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Abstract

Let c1(x), c2(x), f1(x), f2(x) be polynomials with rational coef-
ficients. The “obvious” exceptions being excluded, there can be at
most finitely many roots of unity among the zeros of the polyno-
mials c1(x)f1(x)

n + c2(x)f2(x)
n with n = 1, 2 . . .. We estimate the

orders of these roots of unity in terms of the degrees and the heights
of the polynomials ci and fi.

2020 Mathematics Subject Classification: Primary 11D61; Sec-
ondary 11G50, 11J86.

Key words and phrases: polynomial power sums, roots of unity,
primitive divisors.

Contents

1 Introduction 2

2 Heights 5

3 Cyclotomic polynomials 8

4 Schinzel’s Primitive Divisor Theorem 11

5 Proof of Theorems 1.2 and 1.3 16

6 Proof of Theorem 1.6 25

1

http://arxiv.org/abs/2005.05500v2


2 Yu. Bilu and F. Luca

1 Introduction

Let c1(x), c2(x), f1(x), f2(x) be non-zero polynomials in Q[x]. We denote by

u := {un(x)}n≥1 ⊂ Q[x] the sequence of polynomials given by

(1.1) un(x) = c1(x)f1(x)
n + c2(x)f2(x)

n for all n ≥ 1.

We study roots of unity ζ such that un(ζ) = 0 for some n. It can happen

accidentally that un(x) is the zero polynomial for some n. We ignore these n.

We would like to show that aside from some exceptional situations, the

following holds true: there exist at most finitely many roots of unity ζ such

that for some n the polynomial un(x) is not identically zero but un(ζ) = 0.

The following example shows that we indeed have to exclude some ex-

ceptional cases.

Example 1.1. Let a, b be integers with b non-zero, and assume that

c2(x)/c1(x) = δxa, f2(x)/f1(x) = εxb, δ, ε ∈ {1,−1}.

We then get

un(x) = c1(x)f1(x)
n(1 + δεnxa+bn)

and we see that if x = ζ is such that ζa+bn = −δεn, then un(ζ) = 0. The

condition that b 6= 0 insures that un(x) is non-zero for n sufficiently large (in

fact, for all n except eventually one of them, namely n = −a/b), and every

un(x) vanishes at the roots of unity of order |a+ bn| or 2|a+ bn| depending

on the sign of δεn.

It turns out that this example is the only case when the polynomials

un(x) vanish at infinitely many roots of unity. We have the following theo-

rem.

Theorem 1.2. Let c1(x), c2(x), f1(x), f2(x) ∈ Q[x] be non-zero polynomials.

For a positive integer n define un(x) as in (1.1). Then the following two

conditions are equivalent.

1. There exist infinitely many roots of unity ζ such that for some n the

polynomial un(x) is not identically zero but un(ζ) = 0.

2. There exist a, b ∈ Z with b 6= 0 and δ, ε ∈ {1,−1} such that

c2(x)/c1(x) = δxa, f2(x)/f1(x) = εxb.
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It is not hard to derive this theorem from classical results on unlikely

intersection like the Theorem of Bombieri-Masser-Zannier-Maurin [5, 6, 9].

See also the recent work of Ostafe and Shparlinski [10, 11], especially The-

orem 2.11 and Corollary 2.14 in [11].

However, we are mainly interested in a quantitative statement: when

condition 2 of Theorem 1.2 is not satisfied, we want to bound the orders of

the roots of unity ζ such that un(ζ) = 0 for some n, in terms of the degrees

and the heights of our polynomials fi, ci. To the best of our knowledge,

no quantitative version of the Bombieri-Masser-Zannier-Maurin theorem is

available which would imply such a bound.

To state our result, let us recall the definition of the height of a non-zero

polynomial in Q[x]. The height of a primitive vector a = (a1, . . . , ak) ∈ Zk

(primitive means that gcd(a1, . . . , ak) = 1) is defined by

h(a) := logmax{|a1|, . . . , |ak|}.

In general, given a non-zero vector a ∈ Qk+1, there exists λ ∈ Q×, well de-

fined up to multiplication by ±1, such that a∗ = λa is primitive, and we set

h(a) := h(a∗).

We define the height of a non-zero polynomial g(x) ∈ Q[x] as the height

of the vector of its coefficients. More generally, we define the height of a

non-zero vector (g1, . . . , gk) ∈ Q[x]k as the height of the vector formed of

the coefficients of all polynomials g1, . . . , gk.

We have the following theorem.

Theorem 1.3. Let c1(x), c2(x), f1(x), f2(x) ∈ Q[x] be non-zero polynomials

such that condition 2 of Theorem 1.2 is not satisfied. Set

D := max{deg c1, deg c2, deg f1, deg f2},

X := max{3, h(c1, c2), h(f1, f2)}.

Let m be a positive integer and ζ a primitive mth root of unity such that for

some n the polynomial un(x) is not identically zero but un(ζ) = 0. Then

(1.2) m ≤ e100D(X+D).

The numerical constant 100 here is rather loose; probably, one can replace

it by 4 or so.

One may ask whether there is a bound for m which depends only on one

of the parameters D or X . The following examples show that this is not the

case.
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Example 1.4. Consider un(x) = (2x)n − 2m, for which

(c1(x), c2(x), f1(x), f2(x)) = (1,−2m, 2x, 1), X = max{3, m log 2}.

Then um(x) = 2m(xm − 1) vanishes at primitive mth roots of unity, and we

have m ≥ X/ log 2 (provided m ≥ 5). Hence no bound independent of X is

possible.

Example 1.5. Consider un(x) = xn + xD + 1, for which

(c1(x), c2(x), f1(x), f2(x)) = (1, xD + 1, x, 1).

Then u2D = (x3D − 1)/(xD − 1) vanishes at primitive 3Dth roots of unity,

so we have m ≥ 3D. Hence no bound independent of D is possible.

