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ABSTRACT: Small particles attach to liquid−fluid interfaces due to
capillary forces. The influence of rotation on the capillary force is largely
unexplored, despite being relevant whenever particles roll at a liquid−
fluid interface or on a moist solid. Here, we demonstrate that due to
contact angle hysteresis, a particle needs to overcome a resistive
capillary torque to rotate at an interface. We derive a general model for
the capillary torque on a spherical particle. The capillary torque is given by M = γRLk(cosΘR − cosΘA), where γ is the interfacial
tension, R is the radius of the particle, L is the diameter of the contact line, k = 24/π3 is a geometrical constant, and ΘR and ΘA are
the receding and advancing contact angles, respectively. The expression for the capillary torque (normalized by the radius of the
particle) is equivalent to the expression for the friction force that a drop experiences when moving on a flat surface. Our theory
predicts that capillary torque reduces the mobility of wet granular matter and prevents small (nano/micro) particles from rotating
when they are in Brownian motion at an interface.

■ INTRODUCTION
Young’s law states that the contact angle between a liquid−air
interface and an ideal solid is given by1

cos Y
SA SLΘ =

γ − γ
γ (1)

where ΘY is Young’s contact angle, and γSA, γSL, and γ are the
solid−air, solid−liquid, and liquid−air interfacial tensions,
respectively. Since γSA, γSL, and γ are constant material
properties for an ideal solid, eq 1 predicts that the contact
angle is uniquely defined. Therefore, according to Young’s law,
an ideal (solid) particle should be able to rotate freely at a
liquid−air interface, as long as the interface has time to reach
equilibrium (Figure 1a).
However, in reality, the (static) contact angle, Θ, does not

take a single value, but it lies within a finite range, between the
so-called receding and advancing contact angles (ΘR ≤ Θ ≤
ΘA). A liquid only begins to advance relative to a solid when Θ
≥ ΘA, and it only begins to recede when Θ ≤ ΘR. This effect is
called contact angle hysteresis. Contact angle hysteresis is
caused by inhomogeneities on the surface of the solid and by
the adaption of the solid to the liquid.2−5 All real solids
(including particles) display contact angle hysteresis. There-
fore, to rotate a particle relative to a liquid−air interface, the
contact angle on the side that rolls out of the liquid must be
equal to ΘR, whereas the contact angle on the side that rolls
into the liquid must be equal to ΘA [Figure 1b].
The influence of contact angle hysteresis on the rotation of

particles at an interface is still largely unexplored, despite its
potential relevance in addressing practical questions such as
what causes granular matter (e.g., sand grains) to flow more
slowly when moist? Dry particles easily roll and slide relative to
one another.6−8 Unlike dry particles, moist particles are

connected by microscopic liquid bridges.9−12 Particles
connected to liquid bridges cannot roll and slide easily.
Several mechanisms have been identified to explain why this is
so. First of all, the liquid bridges cause an increase in adhesion
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Figure 1. Particle (gray) rotating at a liquid−air interface (red),
ignoring gravitational effects. (a) Without contact angle hysteresis, the
interface remains flat and symmetric since the contact angle has a
unique value, Θ. (b) With contact angle hysteresis, the interface
becomes asymmetric. On the right, the contact angle is equal to the
receding angle, ΘR, whereas on the left, it is equal to the advancing
angle, ΘA.
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between the particles,13 which results in an increase in
friction.14 Second, the bridges form an extended network,
resulting in a stiff structure.15 A third contribution is due to
viscous dissipation within the liquid bridges.9 However, none
of these contributions considers the influence of contact angle
hysteresis on the ease with which particles can roll, even
though contact angle hysteresis can significantly alter rolling
friction, as shown by Schade and Marshall (2011)16 and
Marshall (2014),17 who considered a particle rolling on a thin
liquid film.
In this paper, we derive a general analytical expression for

the resistive torque experienced by a particle rotating at an
interface (Figure 1b). Surface tension always acts parallel to an
interface. Therefore, on both the right and left sides of the
particle, the surface tension vector has a component tangential
to the particle. This tangential component produces a torque
that opposes the rotation. Since the torque is caused by surface
tension, we will call it capillary torque. In general, the capillary
torque increases with contact angle hysteresis and has a
maximum of the order of γRL, where γ is the surface tension, R
is the radius of the particle, and L is the diameter of the three-
phase contact line around the particle. Our results demonstrate
that contact angle hysteresis is an important factor that can
severely restrict rotation at an interface when the magnitude of
the torque causing rotation is ≪γRL.

