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I. INTRODUCTION21

The gyrokinetic particle-in-cell (PIC) simulation serves as a tool close to first principles22

for the studies of tokamak plasmas1, and has revealed the importance of the zonal flow2,23

the kinetic properties of energetic particles3 and the edge transport features4. While most24

gyrokinetic particle codes are based on explicit time stepping and the δf method, where25

δf is the perturbed distribution function5, the implicit PIC method in slab geometry has26

been reported featured with good properties such as energy and momentum conservation27

and the capability of allowing large time steps6. In addition, the full f method does not28

rely on the separation of the equilibrium and the perturbation, and thus provides a natural29

way to handle substantial changes of the profiles in the course of a simulation7, while for30

the δf scheme, the advantages in noise control are lost to some extent in such a scenario31

and the positive-definiteness of the distribution function needs to be ensured as δf and f032

approach similar orders of magnitude, where f0 = f − δf . A full f scheme can be easily33

applied to arbitrary distribution functions, without calculating the phase space derivatives34

of the equilibrium distribution function f0 as required in the δf method. In the study of35

MHD/fluid problems, the mixed explicit-implicit scheme has been developed8, which shed36

some light on the development of gyrokinetic or hybrid particle-fluid method (kinetic MHD).37

One crucial issue in both fluid problem and kinetic problem is to treat the parallel dynamics38

accurately, considering the distinct features in parallel and perpendicular direction such as39

the large parallel to perpendicular transport coefficients ratio and, when kinetic particles are40

included, the fast response of electrons in the parallel direction9. While the pullback scheme41

is developed successfully for the electromagnetic simulation, it is shown that a similar linear42

numerical dispersion relation can be obtained using the implicit scheme based on a simplified43

model in slab geometry, without analyses of the particle noise levels and computational costs44

in the derivation10, which indicates that with the same time step size ∆t, similar frequencies45

and damping rates can be obtained by either using the pullback scheme or the implicit scheme46

in the linear limit. Generally, the implicit scheme is known for its capability of allowing large47

time steps6,11. Moreover, with a specific discrete formulation, the implicit scheme can ensure48

good conservation properties6. As in the widely used electromagnetic gyrokinetic model,49

the electrostatic and electromagnetic potentials δφ and δA are chosen as variables12–14. In50

the “symplectic (v‖)” formula, the parallel velocity (v‖) of the particles’ guiding center is51

2



adopted and numerical challenges arise due to the ∂δA‖/∂t term in the dv‖/dt equation.52

In the “Hamiltionian (p‖)” formula, ∂δA‖/∂t is eliminated but the “cancellation” problem53

appears13,15. The implicit scheme provides a natural treatment of the ∂δA‖/∂t term in the54

“symplectic (v‖)” formula. The applications of the implicit scheme in the simulation of the55

electrostatic toroidal ion temperature gradient instability have been reported16 and a fully56

implicit scheme is studied recently in the particle simulation code XGC14,17. Nevertheless,57

the development and the application of the implicit full f scheme on the study of Alfvén58

modes and energetic particle (EP) physics in tokamak plasmas have not been reported.59

In this work, an implicit scheme for particle simulations is developed and implemented60

in TRIMEG-GKX. Instead of solving the implicit field-particle system numerically14, we61

developed the analytical expansion for solving the implicit solution in order to generate the62

linear system, whose solution converges to that of the nonlinear system. This scheme is63

applied to the study of the Shear Alfvén Wave (SAW) in one dimension and the Toroidicity64

induced Alfvén Eigenmode (TAE) excited by the energetic particles in three dimensional65

axisymmetric tokamak plasmas. This work aims at providing66

1. a demonstration of the applicability of the implicit method for the study of the SAW67

in tokamak plasmas;68

2. a mixed implicit-explicit scheme for particle simulations, with analytical simplifica-69

tions, as a practical way to upgrade the TRIMEG code18, meanwhile also as a po-70

tential solution for JOREK and other existing codes4,19–21, for dealing with full f71

electromagnetic simulations;72

3. a full f numerical tool for the study of Alfvén waves and energetic particle physics22
73

that can deal with strong profile changes and arbitrary particle distribution functions74

in a natural way, which is complementing existing codes3,20,23.75

This paper is organized as follows. In Section II, the model for the electromagnetic particle76

simulation is introduced. In Section III, the implicit scheme with analytical treatment is77

derived. In Section IV, the simulation results of SAW in slab geometry and the TAE in78

tokamak plasmas are shown. In Section V, we provide summary and outlook.79
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II. ELECTROMAGNETIC MODEL80

In this section, the electromagnetic model is presented. In order to understand the81

performance and the applicability of this implicit scheme with analytical treatment, we82

introduce the equations for the electromagnetic simulations in general geometry and its83

reduction to one dimension. Furthermore, the normalization and the mixed particle-in-cell-84

particle-in-Fourier (PIC-PIF) scheme are introduced.85

For the tokamak geometry, the coordinates (r, φ, θ) are adopted and the magnetic field86

is represented as B = ∇ψ ×∇φ + F∇φ, where r, φ, θ are the radial, poloidal and toroidal87

coordinates, ψ is the poloidal magnetic flux function and F is the poloidal current function.88

An ad hoc equilibrium has been adopted, featured with concentric circular magnetic flux89

surfaces and constant F . Neverthless, the scheme in this work is general, and it can be90

readily extended to arbitrary tokamak geometry.91

A. Gyrokinetic Vlasov-Poisson equations and the parallel electron dynamics92

The gyrokinetic Poisson-Ampére system is described as follows,93

−∇⊥ ·
∑
s

n0ses
ωcB

∇⊥δφ =
∑
s

esδns , (1)

−∇2
⊥δA‖ = µ0

∑
s

δj‖,s , (2)

where ωc = esB/ms, the subscript ‘s’ and ‘‖’ indicate the species ‘s’ and the component94

parallel to the equilibrium magnetic field respectively, and µ0 is the vacuum permeability.95

The guiding center’s equations of motion are as follows,96

d

dt
R = v‖ + vd + δv , (3)

d

dt
v‖ = v̇‖0 + δv̇‖ , (4)

vd =
ms

esB2

(
v2
‖ + µB

)
b×∇B , (5)

δv =
b

B
×∇(δφ− v‖δA‖) , (6)

v̇‖0 = −µ∂‖B , (7)