One may also ask whether in Theorem 1.3 one can bound n such that

un(x) vanishes at a root of unity. The answer is “no” in general. Indeed,

if polynomials c1(x)f1(x) and c2(x)f2(x) have a common root, then every

un(x) will vanish at that root. But even if c1(x)f1(x) and c2(x)f2(x) do not

simultaneously vanish at some root of unity, it is still possible that un(x)

vanishes at a root of unity for infinitely many n. This is, for instance, the

case for the sequence un(x) = xn + xD + 1 from Example 1.5: it vanishes at

primitive 3Dth roots of unity whenever n ≡ 2D mod 3D. Nevertheless, we

can bound the smallest n with this property. Here is the precise statement.

Theorem 1.6. In the set-up of Theorem 1.2, assume that, for a given m,

the set of positive integers n with the property “the polynomial un(x) is not

identically 0 but vanishes at an mth root of unity” is not empty. Then the

smallest n in this set satisfies

n ≤ m(logm)3(X + logD).

More precisely, either there exists n in this set satisfying n ≤ 2m, or every n

in this set satisfies n ≤ m(logm)3(X + logD).

Throughout the article we use standard notation. We denote ϕ(n) the

Euler function, µ(n) the Möbius function, Λ(n) the von Mangoldt function

and ω(n) the number of prime divisors of n counted without multiplicities.

Theorems 1.2 and 1.3 are proved in Section 5, and Theorem 1.6 is proved

in Section 6. In Sections 2, 3 and 4 we collect various auxiliary facts used in

the proof. In particular, in Section 4 we revisit Schinzel’s classical Primitive

Divisor Theorem [15]. We obtain a version of this theorem fully explicit in

all parameters, which is key ingredient in our proof of Theorem 1.3.
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2 Heights

All results of this section are well-known, but sometimes we prefer to give

a short proof than to look for a bibliographical reference.

Recall the definition of the absolute logarithmic (projective) height. Let

ᾱ = (α0, α1, . . . , αk) ∈ Q̄k+1

be a non-zero vector of algebraic numbers. Pick a number field K contain-

ing all αi and normalize the absolute values of K to extend the standard

absolute values of Q. With this normalization, the height of ᾱ is defined by

(2.1) h(ᾱ) = d−1
∑

v∈MK

dv logmax{|α0|v, . . . , |αk|v},

where d = [K : Q] and dv = [Kv : Qv] is the local degree. This definition is

known to be independent of the choice of K and invariant under multi-

plication of ᾱ by a non-zero algebraic number: h(λᾱ) = h(ᾱ) for λ ∈ Q̄×.

When α ∈ Qn+1 this definition coincides with the definition of height from

Section 1.

Separating the contributions of infinite and finite places, we can rewrite

equation (2.1) as

(2.2)

h(ᾱ) = d−1
∑

K
σ
→֒C

logmax{|ασ
0 |, . . . , |α

σ
k |}

+ d−1
∑

p

max{−νp(α0), . . . ,−νp(αk)} logN p,

where the first sum is over the complex embeddings of K, the second sum

is over the finite primes of K, and N p denotes the absolute norm of p.

Now we define the height h(g) of a non-zero polynomial g with algebraic

coefficients (in one or in several variables), or, more generally, the height

h(g1, . . . , gk) of a vector of such polynomials as the height of the vector of

all coefficients of those polynomials (ordered somehow).

With a standard abuse of notation, for α ∈ Q̄ we write h(α) for h(1, α).

If α belongs to a number field K then

h(α) = d−1
∑

v∈MK

dv log
+ |α|v(2.3)

= d−1
∑

v∈MK

−dv log
− |α|v (α 6= 0),(2.4)

where log+ = max{log, 0} and log− = min{log, 0}.
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Lemma 2.1. Let α ∈ Q̄ and f(x) ∈ Q̄[x] a polynomial of degree less or

equal to D. Then

(2.5) h(f(α)) ≤ Dh(α) + h(1, f) + log(D + 1).

More generally, if g(x) ∈ Q̄[x] is another polynomial of degree less or equal

to D and g(α) 6= 0 then

(2.6) h(f(α)/g(α)) ≤ Dh(α) + h(g, f) + log(D + 1).

If f(α) = 0 then

(2.7) h(α) ≤ h(f) + log 2.

Furthermore, let r be a non-negative integer. Then

(2.8) h(1, f (r)/r!) ≤ h(1, f) +D log 2.

Proof. We start by proving (2.6). By definition,

h(f(α)/g(α)) = h(1, f(α)/g(α)) = h(g(α), f(α)).

Write

f(x) = aDx
D + · · ·+ a0, g(x) = bDx

D + · · ·+ b0.

Let K be a number field containing α and the coefficients of f, g. We set

d = [K : Q]. For v ∈ MK we have

|f(α)|v ≤

{

(D + 1)|f |v max{1, |α|v}D, v | ∞,

|f |v|max{1, |α|v}D, v < ∞,

where |f |v = max{|a0|v, . . . , |aD|v}, and similarly for g(α). Hence

h(g(α), f(α)) ≤ d−1
∑

v∈MK

dv logmax{|g(α)|v, |f(α)|v}

≤ d−1
∑

v∈MK

dv(logmax{|fv|, |g|v}+D log+ |α|v)

+ d−1
∑

v∈MK

v|∞

dv log(D + 1)

= h(g, f) +Dh(α) + log(D + 1),

which proves (2.6).

For (2.7) see [2, Proposition 3.6(1)]. Finally, we have

f (r)

r!
(x) =

D
∑

k=r

(

k

r

)

akx
k−r.
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Since
(

k

r

)

≤ 2k ≤ 2D,

we have
∣

∣

∣

∣

f (r)

r!

∣

∣

∣

∣

v

≤

{

2D|f |v, v | ∞,

|f |v, v < ∞.

Hence

h

(

1,
f (r)

r!

)

= d−1
∑

v∈MK

dv log
+

∣

∣

∣

∣

f (r)

r!

∣

∣

∣

∣

v

≤ d−1
∑

v∈MK

dv log
+ |fv|+ d−1

∑

v∈MK

v|∞

dvD log 2

= h(1, f) +D log 2.

The lemma is proved.