■ THEORY
General Expression for the Torque. As a model system,

we consider a spherical particle at a liquid−fluid interface. In
general, the second fluid can be any gas or liquid that is
immiscible with the first liquid. In the following, we will refer
to the second fluid as “air”. Our aim is to calculate the torque
required to rotate the particle about the x-axis that goes
through its center (Figure 2).18 When the particle rotates
counterclockwise, the liquid−air interface recedes (advances)
on the right (left) side of the axis of rotation. This asymmetry
gives rise to a torque about the axis of rotation

lM r d
CL

∮ γ= ×⊥ (2)

where r⊥ is the perpendicular vector from the rotational axis to
the contact line, × denotes the vector cross product, and dl =
R sin ϕ dα is the contact line length element. The contour
integral is around the contact line (CL), which we assume to
be circular. γ acts at the contact line and makes an angle Θ(α)
with the surface of the particle, where Θ(α) is the contact
angle at an azimuthal angle α. In spherical coordinates, γ is
given by

rsin ( ) cos ( )γ ϕγ α γ α= Θ ̂ + Θ ̂ (3)

where r ̂ is the radial unit vector from the center of the sphere
and ϕ̂ is the polar unit vector defined from the z-axis. r⊥ can
most easily be expressed in terms of the Cartesian unit vectors

R Rr y zsin sin cosϕ α ϕ= ̂ + ̂⊥ (4)

Integrating eq 2 requires knowledge of the contact angle
variation around the contact line, Θ(α). Θ(α) is not known for
a rotating particle. However, we expect it to be analogous to
contact angle variation around a drop moving on a flat surface.
In both cases, there is relative motion between a solid and a
liquid, with a receding contact angle on one side and an
advancing contact angle on the opposite side. At the front of a
moving drop, the contact angle corresponds to the advancing
contact angle, whereas at the rear side, it corresponds to the
receding contact angle. Several models have been proposed to
describe the variation of the contact angle between these two
extremities. Dimitrakopoulos and Higdon used a step
function,20 Korte and Jacobi assumed Θ(α) to be linear in
α,21 Extrand and Kumagai assumed that cosΘ(α) is linear in
α,22 and ElSherbini and Jacobi demonstrated (experimentally)
that both Θ(α) and cosΘ(α) can be fitted by a cubic
polynomial.23 It turns out that the different assumptions lead
to similar results, except for a different prefactor.
In the appendix, we evaluate eq 2 both for a step and a cubic

variation in cosΘ(α) (Figure 3a) and obtain the following
expression for the magnitude of the capillary torque

M
R

k2 sin (cos cos )2 R Aγ
ϕ= Θ − Θ

(5)

where k = 1 for the step variation and k = 24/π3 ≈ 0.77 for the
cubic variation (Supporting Information). Throughout the rest
of this paper, we will use k = 24/π3 since the cubic variation
allows the contact angle to vary in a realistic (smooth and
continuous) way. The net capillary torque vector points along
the −x direction (i.e., the torque acts clockwise) and therefore
opposes the rotation. The y and z components of the capillary
torque vector are zero due to the symmetry of the contact
angle about the yz plane. We can also express eq 5 in terms of
the average contact angle, Θ = (ΘA + ΘR)/2, and the contact
angle hysteresis, ΔΘ = ΘA − ΘR

M
R

k4 sin sin sin
22γ

ϕ= Θ ΔΘ
(6)

Figure 3 (b) shows a plot of M/γR2 as a function of ϕ, using Θ
= 60° as an example. M has a maximum at ϕ = 90° because the
length of the contact line is largest at this position. The torque

Figure 2. Particle rotating at an interface. Left: schematic of the particle rotating about a horizontal axis going through its center. The contact line is
marked by points A and R. Right: the circular contact line is drawn in red. The blue dotted line shows the rotational axis.
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tends to zero as ϕ tends to 0 and 180° since the length of the
contact line goes to zero at these two extremities. As the
contact angle hysteresis increases, the capillary torque also
increases since a higher ΔΘ causes a more asymmetric
interface.