δv̇‖ = − es
ms

(
∂‖δφ+ ∂tδA‖

)
, (8)
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where the magnetic moment µ = v2
⊥/(2B), v⊥ is the perpendicular velocity, b = B/B. In97

order to minimize the technical complexity of the code implementation and to focus on the98

implicit scheme and the physics, we have ignored the finite Lamor radius effect and the99

higher order terms ∼ ρs/LB, compared with the more comprehensive gyrokinetic model2,4,9,100

where ρs = v⊥/ωc is the Lamor radius of the particle species ‘s’, and LB is the characteristic101

length of the equilibrium magnetic field. In spite of the simplification, it can be shown that102

the energy E = v2/2 and the canonical toroidal angular momentum Pφ = esψ + mv‖F/B103

are conserved for the guiding center motion in equilibrium, i.e.,104

d

dt
E0 = 0 ,

d

dt
Pφ0 = 0 , (9)

where the subscript ‘0’ indicates the variables in equilibrium magnetic field.105

For the one dimensional (1D) case, we consider the guiding center motion in uniform106

magnetic field (vd = 0, v̇‖0 = 0). In addition, we assume uniform density and temperature107

in all directions, and thus b×∇(δφ− vδA‖) · ∇f0 vanishes in the linear dispersion relation,108

yielding (∂t + v‖∂‖ + δv̇‖∂/∂v‖)δf = −δv · ∇f0 − δv̇‖∂f0/∂v‖ = −δv̇‖∂f0/∂v‖, where f =109

f0 + δf , f0 and δf are the equilibrium and the perturbed distribution functions respectively.110

Equations 3 – 8 for the guiding center are reduced to111

dl

dt
= v‖ , (10)

dv‖
dt

= − es
ms

(
∂‖δφ+ ∂tδA‖

)
, (11)

where l is the coordinate along the magnetic field. This 1D model is a good test case for112

the implicit scheme, since the most numerically challenging term ∂tδA‖ is retained. The113

numerical scheme that applies to this 1D model can be readily extended for the tokamak114

geometry, for treating the ∂tδA‖ term.115

B. Normalization116

The normalization units of the length and the time are RN = 1 m, tN = RN/vN , where117

vN =
√

2TN/mN , mN is the proton mass, TN is the reference temperature, chosen to be the118

on-axis ion temperature in this work. Meter is chosen as the length unit, as is adopted in the119

field solver and particle pusher of the gyrokinetic simulation code GTS24. The purpose of120

this choice is to be consistent with the EFIT equilibrium interface and the mesh generator in121
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TRIMEG18 where meter is also used for the description of the geometry. In addition, while122

the Larmor radius is a natural choice for microturbulence studies, macroscopic instabilies123

can be excited by EPs and thus a macroscopic length (1 meter) is also a reasonable length124

unit. Other variables are normalized using vN , tN . . ., i.e., v‖ = v̄‖vN , R = R̄RN . In the125

following, for the sake of simplicity, the bar ¯. . . is omitted when no confusion is introduced.126

The normalized field equations are as follows,127

−∇⊥ · g∇⊥δφ = CP δN , (12)

−∇2
⊥δA‖ = CAδJ‖ , (13)

g =
∑
s

Ms
n0sB

2
0

〈n〉B2
, δN =

∑
s

es
δns
〈n〉

, δJ‖ =
∑
s

δj̄‖,s
〈n〉

, (14)

where Ms = ms/mN , ēs = es/eN for the species ‘s’, CP = 1/ρ̄2
N , CA = β/ρ̄2

N , ρ̄N =128

ρN/RN , ρN = mNvN/(eNB0), B0 in this work is chosen as the on-axis magnetic field,129

β = 2µ0〈n〉TN/B2
0 and 〈n〉 is the volume averaged density.130

The normalized equations of motion for the guiding center are expressed as follows,131

vd =
MsB0

ēsB2
ρN
(
v2
‖ + µB

)
b×∇B , (15)

δv =
B0

B
ρNb×∇(δφ− v‖δA‖) , (16)

v̇‖0 = −µ∂‖B , (17)

δv̇‖ = − ēs
Ms

(
∂‖δφ+ ∂tδA

)
. (18)

The Poisson equation, the Ampére’s law and the guiding center’s equations of motion in132

(r, φ, θ) coordinates can be readily obtained (Appendix A).133

C. The mixed PIC-PIF scheme using finite element and Fourier basis function134

The field variables are decomposed using Fourier basis functions in (θ, φ) directions and135

using finite elements in r direction,136

δφ(r, φ, θ) =
∑
n,m,k

δφnmkΛk(r)e
inφ+imθ , (19)

δA‖(r, φ, θ) =
∑
n,m,k

δA‖,nmkΛk(r)e
inφ+imθ , (20)
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where n and m are the toroidal and poloidal harmonic numbers and k serves as the radial137

index. In the full f scheme, the physical distribution function is represented by the markers,138

f(R, v‖, µ) =
Nph

Nptot

∑
p

wp
2πB∗‖

δ(R − Rp)δ(v‖ − v‖,p)δ(µ− µp) , (21)

where Nptot is the marker number, Nph is the physical particle number, wp is set according to139

the initial physical and the marker distributions, 2πB∗|| is the Jacobian of the guiding center140

coordinates. The Poisson equation and the Ampére’s law are converted to the weak form,141

¯̄MP,nn′mm′kk′ · δφn′m′k′ = CP δN
k
nm , (22)

¯̄MA,nn′mm′kk′ · δA‖,n′m′k′ = CAδJ
k
nm , (23)

¯̄MP,nn′mm′kk′ = −
∫ r1

r0

drΛk∇⊥,nm · gn−n′,m−m′∇⊥,n′m′ Λk′ , (24)

¯̄MA,nn′mm′kk′ = −
∫ r1

r0

drΛkδn−n′,m−m′∇⊥,nm · ∇⊥,n′m′ Λk′ , (25)

δNk
nm =Cp2g

∑
p

R0

rpRp

wpΛk(rp)e
−i(nφp+mθp) , (26)

δJknm =Cp2g
∑
p

R0

rpRp

wpv‖,pΛk(rp)e
−i(nφp+mθp) , (27)

where ∇⊥,nm is the Fourier representation of ∇⊥ with ∂θ and ∂φ replaced with im and in142

respectively, Cp2g = (r2
1 − r2

0)/(2Nptot), the Particle-in-Fourier method25–27 is adopted in the143

poloidal and toroidal directions, while the particle-in-cell is adopted in the radial direction,144

δij = 1 for i = j = 0, δij = 0 for other i, j values, g =
∑

n,m gn,me
inφ+imθ, and when145

calculating ¯̄MA/P,nn′mm′kk′ in the code, we make use of the integration by parts. In this146

work, we have adopted linear basis functions in the radial direction, in order to minimize147

the technical complexity, while the methods can be also applied with higher order basis148

functions in the future work. Equations 26 and 27 are obtained from the velocity space149

integral of f in Eq. 21 and remain unchanged when B∗‖ ≈ B is adopted. Note that δNk
nm150

and δJknm are different from δNnmk and δJnmk defined by151

δN(r, φ, θ) =
∑
n,m,k

δNnmkΛk(r)e
inφ+imθ , (28)