Lemma 2.2. Let f1(x), . . . , fk(x) ∈ Q̄[x] be non-zero polynomials of degrees

not exceeding D, and let g(x) ∈ Q̄[x] be a common divisor of f1, . . . , fk (in

the ring Q̄[x]). Then

h(f1/g, . . . , fk/g) ≤ h(f1, . . . , fk) + (D + k − 1) log 2.

Proof. Consider the polynomial

f(x, y1, . . . , yk−1) := f1(x)y1+ · · ·+fk−1(x)yk−1+fk(x) ∈ Q̄[x, y1, . . . , yk−1].

Applying Theorem 1.6.13 from [4], we obtain

h(f/g) ≤ h(f/g) + h(g) ≤ h(f) + (D + k − 1) log 2.

Since

h(f1/g, . . . , fk/g) = h(f/g), h(f1, . . . , fk) = h(f),

the result follows.

Lemma 2.3. Let K be a number field of degree d and α ∈ K. Then

(2.9)
∑

νp(α)<0

logN p ≤ dh(α),
∑

νp(α)>0

logN p ≤ dh(α),

where the first sum is over (finite) primes p of K with νp(α) < 0, the second

sum over those with νp(α) > 0, and in the second sum we assume α 6= 0.

More generally, let α1, . . . , αk ∈ K. Then

(2.10)
∑

νp(αi)<0 for

some i∈{1,...,k}

logN p ≤ dh(ᾱ), ᾱ = (1, α1, . . . , αk).
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Proof. Inequality (2.10) is immediate from (2.2) (note that α0 = 1), and

both statements in (2.9) are special cases of (2.10).

Lemma 2.4 (“Liouville’s inequality”). Let K and α be as in Lemma 2.3,

α 6= 0. Let S ⊂ MK be any set of places of K (finite or infinite). Then

e−dh(α) ≤
∏

v∈MK

|α|dvv ≤ edh(α).

In particular, if σ1, . . . σr : K →֒ C are some distinct complex embeddings

of K then
r
∏

i=1

|ασi| ≥ e−dh(α).

We omit the proof, which is well-known and easy.

3 Cyclotomic polynomials

We denote Φm(T ) the mth cyclotomic polynomial. We will systematically

use the identity

(3.1) Φm(T ) =
∏

d|m

(T d − 1)µ(m/d),

In this section we study values of cyclotomic polynomials at algebraic

points. We give an asymptotic expression for the height of Φm(γ) as γ ∈ Q̄

is fixed and m → ∞. We also estimate the absolute value of Φm(γ) from

below.

The results of this section can be viewed as totally explicit versions of

some results from [1, Section 3], and we follow [1] rather closely. We note

however that all this goes back to the 1974 work of Schinzel [15] or even

earlier.

3.1 The height

Theorem 3.1. Let γ be an algebraic number. Then

h(Φm(γ)) = ϕ(m)h(γ) +O1

(

2ω(m) log(πm)
)

.

Recall that A = O1(B) means that |A| ≤ B.

To prove this theorem we need some preparations. We follow [1, Section 3]

with some changes.
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Proposition 3.2. For a positive integer m we have

(3.2) max
|z|≤1

log |Φm(z)| ≤ 2ω(m) log(πm),

the maximum being over the unit disc on the complex plane. (We use the

convention log 0 = −∞.) For 0 < ε ≤ 1/2 we also have

(3.3) min
|z|≤1−ε

log |Φm(z)| ≥ −2ω(m) log
1

ε
.

Proof. By the maximum principle, it suffices to prove that (3.2) holds for

complex z with |z| = 1. Thus, fix such z. We will actually prove a slightly

sharper bound

(3.4) log |Φm(z)| ≤ (2ω(m)−1 + 1) logm+ 2ω(m) log π.

We can write z in a unique way as z = ζe2πiθ/m, where ζ is an mth root

of unity (not necessarily primitive) and −1/2 < θ ≤ 1/2. We may assume

θ 6= 0, because for the finitely many z with θ = 0 the bound extends by

continuity.

Let ℓ be the exact order of ζ ; thus, ℓ | m and ζ is a primitive ℓth root of

unity. Let d be any other divisor of m. If ℓ ∤ d then d ≤ m/2 and

2 ≥ |zd − 1| ≥ 2 sin(πd/2m) ≥ 2d/m.

(We use the inequality | sin x| ≥ (2/π)x which holds for |x| ≤ π/2.) This

implies that

(3.5)
∣

∣log |zd − 1|
∣

∣ ≤ log(m/d).

And if ℓ | d then we have |zm − 1| = 2 sin(πθd/m), which implies that

2πθd/m ≥ |zd − 1| ≥ 4θd/m.

Writing d = d′ℓ, this implies that

(3.6) log |zd
′ℓ − 1| = log d′ − log

m

2ℓθ
+O1 (log π) .

Using (3.1) we obtain

log |Φm(z)| =
∑

d|m
ℓ∤d

µ
(m

d

)

log |zd − 1|+
∑

d′|m/ℓ

µ

(

m/ℓ

d′

)

log |zℓd
′

− 1|

≤
∑

d|m

∣

∣

∣
µ
(m

d

)
∣

∣

∣
log

m

d
+

∑

d′|m/ℓ

µ

(

m/ℓ

d′

)

(

log d′ − log
m

2ℓθ

)

+O1(2
ω(n/ℓ) log π)

= 2ω(m)−1
∑

p|m

log p + Λ
(m

ℓ

)

+ δ log(2θ) +O1(2
ω(m/ℓ) log π),
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where δ = 0 if ℓ < m and δ = 1 if ℓ = m. Since log(2θ) ≤ 0, this proves (3.4).

The proof of (3.3) is much easier. When |z| ≤ 1− ε, we have

2 ≥ |zd − 1| ≥ 1− |z|d ≥ 1− |z| ≥ ε.

Since 0 < ε ≤ 1/2 this implies that
∣

∣log |zd − 1|
∣

∣ ≤ log(1/ε). We obtain

∣

∣log |Φm(z)|
∣

∣ =

∣

∣

∣

∣

∣

∣

∑

d|m

µ
(m

d

)

log |zd − 1|

∣

∣

∣

∣

∣

∣

≤ 2ω(m) log
1

ε
.

