 
Miocene thrust nappe tectonics (Michard et al., this issue, 
and references therein), when the deepest part of the Ketama 
Unit reached about 10km in depth (Chalouan et al., 2001, 
2008). In the model by Michard et al. (this issue), the highest 
metamorphic conditions must have been attained at the base 

of the orogenic wedge that reached the greatest depths and 
decrease towards its upper parts. However, the IC values 
from Vázquez et al. (2013, their fig. 2) indicate that, at the 
base of the Tanger-Ketama Unit, both the Jurassic rocks and 
the Early Cretaceous rocks near the basal thrust underwent 
diagenetic conditions and that the temperature increased 
towards the central part of the outcrops (Fig. 1).

Another criticism by Michard et al. (this issue) is 
that peak temperatures of around 240ºC in the Lower 
Cretaceous sediments could not have been reached due 
to the stratigraphic thickness of the Cretaceous series 
of the Tanger-Ketama Unit, which ranges from 1.5km 
(Andrieux, 1971) to 2.5km (Lespinasse, 1975; Frizon de 
Lamotte, 1985; Chalouan et al., 2008), implying very high 
geothermal gradients. Chalouan et al. (2008) present the 
lithological column of the Tanger-Ketama Unit with just 
1.5km minimum thickness only for the Lower Cretaceous 
sediments, which are overlain by around 1km of Upper 
Cretaceous sediments. The Tanger-Ketama sequence ends 
up with the basal tectonic contact of the “Aknoul nappe, 
detached from the Ketama Unit on top of the Cenomanian 
under compacted clays” (Chalouan et al., 2008), thus 
increasing the minimum thickness of the Cretaceous series 
of the Tanger-Ketama Unit to a value of 3.5km or higher. 
Furthermore, Cretaceous extension most probably thinned 
the Jurassic sedimentary sequence based on data from 
Benzaggagh et al. (2013, their fig. 7) and Benzaggagh 
(in press) that indicate foliated metamorphic clasts of the 
Middle–Upper Jurassic formations within Berriasian–
Barremian breccias of the Subrif zone, thus proving the 
exhumation of ductile metamorphic clasts from the base of 
the sedimentary sequence during the Cretaceous.

Estimates of the geothermal gradients prevalent during 
the Cretaceous of rocks from the High Atlas to the Rif from 
Ghorbal et al. (2008) and Saddiqi et al. (2009) indicate a 
heating episode that expanded during most of the Late 
Cretaceous and lasted until the Eocene. This heating 
episode is usually modelled assuming subsidence of the 
area and a thermal gradient of 30°Ckm−1 but, as mentioned 
by these authors, the modelled subsidence is somewhat 
greater than the thickness of Upper Cretaceous to Eocene 
sediments in the area (see Ghorbal et al., 2008; Saddiqi 
et al., 2009), indicating higher thermal gradients for this 
event. It is important to note that, under these conditions, 
the rocks reached temperatures of 60–80ºC below 1km of 
sediments, which is compatible with temperatures of over 
200ºC below the 2.5–3.5km thick Cretaceous sediments of 
the Tanger-Ketama Unit.

What is more significant regarding the criticism by Michard 
et al. (this issue) about the distinction between extensional and 
compressional metamorphism is that they completely ignore 
the results obtained for the b parameter of micas. According 
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to all the basic literature that established the distinction criteria 
for the two kinds of geotectonic settings in very low-grade 
metamorphic rocks (Robinson and Bevins, 1989; Merriman 
and Frey, 1999; Merriman, 2005), the b parameter of mica is 
the clearest criterion for their distinction. This parameter is 
related to the phengitic content of micas (Guidotti et al., 1992) 
and is a classic measurement of the pressure at which micas 
formed (Massone and Schereyer, 1987). All the b parameters 
determined by Vazquez et al. (2013) are lower than 9.000Å 
(see Table 1 in Vazquez et al., 2013), that is, clear low-pressure 
(or high thermal gradient) conditions. All the literature about 
geotectonic settings in very low-grade metamorphic rocks 
specifies these b parameter values as one of the defining 
characteristics of extensional settings. 

GeoChronoloGiCal Data

Another main criticism in the Michard et al. (this issue) 
manuscript is their disapproval of the K-Ar radiometric 

ages measured on mica fractions of <2μ; for these authors, 
“this method is not reliable due to the low to very low 
metamorphic grade of the studied rocks, in contrast to the 
40Ar-39Ar method when documented with petrographic 
data (Negro et al., 2008)”. These authors are criticizing the 
standard methodology and they also forget to mention that no 
one plateau has ever been found in any of the samples dated 
by the 40Ar-39Ar method in the External Rif (see Monié et al., 
1984 and Negro et al., 2008) except for one biotite concentrate 
from a granodiorite with a 7.3±1.5Ma cooling age related 
to the Neogene volcanism in the Gourougou stratovolcano 
(Fig. 1) (Beni Ifrour granodiorite, Hernandez and Bellon, 
1985). Furthermore, an 40Ar-39Ar age spectrum from an 
amphibole concentrate in greenschists from the Temsamane 
units includes most of the steps forming a high-temperature 
component at an average of 132.4±13.3Ma, which is fitted 
by an isochron at 94.8±9.7Ma (Monié et al., 1984). The latter 
isochron is in agreement with the data from Azdimousa et al. 
(1998, 2003), and Monié et al. (1984) propose that it could 
correspond to an older metamorphic event.
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Correlations 