δJ(r, φ, θ) =
∑
n,m,k

δJnmkΛk(r)e
inφ+imθ . (29)

7



III. IMPLICIT SCHEME WITH ANALYTICAL TREATMENT152

In this section, for the sake of simplicity, we use the 1D problem to demonstrate the153

procedure of the implicit scheme and the analytical treatment. The key issue is to mitigate154

the numerical instability in the direction parallel to the magnetic field, originating from155

∂tδA‖ in the equation of motion, especially when the value of β/(Mek
2
⊥ρ

2
N) is large. The156

implicit scheme for the 3D tokamak geometry can be done with the same procedure, as157

briefly introduced in Section III D.158

A. Shear Alfvén wave in uniform slab geometry159

In the minimum model of SAW, the ion response is described with the polarization160

density, and only one kinetic species (electron) is kept. Noticing that ēs = −1 for s = e, the161

normalized equations are162

dl

dt
= v‖ , (30)

dv‖
dt

=
1

Me

(
∂‖δφ+ ∂tδA‖

)
, (31)

∇2
⊥δφ = CP δN , (32)

∇2
⊥δA‖ = CAδJ‖ . (33)

The Fourier components of the density and current are obtained using particle-in-Fourier in163

the parallel direction,164

δNkl =
1

Nptot

∑
p

e−ikllp , (34)

δJkl =
1

Nptot

∑
p

v‖,pe
−ikllp , (35)

where the Fourier decomposition is applied to the field and moment variables, e.g, δN(l) =165 ∑
k δNkl exp{ikll}, and kl is the wave vector along l.166

The energy conservation is tested for this 1D model in Section IV A. Using Eqs. 30–33,167
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we have, theoretically,168

d

dt
Etot(t) = 0 , (36)

Etot(t) ≡ Ekin(t) + EB(t) + EE(t) , (37)

EE =
k2
⊥

2CP
|δφk(t)|2 , EB =

k2
⊥

2CA
|δAk(t)|2 , (38)

where Ekin(t) is the particle kinetic energy. Note that the energy conservation in the simula-169

tion also relies on the discretization scheme and the implicit treatment does not necessarily170

guarantee energy conservation. In this work, we use Eqs. 37–38 for the diagnosis to examine171

the quality of the scheme we adopted and the numerical implementation while the study of172

rigorous energy conserving schemes is out of the scope of this work.173

B. The implicit scheme for the particle-field system174

The implicit scheme is implemented by applying the iteration scheme to the particle-field175

system. The purpose of the iteration between the particle pusher and the field solver is to176

achieve the implicit solution to the Crank-Nicolson scheme, i.e.,177

lt+∆t − lt

∆t
≡ ∆l

∆t
=
vt+∆t
‖ + vt‖

2
, (39)

vt+∆t
‖ − vt‖

∆t
≡

∆v‖
∆t

=
1

2Me

∂‖[δφ
t+∆t + δφt] +

1

Me

δAt+∆t
‖ − δAt‖

∆t
, (40)

∇2
⊥δφ

t,t+∆t = CP δN
t,t+∆t , (41)

∇2
⊥δA

t,t+∆t
‖ = CAδJ

t,t+∆t
‖ , (42)

where δφ and δA‖ are taken at lt + ∆l/2 in Eq. 40. In solving Eqs. 39 and 40, with the178

constraint ∆tv‖k‖ � 1, it is applicable to take Taylor expansion of the field perturbation179

(δφ, δA‖), i.e., δφ(lt + ∆l/2) ≈ δφ(lt) + (∆l/2)∂lδφ(lt). Then Eqs. 39 and 40 yield the180
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analytic expression as follows,181

∆l

∆t
=

1

h(lt)

[
vt‖ +W (lt)

]
, (43)

∆v‖
∆t

=
2

∆t

[
∆l

∆t
− vt‖

]
=

2

h(lt)∆t

{
W (lt) +

v‖∆t

2
∂lW (lt)

}
, (44)

h(lt) = 1− ∆t

2
∂lW (lt) , (45)

W (lt) =
1

2Me

{
δAt+∆t
‖ (lt)− δAt‖(lt) +

∆t

2
∂l
[
δφt+∆t(lt) + δφt(lt)

]}
. (46)

A more rigorous way is to solve the nonlinear equations, i.e., Eqs 39 and 40, numerically, in182

order to achieve a good accuracy. In this work, Eqs. 39 and 40 are solved by first defining183

the residual as follows,184

R1 ≡ lt+∆t − lt − ∆t

2
[vt+∆t
‖ + vt‖] , (47)

R2 ≡ vt+∆t
‖ − vt‖ −

∆t

2Me

∂l
[
δφt+∆t(lt+∆t/2) + δφt(lt+∆t/2)

]
− 1

Me

[δAt+∆t
‖ (lt+∆t/2)− δAt‖(lt+∆t/2)] , (48)

and iterating (lt+∆t, vt+∆t
‖ ) to reach R1 → 0, R2 → 0. This can be achieved using the Newton185

iteration scheme, by solving ∆l,∆v‖ as follows186

¯̄MR ·

 ∆l

∆v‖

 = −

R1

R2

 , ¯̄MR =

 ∂R1

∂lt+∆t , ∂R1

∂vt+∆t
‖

∂R2

∂lt+∆t , ∂R2

∂vt+∆t
‖

 ,

(49)

and by modifying (l, v‖) using (∆l,∆v‖) in the next particle iteration with the given δφ, δA‖.187

While Eqs. 43 and 44 can serve as the initial condition of the rigorous calculation of the188

implicit particle solution, namely Eqs. 47 – 49, the computational benefit is limited, since189

the particle iterative solver Eqs. 49 converges efficiently for small or moderate k‖v‖∆t. The190

more significant benefit of using Eqs. 43 and 44 lies in using them as an approximate solution191

of Eqs. 39–40, without using the iterative particle solver at all, which gives almost the same192

results for the case in Fig. 4 as will be discussed in Section IV A. This serves as a tool for193

validation during the code development.194
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The main steps for iterations are as follows (all variables are at t + ∆t in the workflow,195

i.e., δφ = δφ(t+ ∆t) etc),196

1−→

δφstartδAstart‖


i

2−→

 l

v‖


i

3−→

δN end

δJend


i

3−→

 δφend

δA‖
end


i

4−→

δφstartδAstart‖


i+1

(50)

1. Each iteration starts with the given field {δφ, δA}start(t+ ∆t). In each step from t to197

t+∆t, as the first iteration (i = 1), the explicit solution is used as the input of the first198

iteration. Namely, at time t, particles are pushed from {l(t)), v‖(t)} to {l(t+∆t), v‖(t+199