In particular, (3.3) holds.

Corollary 3.3. Let m be a positive integer and z ∈ C. Then

log+ |Φm(z)| = ϕ(m) log+ |z|+O1

(

2ω(m) log(πm)
)

,

where log+ = max{log, 0}.

Proof. For |z| ≤ 1 this is Proposition 3.2. If |z| > 1 then

(3.7) log |Φm(z)| = ϕ(m) log |z|+ log |Φm(z
−1)|,

and log |Φm(z
−1)| ≤ 2ω(m) log(πm) by Proposition 3.2. This already implies

the upper bound

log+ |Φm(z)| ≤ ϕ(m) log+ |z|+ 2ω(m) log(πm).

The lower bound

(3.8) log+ |Φm(z)| ≥ ϕ(m) log+ |z| − 2ω(m) log(πm)

is trivial when m = 1, so we will assume m ≥ 2 in the sequel. In the case

1 < |z| ≤ m/(m− 1) we have

log+ |Φm(z)| ≥ 0 ≥ ϕ(m) log
m

m− 1
− 1 ≥ ϕ(m) log+ |z| − 1,

which is much better than wanted. Finally, if |z| ≥ m/(m− 1), then

log |Φm(z
−1)| ≥ −2ω(m) logm

by (3.3) with ε = 1/m. Hence (3.8) follows from (3.7) in this case.

Proof of Theorem 3.1. We use (2.3) with α = Φm(γ). For v ∈ MK we

have

log+ |Φm(γ)|v =

{

ϕ(m) log+ |γ|v +O1

(

2ω(m) log(πm)
)

, v | ∞,

ϕ(m) log+ |γ|v, v < ∞.

Indeed, the archimedean case is Corollary 3.3, and the non-archimedean

case is obvious. Summing up, the result follows.
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3.2 The lower bound

The following result is proved in [3, Corollary 4.2] as a consequence of

Baker’s theory of logarithmic forms.

Proposition 3.4. Let γ be a complex algebraic number of degree d, not a

root of unity, and n a positive integer. Then

|γn − 1| ≥ e−1012d4(h(γ)+1) log(n+1).

Corollary 3.5. Let γ and m be as in Proposition 3.4. Then

(3.9) log |Φm(γ)| ≥ −1012d4(h(γ) + 1) · 2ω(m) log(m+ 1).

Proof. If |γ| ≥ 1 then

log |Φm(γ)| = ϕ(m) log |γ|+ log |Φ(γ−1)| ≥ log |Φ(γ−1)|.

Hence, replacing, if necessary, γ by γ−1, we may assume |γ| ≤ 1. We have

(3.10) log |Φm(γ)| =
∑

n|m

µ
(m

n

)

log |γn − 1|.

Proposition 3.4 implies that

2 ≥ |γn − 1| ≥ e−1012d4(h(γ)+1) log(n+1).

Hence for 1 ≤ n ≤ m we have

∣

∣log |γn − 1|
∣

∣ ≤ 1012d4(h(γ) + 1) log(m+ 1).

Substituting this to (3.10), we obtain

∣

∣log |Φm(γ)|
∣

∣ ≤ 1012d4(h(γ) + 1) · 2ω(m) log(m+ 1).

In particular, we proved (3.9).

4 Schinzel’s Primitive Divisor Theorem

Let γ be a non-zero algebraic number, not a root of unity. We consider the

sequence

un = un(γ) = γn − 1.

(Note that in this section (un) is a numerical sequence, while in the other

sections it is a sequence of polynomials.) A prime p of the number field

K = Q(γ) is called primitive divisor for un if

νp(un) > 0, νp(uk) = 0 (k = 1, . . . , n− 1).
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For further use, let us fix here some basic properties of primitive divisors.

Recall that Φn(T ) denotes the nth cyclotomic polynomial, and N p is the

absolute norm of p.

Proposition 4.1. Assume that p is a primitive divisor of un. Then n divides

N p− 1 and νp(Φn(γ)) ≥ 1. In particular, n < N p.

The proofs are very easy and we omit them.

Schinzel [15] proved that un admits a primitive divisor for n ≥ n0(d),

where d is the degree of γ. This was an improvement upon the earlier

work [12], where the same was proved under the assumption n ≥ n0(γ).

Stewart [16] made Schinzel’s result explicit, but he imposed an additional

hypothesis γ = α/β, where α, β ∈ OK are coprime algebraic integers. Here

we obtain a fully explicit version of Schinzel’s result without any extra

hypothesis.

Theorem 4.2. Let γ be an algebraic number of degree d, not a root of unity.

Assume that

(4.1) n ≥ max{2d+1, 1030d9}.

Then un = γn − 1 admits a primitive divisor.

Theorem 4.2 is a consequence of the following result, appearing, albeit

in a different setting, in Schinzel’s work.

Proposition 4.3. In the above set-up, assume that un does not admit a

primitive divisor. Then

(4.2) h(Φn(γ)) ≤ 1013d4(h(γ) + 1) · 2ω(n) log(n+ 1).

4.1 Proof of Proposition 4.3

We start from the following well-known fact.

Lemma 4.4. Let K be a number field of degree d and p a prime number.

Let p be a prime of K above p of ramification index ep (that is, ep = νp(p)).

Let ξ ∈ K satisfy

νp(ξ − 1) >
ep

p− 1
.

Then for any positive integer n we have

νp(ξ
n − 1) = νp(ξ − 1) + νp(n).
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The proof of the lemma can be found, for instance, in [12, Lemma 1].

Lemma 4.5. Let γ be an algebraic number of degree d, not a root of unity,

and n an integer satisfying n ≥ 2d+1. Let p be a prime of the field Q(γ)

which is not a primitive divisor of un = γn − 1. Then νp(Φn(γ)) ≤ νp(n).

This is Schinzel’s [15] crucial “Lemma 4”. Since his set-up is slightly

different, we reproduce the proof here.

Proof. We may assume that νp(γ
n − 1) > 0, since there is nothing to prove

otherwise. In particular, νp(γ) = 0.