Michard et al. (this issue) claim that there was no 
metamorphic event coeval with the continental crust 
breakup and serpentinized peridotite during the Early 
Cretaceous exhumation described at the foot of the 
Galician margin. However, in fact, the whole Iberian 
Peninsula was affected by three large-scale thermal 
episodes during the Mesozoic: in the Late Triassic, Late 
Jurassic/Early Cretaceous, and Late Cretaceous (Tritlla 
and Solé, 1999; Juez-Larré and Ter Voorde, 2009). The 
second thermal episode ended around 130–120Ma and 
was recorded by different thermochronometers: apatite 
fission track, ZFT, 40Ar-39Ar, and K-Ar methods with 
closure temperatures of 120–325ºC (see Juez-Larré and 
TerVoorde, 2009, and references therein). This event has 
been determined in the Cantabrian Mountains (Schärer 
et al., 1995; Martín-González et al., 2006; Grobe et al., 
2010, among others), Pyrenees (Fungenschuh et al., 2003), 
Catalan Coastal Ranges (Juez-Larré and Andriessen, 
2006), Spanish Central System (De Bruijne, 2001), Toledo 
Mountains (Barbero et al., 2005), West Iberia and Sierra 
Morena (Pereira et al., 1998; Stapel, 1999), and Betics 
(Barbero and López-Garrido, 2006). This Late Jurassic/
Early Cretaceous thermal episode corresponded with the 
northward progression of the Atlantic rifting producing the 
separation of Newfoundland from Iberia, the emplacement 
of serpentinized mantle in the west Galician margin and, 
finally, seafloor spreading in the North Atlantic region (e.g. 
Schärer et al., 1995; Tucholke et al., 2007). This thermal 
episode can also be directly related to the rifting of the 
North-African palaeomargin and the onset of oceanic 
crust development during the Late Jurassic, generating 
the ophiolitic sequences of the Mesorif described by 
Benzaggagh et al. (2013) and Benzaggagh (in press).

The Late Cretaceous thermal episode was also recorded 
in the western Iberian Peninsula by the aforementioned 
thermochronometers: the Cantabrian Mountains (Grobe 
et al., 2010), Spanish Central System (De Bruijne, 2001), 
West Iberia and Sierra Morena (Stapel, 1999), and Iberian 
Range (Del Río et al., 2009). This event was coeval with 
the intrusion of Late Cretaceous alkaline igneous rocks in 
central and southern Portugal between 88.3±0.5Ma and 
68.8±1.0Ma (Grange et al., 2010) among other magmatic 
centres in the eastern Central Atlantic (Tore-Madeira 
Rise), along the western Iberian margin, and the NW of 
the African plate related to a deep-rooted mantle plume 
responsible for the thermal input that can explain the high 
thermal gradients (Grange et al., 2010).

The examples that Michard et al. (this issue) cited from 
the Tell indicate that the Late Cretaceous thermal episode 
extended through the NW of the African plate and, in fact, 
the Late Cretaceous thermal episode was also recorded in 

the AFT T-t histories from the western Moroccan Meseta as 
a thermal heating of the samples (see Barbero et al., 2011, 
their fig. 10). Furthermore, it is also recorded in several 
samples from the High Atlas (Missenard et al., 2008; 
Balestrieri et al., 2009). In the southern part of the western 
Moroccan Meseta, a Late Jurassic to Early Cretaceous 
episode was represented by vertical uplift of the rocks 
associated to exhumation (Ghorbal et al., 2008; Saddiqi et 
al., 2009) and was followed by the aforementioned heating 
episode of the rocks that followed during most of the Late 
Cretaceous and lasted until the Eocene (Ghorbal et al., 
2008; Saddiqi et al., 2009).

In summary, the Late Cretaceous to Tertiary subsidence 
of the area between the Rif and the Atlas with geothermal 
gradients higher than 30ºCkm-1 are known from the works 
of Ghorbal et al. (2008) and Saddiqi et al. (2009) and 
are coherent with the alkaline magmatism in the eastern 
Central Atlantic, the western Iberian margin, and the NW 
of the African plate (Grange et al., 2010). The work of 
Vázquez et al. (2013) proposed that the same subsidence 
and thermal heating affected the north Maghrebian passive 
margin where the Tanger-Ketama Unit was deposited, and 
that it can explain the distribution of the metamorphic 
temperatures within the unit without invoking ad hoc 
thrusts.
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