∆t)} using ∂‖δφ(t) and (δA‖(t) − δA‖(t − ∆t))/∆t. Then {δφ(t + ∆t), δA‖(t + ∆t)}200

are calculated using {l(t + ∆t), v‖(t + ∆t)} by solving the Poisson equation and the201

Ampére’s law, and then serve as {δφstart, δAstart‖ }i=1.202

2. Particles are pushed from t to t + ∆t implicitly using {δφ, δA}start(t + ∆t) and203

{δφ, δA}(t) according to Eqs. 39 and 40, or, when ∆tv‖k‖ � 1, to Eqs. 43 and 44.204

3. In the end of the iteration, {δφ, δA}end(t+ ∆t) is calculated using Eqs. 41 and 42.205

4. The field perturbation for the next iteration is set according to206 δφ(t+ ∆t)

δA(t+ ∆t)


start,i+1

=

δφ(t+ ∆t)

δA(t+ ∆t)


start,i

+

∆δφ

∆δA

 ,

where ∆δφ and ∆δA‖ are determined in such a way that in the (i+ 1)th iteration,207 δN start(t+ ∆t)

δJstart(t+ ∆t)


i+1

=

δN end(t+ ∆t)

δJend(t+ ∆t)


i+1

, (51)

or, at least, convergence occurs with respect to i.208

Applying the Taylor expansion on the left hand side near {δφstart, δAstart}i, and the right209

hand side of Eq. 51 near {δN start, δJstart}i, we have210 
 1
CP
∇2
⊥ 0

0 1
CA
∇2
⊥

− ¯̄Mc

 ·
∆δφ

∆δA

 =

∆δÑ

∆δJ̃

 , (52)
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where ∆δÑ ≡ δN end − δN start, ∆δJ̃ ≡ δJend − δJstart, and the correction matrix is211

¯̄Mc ≡


∂δNt+∆t

δφt+∆t ,
∂δNt+∆t

δAt+∆t

∂δJt+∆t

δφt+∆t ,
∂δJt+∆t

δAt+∆t

 =


k2
‖(∆t)

2

4Me
,− ik‖∆t

2Me

ik‖∆t

2Me
, 1
Me

 . (53)

The details of deriving the correction matrix ¯̄Mc in Eq. 53 are in Section III C. In summary,212

Eqs. 39, 40 (or 43, 44), 41, 42, 52 and 53 embody our implicit scheme with analytical213

treatment and give the complete set for evolving the system implicitly. All basic operations,214

such as the particle deposition, field scattering and field calculations in the implicit or the215

mixed implicit-explicit scheme (in Section III D) are similar to those in the widely used216

explicit scheme even when the parallelization needs to be considered. The implicit particle217

solver treats each particle separately using given field information and can be parallelized218

easily. The additional field equation (Eq. 53) is solved using the same way as the Poisson219

equation or the parallel Ampére’s law, and thus can be parallelized easily as well.220

C. The analytical correction matrix (Mc) of the implicit field solver (“moment221

enslavement”)222

For obtaining the implicit solution to the field-particle system following the procedure223

50, the analytical correction matrix (Mc) of the implicit field solver in Eq. 53 is derived,224

noticing that the moments δN and δJ can be eventually written as functions of the fields225

δφ and δA‖, which we refer to as “moment enslavement”. In deriving Eq. 53, firstly, the226

particle coordinates (l, v‖) at t + ∆t are functions of the fields at t + ∆t, which follows the227

essence of the “particle enslavement” in a previous work6,228

lt+∆t = lt +
∆t

2
(vt+∆t
‖ + vt‖) , (54)

vt+∆t
‖ = vt‖ +

∆t

2Me

∂‖[δφ
t+∆t + δφt] +

δAt+∆t
‖ − δAt‖
Me

, (55)

which are from the Crank-Nicolson scheme Eqs. 39, 40. Note the definition of the Fourier229

decomposition,230

δφ(l) = 2Re[δφkle
ikll] , (56)

δA‖(l) = 2Re[δA‖,kle
ikll] , (57)
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where only the ±kl Fourier components are kept for the sake of simplicity. Equations 54–57231

yield232

∂lt+1

∂δφt+∆t
kl

=
ikl∆t

2

4Me

eikll
t+∆t/2

, (58)

∂lt+1

∂δAt+∆t
‖,kl

=
∆t2

2Me

eikll
t+∆t/2

(59)

∂vt+1
‖

∂δφt+∆t
kl

=
ikl∆t

2Me

eikll
t+∆t/2

(60)

∂vt+1
‖

∂δAt+∆t
‖,kl

=
1

Me

eikll
t+∆t/2

(61)

Second, notice that the density and current perturbations are functions of particle coor-233

dinates (lt+∆t, vt+∆t
‖ ),234

δN t+∆t
kl

=
1

Nptot

∑
p

e−ikll
t+∆t
p , (62)

δJ t+∆t
kl

=
1

Nptot

∑
p

vt+∆t
‖ e−ikll

t+∆t
p , (63)

which are equivalent to Eqs. 34 and 35 with t + ∆t explicitly written. Then using Eqs.235

54–63 and chain rules, the correction matrix elements in Eq. 53 are calculated as follows,236

∂δN t+∆t
kl

∂δφt+∆t
kl

=
1

Nptot

∑
p

∂e−ikll
t+∆t
p

∂δφt+∆t
kl

=
k2
l (∆t)

2

4Me

1

Nptot

∑
p

e−ikl∆lp/2 , (64)

∂δN t+∆t
kl

∂δAt+∆t
‖,kl

=
1

Nptot

∑
p

∂e−ikll
t+∆t
p

∂δAt+∆t
‖,kl

= −ikl∆t
2Me

1

Nptot

∑
p

e−ikl∆lp/2 , (65)

∂δJ t+∆t
kl

∂δφt+∆t
kl

=
1

Nptot

∑
p

∂v‖e
−ikllt+∆t

p

∂δφt+∆t
kl

=
ikl∆t

2Me

1

Nptot

∑
p

(
1−

ik∆tv‖,p
2

)
e−ikl∆lp/2 , (66)

∂δJ t+∆t
kl

∂δAt+∆t
‖,kl

=
1

Nptot

∑
p

∂v‖e
−ikllt+∆t

p

∂δAt+∆t
‖,kl

=
1

MeNptot

∑
p

(
1−

ik∆tv‖,p
2

)
e−ikl∆lp/2 , (67)

where
∑

p e
−ikl∆lp/2 ≈ Nptot can be used when kl∆lp/2 � 1. Another time discretization237

with the fields solved at t + ∆t/2 but particles pushed along t, t + ∆t, . . . can eliminate238

the e−ikl∆lp/2 factor and will be studied in the future. For the shear Alfvén wave studied239

in this work, the v‖,p terms in the bracket are ignored since the equilibrium flow is zero240

and the perturbed fluid velocity (normalized to thermal velocity) is infinitesimal. Then,241

the correction matrix can be obtained as shown in Eq. 53 without explicitly specifying the242