For k = 0, 1, 2 . . . denote ℓk the multiplicative order of γ mod pk; that

is, ℓk is the smallest positive integer ℓ with the property νp(γ
ℓ − 1) ≥ k.

Clearly, νp(γ
n − 1) ≥ k if and only if ℓk | n. Together with (3.1) this implies

that for every k the following holds:

(4.3) νp
(

Φn(γ)
)

=
k

∑

i=1

∑

ℓi|m|n

µ
( n

m

)

+
∑

ℓk+1|m|n

µ
( n

m

)

(

νp(γ
m − 1)− k

)

Let p be the rational prime below p and ep = νp(p) the ramification index.

We will apply (4.3) with

k =

⌊

ep
p− 1

⌋

,

which will be our choice of k from now on. We claim that

(4.4) n > ℓk+1.

We postpone the proof of (4.4) (which is a bit messy) until later, and now

complete the proof of the lemma assuming validity of (4.4).

Since n > ℓk+1 ≥ ℓi for i = 1, . . . , k, the double sum in (4.3) vanishes.

Also, if ℓk+1 | m then

νp(γ
m − 1) = νp(γ

ℓk+1 − 1) + νp

(

m

ℓk+1

)

by Lemma 4.4. Hence (4.3) can be rewritten as

(4.5)

νp
(

Φn(γ)
)

=
∑

ℓk+1|m|n

µ
( n

m

)

(

νp(γ
ℓk+1 − 1)− k

)

+
∑

ℓk+1|m|n

µ
( n

m

)

νp

(

m

ℓk+1

)

.

Since n > ℓk+1, the first sum in (4.5) vanishes. As for the second sum, it

vanishes (just being empty) if ℓk+1 ∤ n. From now on assume that ℓk+1 | n

and set n′ = n/ℓk+1. We obtain

νp
(

Φn(γ)
)

= ep
∑

m′|n′

µ

(

n′

m′

)

νp (m
′) =

{

ep, n′ is a power of p,

0, otherwise.
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In any case we obtain νp
(

Φn(γ)
)

≤ νp(n). This proves the lemma.

We are left with the claim (4.4). Note first of all that

(4.6) n > ℓ1

because p is not a primitive divisor of un. Another useful observation is that

(4.7) ℓi+1 ≤ pℓi (i = 1, 2, . . .).

Indeed,

γpℓi − 1 =

p−1
∑

j=1

(

p

j

)

(γℓi − 1)j + (γℓi − 1)p,

which implies that νp(γ
pℓi − 1) > νp(γ

ℓi − 1), proving (4.7).

If k = 0 then (4.4) is (4.6). Now assume that k ≥ 1. In this case

(4.8) p− 1 ≤ ep ≤ d.

On the other hand, let pfp = N p be the absolute norm of p. Clearly,

ℓ1 ≤ pfp − 1 ≤ pd/ep − 1.

In the special case p = 3, ep = d = 2 we have k = 1 and ℓ2 ≤ pℓ1 ≤ 6. Since

n ≥ 2d+1 = 8 by the hypothesis, this proves (4.4) in this special case. From

now on we assume that d ≥ 3 for p = 3.

Using (4.7) iteratively, we obtain

ℓk+1 ≤ pkℓ1 < pep/(p−1)+d/ep ≤ max
p−1≤t≤d

pt/(p−1)+d/t = p1+d/(p−1).

We have to show that

p1+d/(p−1) ≤ 2d+1.

This is true by inspection in the cases

p = 2, p = 3, d ≥ 3, p = 5, d ≥ 4.

Now assume that p ≥ 7, in which case d ≥ 6. Since p ≤ d+ 1, we have

p1+d/(p−1) ≤ (d+ 1) · 7d/6.

A calculation shows that (d+ 1) · 7d/6 ≤ 2d+1 for d ≥ 6. This completes the

proof of (4.4).
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Proof of Proposition 4.3 We use (2.4) with α = Φn(γ). For v ∈ MK we

have

− log− |Φn(γ)|v ≤

{

1012d4(h(γ) + 1) · 2ω(n) log(n+ 1), v | ∞,

− log |n|v, v < ∞.

Indeed, the archimedean case is Corollary 3.5, and the non-archimedean

case is Lemma 4.5. Summing up, we obtain

h(Φn(γ)) ≤ 1012d4(h(γ) + 1) · 2ω(n) log(n + 1) + log n,

which is sharper than (4.2).

4.2 Proof of Theorem 4.2

Assume un does not have a primitive divisor, but n satisfies (4.1). We have,

in particular, n ≥ 1030. Comparing Proposition 4.3 and Theorem 3.1, we

obtain

ϕ(n)h(γ) ≤ 1013d4(h(γ) + 1) · 2ω(n) log(n + 1) + 2ω(n) log(πn)

≤ 1014d4(h(γ) + 1) · 2ω(n) log(n + 1).

Since γ is not a root of unity, we have

(4.9) dh(γ) ≥ 2(log(3d))−3,

see [18, Corollary 2]. Hence

ϕ(n)h(γ) ≤ 1015d5(log(3d))3h(γ) · 2ω(n) log(n+ 1),

which implies

(4.10) ϕ(n) ≤ 1015d5(log(3d))3 · 2ω(n) log(n+ 1).

For n ≥ 1030 we have

(4.11) ϕ(n) ≥ 0.5
n

log logn
, ω(n) ≤

logn

log log n− 1.2
,

see [14, Theorem 15] and [13, Theorem 13]. Hence for n ≥ 1030

2ω(n)
n

ϕ(n)
log(n+ 1) ≤ n(log 2)/(log log(1030)−1.2) · 2(log log n) · log(n+ 1)

≤ n1/3.

Using this, we deduce from (4.10) the inequality n2/3 ≤ 1015d5(log(3d))3. A

quick calculation shows that this inequality is incompatible with (4.1).
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5 Proof of Theorems 1.2 and 1.3

Since condition 2 of Theorem 1.2 trivially implies condition 1 (see Exam-

ple 1.1) it suffices to prove Theorem 1.3. Thus, in the sequel:

• ci(x) and fi(x) are polynomials not satisfying condition 2 of Theo-

rem 1.2 and

un(x) = c1(x)f1(x)
n + c2(x)f2(x)

n (n = 1, 2, . . .);

• m and n are positive integers such that un(ζ) = 0 for a primitive mth

root of unity ζ ; since un(x) ∈ Q[x], this is equivalent to

(5.1) Φm(x) | un(x).

5.1 Some reductions

We start by some general observations.

• We may assume that

(5.2) c1(ζ)c2(ζ)f1(ζ)f2(ζ) 6= 0.

Otherwise ϕ(m) ≤ D, and, using

(5.3) ϕ(m) ≥ m1/2 (m 6= 2, 6)

(see [17]), we obtain m ≤ max{6, D2}, which is much sharper than

what we want to prove.

• We may assume that at least one of f1, f2 is a non-constant polyno-

mial. Otherwise deg un(x) ≤ D, and we again obtain ϕ(m) ≤ D.

• We may assume that n > D. Otherwise deg un(x) ≤ D +D2, and, us-

ing (5.3) we obtainm ≤ max{6, (D +D2)2}, again much sharper than

the wanted result.

• Replacing ci(x) and fi(x) by

c̃i(x) := ci(x)/ gcd(c1(x), c2(x)), f̃i(x) := fi(x)/ gcd(f1(x), f2(x)),

respectively, we may assume that the polynomials c1, c2 are coprime

in the ring Q[x], and so are f1, f2:

(5.4) gcd(c1(x), c2(x)) = gcd(f1(x), f2(x)) = 1.
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Lemma 2.2 implies that

h(c̃1, c̃2) ≤ h(c1, c2) + (D + 1) log 2 ≤ X + (D + 1) log 2,

and similarly for h(f̃1, f̃2). Hence, to prove (1.2) in the general case,

it suffices to prove

(5.5) m ≤ e30D(X+D)

in the “coprime case”, that is, assuming (5.4).

We distinguish several cases according to the nature of roots of our poly-

nomials:

1. f1(x)f2(x) admits a root which is non-zero and not a root of unity;

2. f1(x)f2(x) vanishes at a root of unity;

3. f1(x)f2(x) vanishes only at 0.

These cases are treated separately in the subsequent subsections.

5.2 The polynomial f1(x)f2(x) admits a root γ which

is non-zero and not a root of unity

By symmetry, we may assume that γ is a root of f1(x). Since the statement

of Theorem 1.3 is invariant under multiplication of the polynomials c1, c2

by the same non-zero rational number, we may assume that the polynomial

c1(x) is monic. Similarly, we may assume that f1(x) is monic.

Denote K = Q(γ). Then

d := [K : Q] ≤ D.

Since X ≥ 3, the right-hand side of (5.5) exceeds 1030D9. Hence we may

assume that

m > max{2d+1, 1030d9}.

Theorem 4.2 together with Proposition 4.1 implies now that there exists a

prime p of K such that νp(Φm(γ)) > 0 and

m < N p.

So we only have to bound N p.
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5.2.1 The numbers β and δ

We have f2(γ) 6= 0 by (5.4). However, it it possible that c2(γ) = 0. Denote r

the order of γ as a root of c2(x), and set

β =
c
(r)
2 (γ)

r!
, δ = f2(γ),

These are non-zero elements of the number field K.

We claim that one of the following holds:

νp(α) < 0 for some coefficient α of c1 or f1 or c2 or f2;(5.6)

νp(β) > 0;(5.7)

νp(δ) > 0.(5.8)

Indeed, since νp(Φm(γ)) > 0, there exists a primitive mth rooth of unity ζ

and a prime P | p of the field K(ζ) such that

νP(ζ − γ) > 0.

Now, if (5.6) does not hold, then our four polynomials belong to OP[x],

where OP is the local ring of P. Moreover, since f1 is monic, γ ∈ OP. Hence

the polynomials

F (x) :=
c1(x)f1(x)

n

(x− γ)r
, G(x) :=

c2(x)

(x− γ)r

belong to OP[x] as well. Note that F (x) is indeed a polynomial, and more-

over

F (γ) = 0,

because n > D ≥ r.

We have β = G(γ) and F (ζ) = −G(ζ)f2(ζ)
n (because un(ζ) = 0). This

implies the following congruences in the ring OP:

βδn ≡ G(ζ)f2(ζ)
n ≡ −F (ζ) ≡ −F (γ) ≡ 0 mod P.

Hence either β ≡ 0 mod P or δ ≡ 0 mod P, which means that one of (5.7)

or (5.8) holds true.

5.2.2 Estimates

Now we are ready to estimate N p. Using Lemma 2.3, we obtain

(5.9) logN p ≤ max{h(1, c1), h(1, c2), h(1, f1), h(1, f2), h(β), h(δ)}.
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Since f1(x) is a monic polynomial, we have

(5.10) h(1, f1), h(1, f2) ≤ h(f1, f2) ≤ X,

and similarly for c1, c2. Furthermore, using Lemma 2.1, we find

h(γ) ≤ h(f1) + log 2

≤ X + log 2,

h(δ) ≤ h(1, f2) +Dh(γ) + log(D + 1)

≤ (D + 1)X + 2D,

h(β) ≤ h(1, c
(r)
2 /r!) +Dh(γ) + log(D + 1)

≤ h(1, c2) +D log 2 +DX +D log 2 + log(D + 1)

≤ (D + 1)X + 2D.

This implies that

logN p ≤ (D + 1)X + 2D < 3DX.

Since m < N p, this proves (5.5).

5.3 The polynomial f1(x)f2(x) vanishes at a root of

unity ξ

We may assume that f1(ξ) = 0. Then f2(ξ) 6= 0 by (5.4).

Let us describe our argument informally. Since f1(ξ)/f2(ξ) = 0, there

exists ε > 0 such that |f1(z)/f2(z)| ≤ 1/2 when |z − ξ| ≤ ε.

Now assume that un(ζ) = 0 for some primitive mth root of unity ζ .

Using (5.2), we may write

(5.11) 0 6= α :=
c2(ζ)

c1(ζ)
= −

(

f1(ζ)

f2(ζ)

)n

.