Fourier mode number in the subscript and with kl replaced by k‖.243
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By using the analytical results in Eqs. 64–67 or Eq. 53, the numerical calculation of Mc244

can be avoided. On the one hand, the analytical solution gives the accurate solution of Mc245

while the numerical calculation of Mc relies on the convergence of the derivative calculation246

of δNkl and δJkl with respect to the variation of δφkl and δA‖,kl . On the other hand, in247

calculating Mc analytically, no operation (such as particle push) on each single particle is248

needed but only the fluid-like terms
∑

p e
−ikl∆lp/2 and

∑
p v‖,pe

−ikl∆lp/2 are needed, which249

can be simplified further in the small perturbation limit, as adopted in Eq. 53.250

D. The mixed implicit-explicit scheme251

While the above implicit scheme is based on the 1D model, the implicit scheme in tokamak252

plasmas can be implemented by applying either fully 3D implicit scheme on the same footing,253

or, as adopted in this work, the mixed implicit-explicit scheme, inspired by the theoretical254

mixed WKB-full-wave approach28–30. Using this mixed scheme, only the fast parallel motion255

terms are treated implicitly but the other terms are treated using an explicit scheme, such256

as the Runge-Kutta method, as adopted in this work. The splitting of the guiding center’s257

equations of motion (Eqs. 3 and 4) are as follows,258

dRE

dt
= vd + δv ,

dvE‖
dt

= v̇‖0 , (68)

dRI

dt
= v‖ ,

dvI‖
dt

= δv̇‖ , (69)

where vd, δv, v̇‖0 and δv̇‖ are defined in Eqs. 5–8. In each sub step of the Runge-Kutta step,259

as the first operation, the explicit increment (∆RE,∆vE‖ ) is calculated according to Eq. 68.260

Then the increment (∆RI ,∆vI‖) is calculated using the implicit scheme in a similar way in261

Eqs. 39–42 with (∆RE,∆vE‖ ) included in (R, v‖)
t+∆t and fixed as constants when solving262

for the implicit solution,263

∆RI

∆t
=

vt‖ + (vt‖ + ∆vE‖ + ∆vI‖)

2
, (70)

∆vI‖
∆t

= − ēs
2Me

∂‖[δφ
t+∆t + δφt]− ēs

Me

δAt+∆t
‖ − δAt‖

∆t
,

(71)

∇⊥ · g∇⊥δφt,t+∆t = CP δN
t,t+∆t , (72)

∇2
⊥δA

t,t+∆t
‖ = CAδJ

t,t+∆t
‖ , (73)
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where v‖ = v‖b, g is defined in Eq. 14, δφt+∆t, δAt+∆t
‖ , δN t+∆t and δJ t+∆t

‖ are evaluated using264

the particle information at t+∆t, i.e., (Rt+∆t
‖ , vt+∆t

‖ ) = (Rt
‖+∆RE

‖ +∆RI
‖, v

t
‖+∆vE‖ +∆vI‖).265

The implicit particle-field solver is implemented following the workflow in Eq. 50 for the 1D266

case. The particle’s implicit solution with given fields and (∆RE,∆vE‖ ) is obtained following267

Eqs. 47–49. The correction to the field is obtained in the same way as shown in Eq. 52, in268

order to achieve the implicit field-particle solution.269

IV. NUMERICAL RESULTS270

The one dimension SAW model is implemented in Matlab and the electromagnetic model271

for tokamak plasmas is implemented in Fortran. In this section, the simulation results are272

presented for these two cases. For the simulation in tokamak plasmas, the EP driven TAE273

case defined by the ITPA group is adopted31. LIGKA is run for the calculation of the TAE274

eigenvalue23, and for the comparison with the particle simulation results.275

A. Shear Alfvén wave in 1D uniform plasma276

As the benchmark of the particle simulation using the implicit scheme in 1D geometry277

(Eqs. 30–33), the electromagnetic dispersion relation in uniform plasma is adopted as the278

analytical solution,10
279

D = 1− 2β[1 + ω̄Z(ω̄)]

Me(k⊥ρti)2

(
ω̄2 − Me

β

)
= 0 ,

(74)

where k⊥ is the perpendicular wave number, Z is the plasma dispersion function, ω̄ = ω/ωte,280

ωte = vtek‖.281

The simulation parameters are as follows. The particle-in-Fourier scheme has been used282

with one harmonic (e±ikll) in the direction parallel to the magnetic field. k⊥ρN = 0.2, β/Me283

is chosen in the range of [1/16, 32] in the parameter scan, which covers the typical regime284

of tokamak plasmas, e.g., β = 1%, Me = 1/1836, i.e., β/Me = 18.36. The roots of the285

SAW are calculated in the complex space, by solving Eq. 74. The least damped roots with286

ω̄ = ±0.319− 0.0017428i (β/Me = 10) correspond to the SAW and serves as the analytical287

solution for the comparison with our particle simulation, while the other heavily damped288

roots can be hardly observed in the particle simulations.289
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The particle simulation based on the implicit scheme shows its performance in SAW290

studies, as shown in Fig. 2. In this case, the marker number Nptot = 106, the time step291

∆t = 0.01 · TSAW , where the SAW period TSAW = 2π/(vAk‖), β/Me = 4. The simulation292

results in 15TSAW show that the Landau damping of the initial perturbation occurs during293

t ∈ [0, 5TSAW ] and after that, the wave-particle nonlinear interaction leads to the energy294

transfer between the wave and particles back and forth. The total particle kinetic energy295

and the wave energy are calculated as shown in the top frame. As the wave gets damped, the296

total particle kinetic energy grows, and vice versa. In the middle frame, the δB component297

(magenta line) and the δE component (blue line) oscillate with the same amplitude, but298

with 90 degrees of phase shift. The total energy (blue line in the first row) indicates good299

conservation properties. The relative error of the total energy is shown in the bottom frame,300

demonstrating that Etot(t)/Etot0−1 increases to ∼ 1% in 3TSAW and after that, stays in the301

magnitude lower than 2%, where Etot0 is the initial total energy (longer time simulation will302

be shown in Fig. 3). It can be shown that this artificial energy loss is small compared with the303

theoretical wave damping rate, i.e., γartificial ≈ 2.6%γtheory, where γtheory/ωTAE = 0.01009304

from Eq. 74. The energy conservation can be improved efficiently as the step size ∆t is305

reduced, as shown in Fig. 3. The SAW is simulated in 100TSAW and the relative error of306

the total energy is shown in the top frame. The relative error stays on a steady level during307

the nonlinear phase, as shown in the top frame. As shown in the bottom frame, the relative308

error is reduced significantly as ∆t decreases. As ∆t/TSAW is reduced from 0.01 to 0.005,309

the absolute value of the average relative error of the total energy decreases from 1.58% to310