Let Q(ζ)
σ
→֒ C be a complex embedding of the field Q(ζ) such that ζσ

belongs to the ε-neighborhood of ξ. Then |ασ| ≤ (1/2)n. Define

(5.12) β :=
∏

|ζσ−ξ|≤ε

ασ,

the product being over all σ as above. Since the ε-neighborhood of ξ contains

a positive proportion of primitive mth roots of unity, we have

− log |β| ≫ nϕ(m),
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where the implied constant depends on our polynomials ci and fi and on

our choice of ε.

On the other hand, α 6= 0, and h(α) ≪ 1 by Lemma 2.1. Hence Liouville’s

inequality (Lemma 2.4) implies that

− log |β| =
∑

|ζσ−ξ|≤ε

− log |ασ| ≪ [Q(ζ) : Q] = ϕ(m).

This bounds n.

This all will be made explicit in Subsection 5.3.2. But first, we establish

some simple lemmas.

5.3.1 Some lemmas

Lemma 5.1. Let a, b ∈ R, a < b, andm a positive integer. Denote ϕ(m, a, b)

the number of integers k coprime with m and satisfying a ≤ k ≤ b. Then

ϕ(m, a, b) = (b− a)ϕ(m) +O1(2
ω(m)).

For the proof, see [7, Lemma 2.3].

Lemma 5.2. Let ε satisfy 0 < ε ≤ 1 and let ξ be a complex number on the

unit circle; that is, |ξ| = 1. Let m be a positive integer. Then there exist at

least π−1εϕ(m)− 2ω(m) primitive mth roots of unity ζ satisfying |ζ − ξ| ≤ ε.

Proof. Write ξ = e2πθi with θ ∈ R, and let η > 0 be the smallest positive

real number with the property 2 sin(πη) = ε. Note that 1/6 ≥ η > (2π)−1ε.

If k is an integer satisfying

m(θ − η) ≤ k ≤ m(θ + η), gcd(m, k) = 1,

then ζ := e2πik/m is a primitive mth root of unity satisfying |ζ − ξ| ≤ ε.

Lemma 5.1 implies that there is at least 2ηϕ(m)− 2ω(m) choices for k,

with distinct k giving rise to distinct ζ (this is because η ≤ 1/6). Since

η ≥ (2π)−1ε, the result follows.

Lemma 5.3. Let f1(x), f2(x) ∈ C[x] be polynomials of degrees bounded by D,

and with coefficients bounded by H ≥ 1 in absolute value. Let ξ ∈ C be such

that

|ξ| ≤ 1, f1(ξ) = 0, f2(ξ) = δ 6= 0.

Set

ε =
min{|δ|, 1}

3D2H
.

Then for z ∈ C satisfying |z − ξ| ≤ ε we have |f1(z)/f2(z)| ≤ 1/2.
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Proof. Since |ξ| ≤ 1 and ε ≤ 1/3D, we have for |z − ξ| ≤ ε trivial estimates

|f ′
i(z)| ≤

1

2
D(D + 1)H(1 + ε)D−1 ≤ D2H (i = 1, 2).

Hence for |z − ξ| ≤ ε we have

|f1(z)| ≤ D2Hε ≤
1

3
|δ|, |f2(z)| ≥ |δ| −D2Hε ≥

2

3
|δ|.

This proves the lemma.

5.3.2 The estimates

As in Subsection 5.2 we may assume that f1 is monic, which implies that

we have (5.10). In particular, the coefficients of f1 and f2 are bounded in

absolute value by H := eX . Set δ = f2(ξ).

Note that the degree of ξ is at most D and the height is 0, because it is

a root of unity. Using Lemmas 2.1 and 2.4, we estimate

|δ| ≥ e−h(f2(ξ)) ≥ e−h(1,f2)−log(D+1) ≥ ((D + 1)H)−1.

Setting ε = (6D3H2)−1, Lemma 5.3 implies that

∣

∣

∣

∣

f1(z)

f2(z)

∣

∣

∣

∣

≤ 1/2

for z ∈ C with |z − ξ| ≤ ε.

Now define α and β as in (5.11), (5.12). Then

(5.13) − log |β| ≥ nr log 2,

where r is the number of embeddings Q(ζ)
σ
→֒ C such that |ζσ − ξ| ≤ ε.

Denote σ1, . . . , σr all those σ. Lemmas 2.4 and 2.1 imply that

− log |β| =
r

∑

i=1

− log |ασi|

≤ [Q(ζ) : Q]h(α)

≤ ϕ(m)(h(c1, c2) + log(D + 1))

≤ ϕ(m)(X + log(D + 1)).

Together with (5.13) this implies that

(5.14) n ≤
ϕ(m)

r log 2
(X + log(D + 1)),
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so we only have to bound r from below.

Lemma 5.2 implies that

r ≥ π−1εϕ(m)− 2ω(m),

where we recall that ε = (6D3H2)−1 with H = eX . Using (4.11) with n re-

placed bym, a messy but trivial calculation shows that eitherm ≤ e30D(X+D)

(as we want) or 2ω(m) ≤ (2π)−1εϕ(m). Thus, r ≥ (2π)−1εϕ(m), which, sub-

stituted to (5.14), gives

n ≤ 100D4e3X .

Then

ϕ(m) ≤ deg un(x) ≤ 200D5e3X ,

and, using (5.3), we deduce from this an estimate much sharper than (5.5).

5.4 The only root of f1(x)f2(x) is 0

We may assume that f1(x) = 1 and f2(x) = κxb, where κ ∈ Q× and

1 ≤ b ≤ D < n.

We recall the following theorem of Mann [8].

Theorem 5.4. Let a0, a1, . . . , ak ∈ Q× and x0 = 1, x1, . . . , xk be roots of

unity such that

(5.15) a0x0 + a1x1 + · · ·+ akxk = 0.

Assume that

(5.16)
∑

i∈I

aixi 6= 0

for every non-empty proper subset I ⊂ {0, . . . , k}. Then xm
i = 1 where

m =
∏

p≤k+1

p.