0.41% for Nptot = 106. The relative error is not sensitive to the marker number Nptot in311

the range of Nptot = 5 · 105, 106, 2 · 106. For small damping cases in the large β/Me limit or312

small β/Me limit, the relative error is significantly smaller and the error in calculating the313

damping rate is also under control.314

The real frequency and the damping rate of the SAW calculated using the implicit particle315

code and the eigenvalue solver (Eq. 74) are shown in Fig. 4. The marker number is 106.316

For the weakly damped SAW (e.g., β/Me = 16), the frequency ωr and the damping rate γ317

are fitted in 10 · TSAW , while for the SAW with larger damping rate (e.g., β/Me = 1/2), ωr318

and γ are fitted in 4 · TSAW . When choosing the time step size ∆t, the limit due to A) the319

numerical stability, B) the accuracy and C) the convergence is considered. First, ∆t needs320

to be smaller than a critical value to avoid numerical instabilities. Since the implicit solver321

16



takes the explicit trial solution as the starting point, as clarified in the Step 1 of Eq. 50,322

∆t can not be too large so that the implicit solver can find the physical implicit solution323

near the explicit solution. For β/Me = 1/16, numerical instability (crash) appears as ∆t324

increases from 1.0TSAW to 1.5TSAW , but the simulation is crash-free for ∆t/TSAW <= 1.325

As β/Me increases, the maximum ∆t needed to avoid numerical instabilities drops. Second,326

in order to fit the frequency and the damping rate accurately, we have to use at least 20327

points in one wave period. Third, ∆t is small enough so that reasonable convergence can328

be observed as ∆t is varied. Specifically, the maximum time step size used in the scan is329

∆t = TSAW/20 for β/Me = 1/16 and the minimum one is ∆t = TSAW/120 for β/Me = 32.330

In the small β/Me limit, |∂tδA‖| � |∂‖δφ| and δE‖ is mainly contributed by the electrostatic331

scalar potential ∂‖δφ while in the large β/Me limit, ∂tδA‖ ≈ −∂‖δφ and |δE‖/|∂‖δφ| � 1,332

as can be found from Eq. 74. As a result, when β/Me increases, ∆t needs to be smaller in333

order to treat the ∂tδA‖ term and its cancellation with ∂‖δφ properly. The implicit scheme334

shows its capability in the small electron mass condition, which is usually a challenge in335

kinetic particle simulations, due to the quick electron response to δE‖. The scan with fixed336

β (but varying me) and that with fixed me (but varying β) show no difference in the mode337

eigenvalue, which is obvious from the dependence of the analytical dispersion relation Eq.338

74 on β/Me.339

B. Toroidicity induced Alfvén eigenmode damping and excitation in three340

dimensional axisymmetric tokamak341

To simulate the Alfvén modes in tokamak plasmas, Eqs 12–18 are solved using the implicit342

particle scheme. The TAE is simulated using the parameters of the widely studied ITPA343

case31. The major radius R0 = 10 m, minor radius a = 1 m, on-axis magnetic field B0 =344

3 T, the safety factor profile q(r) = 1.71 + 0.16r2. The electron density is constant with345

ne0 = 2.0 · 1019 m−3, Te = 1 keV . The EP density profile is346

nf (r) = nf0c3 exp

(
−c2

c1

tanh
r − c0

c2

)
, (75)

where nf0 = 1.44131 ·1017 m−3, the subscript ‘f ’ indicates EPs (fast particles), c0 = 0.49123,347

c1 = 0.298228, c2 = 0.198739, c3 = 0.521298. The EP temperature is 400 keV . Since the348

dominant bulk ion response is already included in the polarization density in the Poisson349
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equation, only kinetic electrons and fast ions but no kinetic bulk ions are included in this350

work.351

1. Numerical verification352

The field solver is tested using the Method of Manufactured Solutions (MMS), without353

including particles. The Poisson solver and the Ampére solver are both constructed from354

the mass and stiffness matrices, corresponding to ∂2/∂r2, ∂/∂r and f(r), where f(r) is a355

function of r. As a result, testing the Ampére solver is sufficient for the numerical verification356

of the basic field operators. The Ampére’s law can be written as (Eq. A1)357 (
∂2

∂r2
+

1

r

∂

∂r
− m2

r2

)
δA‖,m = CAδJm , (76)

where the toroidal mode number n is omitted in the subscript since n = −6 is fixed in this358

whole section, and the perpendicular Laplacian operator in Eq. 13 is replaced with that359

in the poloidal plane by ignoring the terms smaller by a factor of r2/(qR)2. The analytical360

solution is given as361

δA‖,m,ana = c0 + c1r + aJJm(r) + e−( r−rc
W )

2

, (77)

CAδJm,ana = a2r
2 + a3r

3 + a+r
m + a−r

−m − aJJm(r)

+e−( r−rc
W )

2

×
[

4(r − rc)2

W 4
− 2

W 2
− 2(r − rc)

rW 2
− m2

r2

]
,

(78)

where Jm is the Bessel function. The right hand side of the Ampére’s law is set to Eq. 78 and362

the numerical solution δA‖,m,num is compared with δA‖,m,ana in Eq. 77. The relative error in363

the numerical solution
√

[
∑

k(fnum,k − fana(rk))2]/
∑

k f
2
ana(rk), where k indicates the radial364

grid index, f = δA‖,m, is shown in Fig. 5, where Nr is the radial grid number. Reasonable365

convergence of the field solver is observed. In our simulation, by choosing Nr = 60, the366

relative error in δA‖ for given δJ is at the level of 10−3 in the field solver.367

The particle pusher is tested by the diagnosis of the particle trajectory and the two368

constants of motion, namely, the energy E and the canonical toroidal momentum Pφ. The369

particle trajectories are shown in Fig. 6. The particle temperature is Tf = 400 keV , the370

on-axis magnetic B0 is 3 T , the time step ∆t = 0.025Tf,trans, the transit period Tf,trans =371

2πqr=0.5aR0/
√

2Tf/mf . The particle trajectories in 100Tf,trans are calculated. For passing372
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particles (the upper row), µ = 0.04v2
ts/B0, v‖ ∈ [−2vts, 2vts] at r = 0.5, θ = 0. For373

trapped particles (the lower row), µ ∈ [0.15v2
ts, v

2
ts], v‖ = −0.2vts at r = 0.8, θ = 0. The374

corresponding root-mean-square relative errors in E and Pφ are lower than 5 · 10−5 for all375

particles in 100Tf,transit.376

In order to test the convergence of the implicit field-particle solver, the relative correc-377

tion in δφ and δA‖ in every iteration are analyzed. In the iteration procedure Eq. 50,378

the iteration can be terminated when Err(δφ) ≡
√∑

(∆δφ)2/
∑
δφ2 and Err(δA‖) ≡379 √∑

(∆δA‖)2/
∑
δA2
‖ are small enough (typically, 10−8). The convergence of the implicit380

particle-field solver in a typical simulation is shown in Fig. 7. Two time slices are selected for381

the diagnosis of the convergence. In 15 iterations, the relative error in δφ and δA‖ decreases382

to 10−8 and lower, as a good indication of convergence.383

2. Toroidicity induced Alfvén eigenmode w/o EPs384

The TAE is simulated with no EPs applied firstly. Two cases of the TAE damping are385

studied. In the first case, we choose mi/me = 200, since this is the parameter used in the386