For us, we label

ci(x) =

D
∑

j=0

ci,jx
j for i = 1, 2,

and we get

(5.17)

D
∑

j=0

c1,jζ
j +

D
∑

j=0

c2,jκ
nζj+nb = 0.
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This almost looks like the equation from Mann’s theorem (5.15) except that

the non-degeneracy condition (5.16) might fail. So, let us study (5.17). Let

C be the set of non-zero coefficients among c1,j and c2,jκ
n for 0 ≤ j ≤ D.

If c ∈ C then c = cℓ,jκ
δn for some ℓ ∈ {1, 2} and j ∈ {0, . . . , j}, then put

xc = ζj+δnb. Here, we take δ = 0 if ℓ = 1 and δ = 1 if ℓ = 2. With these

conventions, equation (5.17) is

∑

c∈C

cxc = 0.

This splits into a certain number of non-degenerate equations. That is, there

is a partition C1∪C2∪· · ·∪Ct = C such that
∑

c∈Ci
cxc = 0 for i = 1, . . . , t

and each of these sub-equations is non-degenerate in the sense that it has

no zero proper sub-sums. Clearly, #Ci ≥ 2 for each i. We analyze two sub-

cases.

5.4.1 We have #Ci ≥ 3 for some i ∈ {1, . . . , t}

Then Ci contains two coefficients with the same ℓ. We assume that ℓ = 1

(the case ℓ = 2 reduces to ℓ = 1 replacing ζ by ζ−1) and let j1 < j2 be the

smallest such that c1,j1, c1,j2 belong to Ci. Then the equation is

c1,j1ζ
j1 + c1,j2ζ

j2 +
∑

cℓ,jκ
δn∈Ci

ℓ=2 or j>j2

cℓ,jκ
nδζj+nδb = 0.

Dividing by ζj1, we get

c1,j1 + c1,j2ζ
j2−j1 +

∑

cℓ,jκ
δn∈Ci

ℓ=2 or j>j2

cℓ,jκ
nδζj−j1+nδb = 0.

We are now in the position to apply Mann’s theorem to conclude that

ζ (j2−j1)m1 = 1, m1 |
∏

p≤#Ci

p |
∏

p≤2D+2

p,

because #Ci ≤ 2D + 2. Since |j2 − j1| ≤ D, we have

(5.18) m ≤ D
∏

p≤2D+2

p.

The inequality
∑

p≤x log p ≤ 1.02x holds for all x > 0, see [14, Theorem 9].

Hence

logm ≤ logD +
∑

p≤2D+2

log p ≤ 4D,

which is much sharper than what we need.
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5.4.2 We have #Ci = 2 for all i = 1, . . . , t

In fact, we may assume not only that #Ci = 2 but also that each Ci con-

tains exactly one c1,j1 and one c2,j2κ
n; otherwise the argument from Subsec-

tion 5.4.1 applies, and we again have (5.18). So, let

c1,j1ζ
j1 + c2,j2κ

nζj2+nb = 0.

We then get ζj2−j1+nb = −c1,j1/c2,j2κ
−n. The pair (j1, j2) depends on i.

Assume first that, as we loop over i, the differences j2− j1 are not the same

over all i; that is, there are two values of i corresponding to say (j1, j2) and

(j′1, j
′
2) such that j′2 − j′1 6= j2 − j1. We obtain

ζ (j2−j1)−(j′2−j′1) =
c1,j1/c2,j2
c1,j′

1
/c2,j′

2

and the number on the right is a root of unity belonging to Q. Hence it is

±1. The exponent on the left satisfies

0 6=
∣

∣(j2 − j1)− (j′2 − j′1)
∣

∣ ≤ 2D.

Hence m ≤ 4D, again better than wanted.

Now let us assume that j2 = j1 + a with the same a for all i. In this case

c2,j1+a = λc1,j1 with the same λ ∈ Q× holds for all the i as well. This makes

the rational function c2(x)/c1(x) equal to λxa, and so

un(x) = c1(x)(1 + λκnxa+nb).

Since un(ζ) = 0 but c1(ζ) 6= 0, we must have 1 + λκnζa+nb = 0, which means

that λκn is a root of unity, so ±1. Now we have two options: either both λ

and κ are ±1, or none is. The first option means that condition 2 of Theo-

rem 1.2 is satisfied, which is against our hypothesis. Hence λκn = ±1, but

λ, κ 6= ±1.

We have clearly h(κ) = h(f1, f2) ≤ X and h(λ) = h(c1, c2) ≤ X . Since κ

is a rational number, distinct from 0 and from ±1, its numerator or de-

nominator (say, the former) is at least 2 in absolute value. It follows that

the denominator of λ = ±κ−n is at least 2n in absolute value. But the de-

nominator of λ cannot exceed eh(λ) ≤ eX . We obtain 2n ≤ eX , which implies

n ≤ logX. Hence

ϕ(m) ≤ deg un(x) ≤ D +D logX,

which implies a much sharper estimate for m than the wanted (5.5).

Theorem 1.3 is proved.
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6 Proof of Theorem 1.6

Let ζ be an mth primitive root of unity such that the set

(6.1) {n ∈ Z>0 : un(x) is not identically 0, but un(ζ) = 0}

is not empty. If c1(ζ)f1(ζ) = c2(ζ)f2(ζ) = 0 then set (6.1) consists of all

positive integers, and includes 1 in particular.

If, say, c1(ζ)f1(ζ) 6= 0, and set (6.1) is non-empty, then

c1(ζ)f1(ζ)c2(ζ)f2(ζ) 6= 0.

Denoting

η =
f1(ζ)

f2(ζ)
, θ = −

c2(ζ)

c1(ζ)
,

set (6.1) consists of n with the property ηn = θ. If η is a root of unity, then its

order divides 2m, and there exists a positive n ≤ 2m such that ηn = θ. If η

is not a root of unity, then n = h(θ)/h(η). We have h(θ) ≤ X + log(D + 1)

by Lemma 2.1, and ϕ(m)h(η) ≥ 2(logϕ(m))−3, see (4.9). Hence

n ≤ m(logm)3(X + logD).

Theorem 1.6 is proved.
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