EP driven TAE in the next section and previous ORB5 simulations32. In the second case, we387

choose mi/me = 1836, in order to compare with the previous results where mi/me = 1836388

is used for the calculation of the TAE damping31. LIGKA is run for both cases as the389

benchmark. The initial density perturbation with the amplitude of δn(r = 0.5a)/ne0 =390

4 · 10−3 is loaded by initializing markers’ displacement. The initial density perturbation391

has a Gaussian shape δNp(r) = σp exp{−(r − rpc)2/W 2
p }. Since the noise level in density392

is estimated as σnoise = 1/
√
Nptot/Nr, the amplitude of the initial density perturbation is393

set to at least 2 times of σ, i.e., σp = 2σnoise in order to simulate the TAE mode structure394

and the time evolution clearly. The Gaussian shape exp{−(r − rpc)
2/W 2

p } of the density395

perturbation is set to be as close as possible to the TAE eigenmode with the m = 10, 11396

poloidal harmonics as the dominant ones near r = 0.5a. In practice, we adopted Wp = 0.025,397

rpc(m = 10) = 0.47, rpc(m = 11) = 0.51. The marker number is Nptot = 16 · 106, the time398

step size is ∆t = TTAE/100 for mi/me = 200 and ∆t = TTAE/800 for mi/me = 1836.399

The simulation completes 10 TTAE on 8 computing nodes within around 10 hours for the400

mi/me = 200 case and 12.5 TTAE within around 80 hours for the mi/me = 1836 case, with401

each node containing two Intel Xeon Gold 6148 processors (Skylake (SKL), 20 cores @ 2.4402

19



GHz).403

The time evolution of the TAE for mi/me = 200 is shown in the top left frame of404

Fig. 8. The physics value of the electrostatic potential perturbation, δφc, is measured at405

r = 0.48, θ = 0. The time evolution is clear, indicating the proper simulation of the TAE.406

The anatyical TAE frequency ωTAE = vA/(2qR0) = 417.8 ·103rad/s is used as the reference.407

The real frequency fitted during t/TTAE ∈ [1, 10] gives the real frequency ωr/ωTAE = 0.9615,408

i.e., ωr = 401.7 · 103rad/s. The damping rate from the simulation is γ/ωTAE = −0.011999,409

i.e., γ = −5013/s. As a study regarding the sensitivity of the initial density perturbation,410

we ran the case with δnr=0.5a/ne0 = 8 · 10−3 (keeping other parameters unchanged), and the411

damping rate is slightly different (by ∼ 2.5%) compared with the one with δnr=0.5a/ne0 =412

4 · 10−3. The mode frequency and the damping rate are compared with the results from413

LIGKA23. LIGKA computes the complex eigenvalue of the linearized gyrokinetic equations414

using numerically computed unperturbed orbit integrals for both electrons and ions. The415

value from this LIGKA numerical model γ/ωr = −1.293% is close to the TRIMEG-GKX416

result γ/ωr = −1.248%. For the mi/me = 1836 case, the frequency and the damping rate417

are (ωr, γ) = (0.98142,−0.004907) · ωTAE by using the wave energy EE defined in Eq. 38418

during t/TTAE ∈ [5, 12.5], in order to enhance the signal for this weakly damped mode. Here419

the wave energy integral in the whole plasma (EE) is calculated during t/TTAE ∈ [5, 12.5],420

during which the mode structure is stable, and the linear decay of log(EE) is clear. As a421

result, the fitted damping rate and the frequency of
√
EE represents those of the TAE. The422

obtained γ and ω can be viewed as the average value at different radial locations using the423

scalar potential, which gives a good estimate for this weakly damped case. The value from424

LIGKA (γ/ωr = −0.5008%) is close to the TRIMEG-GKX result (γ/ωr = −0.5000%) for the425

realistic electron mass ratio. In the previous benchmark results31, using the realistic electron426

mass, the damping rate is −1103/s for GYGLES, −567/s (co propagating TAE) or −1705427

(counter propagating TAE) for EUTERPE. In recent ORB5 simulation, the damping rate is428

1825/s ∼ 2190/s (Fig. 6 of Ref. [33]). In our simulation, both co- and counter-propagating429

TAEs are included and the estimated damping γ = 2050/s is also comparable to other codes.430

The 2D TAE mode structures are shown in the top middle and top right columns of431

Fig. 8. The mode width is consistent with previous simulation results with full width at432

half maximum ∆r ≈ 0.06 in the mode envelope. The magnitude of the m = 10 poloidal433

harmonic is larger than those of other harmonics, which is consistent with the observations434

20



by other codes such as LIGKA, GYGLES, ORB5 and EUTERPE31.435

3. Energetic particle driven Toroidicity induced Alfvén eigenmode436

For the EP driven TAE, the marker numbers for electrons and EPs are Nptot,e = 128 ·437

106, Nptot,f = 32 · 106, and the time step size is ∆t = TTAE/100. The initial density438

perturbation with the amplitude of δn(r = 0.5a)/ne0 = 5 · 10−4 is loaded by initializing439

markers’ displacement. For the corresponding δφ, the m = 10, 11 TAE component is not440

dominant compared with other components (m = 8, 9, 12, 13) and serves as a seed for the441

EP driven TAE. The simulation completes on 24 computing nodes within around 36 hours.442

The time evolution of the EP driven TAE is shown in the bottom left frame of Fig. 8. Since443

the initial perturbation (especially the m = 8, 9, 12, 13 perturbation) is significantly different444

than the EP driven TAE, it is damped firstly during 0 < t/TTAE < 2 and then the TAE is445

excited by EPs. The real frequency fitted during t/TTAE ∈ [4, 10] is ωr/ωTAE = 0.9276. The446

growth rate fitted during the growing phase (2.5 < t/TTAE < 5.5) gives γ/ωTAE = 0.090806447

(most codes give γ/ωTAE ≈ 9% ∼ 12%31).448

The 2D mode structure and the radial profile of the poloidal harmonics at t/TTAE = 5.5449

are shown in the bottom middle and bottom right of Fig. 8. The broadening of the radial450

envelope (full width at half maximum ∼ 0.12 from the bottom right frame) is larger by451

100% than that of the TAE damping case in the top right frame. This is due to the EPs’452

non-perturbative effects on broadening the mode structure3,32. Another feature is the mode453

structure symmetry breaking, namely, the mode structure distortion, due to the EPs’ contri-454

bution to the non-Hermitian part of the dispersion relation34–36. More quantitative studies455

on the properties of the mode structure symmetry breaking using this full f simulation and456

its effects on the EP transport37, will be performed in future work.457

V. SUMMARY AND OUTLOOK458

In this work, an implicit full f scheme has been developed for the electromagnetic particle459

simulations of the damping and the excitation of Alfvén modes. This work provides a460

potential method for EP transport simulations which is able to maintain the kinetic effects461

of all particles and the electromagnetic effect. The main techniques have been developed as462
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FIG. 1. The roots of the dispersion relation. The red or the black lines indicate the real or the

imaginary parts of the SAW dispersion relation, Eq. 74, and their intersection gives the eigenmode

solution D(ω̄) = 0. The least damped root with maximum |Im(ζ)| corresponds to the SAW.

FIG. 2. Top: time evolution of the particle kinetic energy (black line), wave energy (red) and the

total energy (blue); middle: the wave energy EE and EB defined by Eq. 38; bottom: relative error

of total energy, defined as Etot(t)/Etot0 − 1, where Etot0 is the initial total value.

follows.463

1. An analytical treatment has been derived for obtaining the implicit solution of the464

field-particle system, by linearizing the nonlinear implicit particle-field system, which465
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FIG. 3. Top: the relative error of the total energy for different time step size ∆t and fixed marker

number Nptot = 106. Bottom: the time-averaged absolute value of the relative error for different

∆t and marker number.

FIG. 4. The theoretical value solved from Eq. 74 (blue broken lines) and the simulation results

using the implicit particle method (crosses) of the real frequency (top) and the damping rate

(bottom) of the SAW.
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FIG. 5. The relative error in the solution to the Ampére’s law versus different radial grid numbers

using the Method of Manufactured Solutions, i.e., Eqs. 78 and 77, where Nr0 = 10.

FIG. 6. The guiding center trajectories and relative error of energy and toroidal canonical momen-

tum for passing particles (the upper row) and trapped particles (the lower row). The root-mean-

square (RMS) relative error is

√
(yi/y0 − 1)2, where yi is the signal at Step i, y0 is the initial value

and (. . .) is the average over all steps. The RMS relative error of E and Pφ is smaller than 5 ·10−5.
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FIG. 7. The convergence of δφ (lines) and δA‖ (dashed lines) at the beginning (t = 0.01TTAE) and

the end (t = 10TTAE) of EP driven TAE case in Section IV B 3.

FIG. 8. The first row: TAE damping w/o EPs; the second row: TAE driven by EPs. Left: the

time evolution of the TAE. The blue line indicates the linear fit using the logarithmic amplitude

peak values along t during the selected time period (red crosses). δφ(rc, θ = 0) is normalized using

Te0/e as adopted by other work32. The 2D mode structure of the TAE Re[δφ] (middle column)

and the radial structure of the different poloidal harmonics (right). The toroidal mode number

n = −6, the electron to ion mass ratio me/mi = 1/200 for both cases.
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gives a practical way to solve the nonlinear system, as shown in Eqs. 39, 40, 41, 42,466

52 and 53.467

2. The mixed implicit-explicit scheme is developed to simulate the TAE by implicitly468

treating the fast scale parallel motion, especially the parallel acceleration due to the469

perturbed field, which is usually the most challenging when the particle mass is small,470

but treating the other parts explicitly.471

The implicit scheme in this work shows the following performance in the study of Alfvén472

waves and EP physics.473

1. Using the analytical derivation based implicit scheme, good convergence of the field-474

particle solver is demonstrated (Fig. 5).475

2. By applying this to the 1D shear Alfvén wave problem, this implicit scheme shows476

good energy conservation and capabilities of calculating the frequency and damping477

rate properly in a broad range of β/Me values, including the small electron mass478

condition (Fig. 4).479

3. The application of this method to the TAE problem shows its applicability for electro-480

magnetic simulations with/without EPs (Fig. 8). The TAE mode structure distortion481

due to the non-perturbative effects of the EPs is observed, consistent with previous482

simulations3,32 and theoretical studies34–36.483

More dedicated studies related to the numerical performance of this implicit full f scheme484

for the electromagnetic physics, such as the study of different discretization schemes for more485

rigorous conservation properties, will be addressed in future and physics problems such as the486

mode structure symmetry breaking and EP transport will be studied. The application of this487

method to the whole plasma volume using unstructured meshes18 or structured Bezier basis488

functions21, is expected to enable more comprehensive studies of the global electromagnetic489

kinetic effects and edge physics.490
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Appendix A: Field and guiding center equations in (r, φ, θ) coordinates502

In (r, φ, θ), the Ampére’s law is written as503 (
Lrr −

m2

r2

)
δA‖,m = CAδJm , (A1)

Lrr ≡
∂2

∂r2
+

1

r

∂

∂r
, (A2)

where the perpendicular Laplacian operator has been approximated using that in (r, θ) plane,504

since Bθ/Bφ = r/(qR) � 1. For the Poisson equation, the toroidal coupling is calculated505

using506

gs = gs0
B2

0

B2
≈ gs0 [1 + 2εc cos θ] , (A3)

where εc = r/R0. The Poisson equation is expressed as507 (
Lrr −

m2

r2

)
δφm + εcg0

[
Lrr −

m(m+ 1)

r2

]
δφm+1

+εcg0

[
Lrr −

m(m− 1)

r2

]
δφm−1 = CP δNm , (A4)

where g0 =
∑

s gs0.508

For guiding center’s equations of motion, in (r, φ, θ) coordinates, we have509

dr̄d
dt

=
MsB0ρ̄N
ēsB3R

F

r
∂θB , (A5)

dφd
dt

=
MsB0ρ̄N
ēsB3R

∂rψ

R
∂rB , (A6)

dθd
dt

=
MsB0ρ̄N
ēsB3R

F

r
∂rB , (A7)
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510

dδr̄

dt
=
B0

B
ρ̄N

(
bφ
r
∂θδG−

bθ
R
∂φδG

)
, (A8)

dδφ

dt
=
B0

B
ρ̄N

bθ
R
∂rδG , (A9)

dδθ

dt
= −B0

B
ρ̄N

bφ
r
∂rδG , (A10)

511

˙̄v‖0 = − µ̄∂rψ
R2

sin θ , (A11)

δ ˙̄v‖ = − ēs
Ms

(
∂‖δφ̄+ ∂tδĀ

)
, (A12)

where δG = δφ̄− v̄‖δA‖.512
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