■ RESULTS AND DISCUSSION
To gain further insights into the implications of the capillary
torque, we consider two special cases: (1) when the particle
rotates about its static equilibrium position and (2) when the
particle is surrounded by a small liquid meniscus on a flat
surface. Recent studies have argued that rotation is a relevant
factor that needs to be considered when removing particles
from surfaces by liquid−air interfaces (e.g., a drop).24,25 In the
following, we quantitatively show that capillary torque is also
important when describing particles in Brownian motion at an
interface and when considering the rolling of wet particles on
surfaces.
Particle Rotating about its Equilibrium Position (ϕ =

Θ). This configuration (Figure 4a) is relevant to describe
particles adsorbed at the surface of a lake, on the surface of a
bubble (e.g., in flotation),26 or on the surface of droplets in a
Pickering emulsion.27,28

When an external force is applied, the particle will not rotate
unless the applied torque exceeds the maximum capillary
torque. By substituting ϕ = Θ in eq 6, we obtain the capillary
torque for a particle rotating about its equilibrium config-
uration

M kR4 sin sin
2

eq 2 2γ= Θ ΔΘ
(7)

Meq is symmetric around Θ = 90° and it increases with contact
angle hysteresis (Figure 4). We have restricted our results to a
maximum contact angle hysteresis of ΔΘ = 50° since our
assumptions about the shape of the contact line might no
longer be appropriate for very large ΔΘ.
Practically, most particles are mildly hydrophilic to mildly

hydrophobic (mean contact angle is approximately between
30° and 90° with water). Special treatments, such as plasma
cleaning or the addition of nanoscale roughness, are usually
required to achieve lower or higher average contact angles with
water. Therefore, for most practical cases, the torque required
to rotate a particle about its equilibrium position at an air−
water interface is of the order of γR2 (Figure 4b).

Brownian Motion at an Interface. In thermal equili-
brium, small particles exhibit Brownian motion. When particles
are in Brownian motion at an interface, the translational
motion is constrained to the two-dimensional interface.29,30

Furthermore, as we will show below, particles at an interface
do not rotate as they would do when fully dispersed in the
liquid. Rotation becomes negligible since it is opposed by
capillary torque.
Here, we quantify this effect by calculating the root-mean-

square angle through which thermal energy rotates a particle at
an interface. As an example, we consider a hydrophobic
particle with Θ = 90°, resting in equilibrium (half-submerged)
at a horizontal air−water interface. In the complete absence of
external forces, ϕ = Θ = 90°, along the entire contact line.
When small rotational forces are applied, the contact line on
the particle will remain pinned unless the angular rotation out
of the plane of the interface is greater than half the contact
angle hysteresis.
At room temperature, thermal energy will attempt to vibrate

and rotate the particle. When thermal energy rotates the
particle counterclockwise by a small angle ϑ, the contact angle
on the right side becomes Θ − ϑ, and the contact angle on the
left becomes equal to Θ + ϑ. Therefore, by substituting ΔΘ =
2ϑ (and Θ = 90°) in eq 7, we obtain the magnitude of the
capillary torque resisting the thermal rotation as M = 4γ k
R2 sin ϑ.

Figure 3. (a) Particle rotating at an interface. The contact line is
assumed to be circular (dashed red). (b) CosΘ(α) is assumed to
follow a cubic polynomial in α. (b) Capillary torque acting on a
sphere (average contact angle, Θ = (ΘA + ΘR)/2 = 60°) as a function
of polar angle, ϕ. The capillary torque increases with contact angle
hysteresis, ΔΘ = ΘA − ΘR, as shown by the different curves.

Figure 4. (a) Static particle in equilibrium at a liquid−air interface (ϕ
= Θ). (b) Capillary torque as a function of average contact angle
when the particle rotates about its initial equilibrium position.
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Since we anticipate ϑ to be small (an assumption that we
will show to be valid below), we can write sin ϑ ≈ ϑ. The work
required to overcome capillary torque and rotate the particle
by ϑ about the x-axis is

W M kR

k R

d 4 d

2

0

2

0

2 2

∫ ∫γ

γ

= ϑ′ = ϑ′ ϑ′

= ϑ

ϑ ϑ

(8)

AsW is quadratic in ϑ, we can apply the equipartition theorem.
According to the equipartition theorem, the thermal energy
accessible to each rotational degree of freedom is kBT/2, where
kB is the Boltzmann constant and T is the absolute
temperature. Since capillary torque influences rotation about
the x- and y-axes, there are two degrees of freedom for rotation
against the interface. Therefore, the average potential energy
associated with rotating the particle against the interface is ⟨W⟩
= kBT. By equating ⟨W⟩ to eq 8, we obtain the root-mean-
square angular displacement caused by Brownian motion

R
k T

k
1

2
2 B

γ
⟨ϑ ⟩ =

(9)

For a nanoparticle with a radius of 50 nm (e.g., soot) at the
surface of water (γ = 72 mN m−1 and T = 300 K),

0.22⟨ϑ ⟩ ≈ °.31 For a 10 μm particle, the angle decreases to
0.01°. Since all real particles have a contact angle hysteresis
much greater than these values, thermal energy is insufficient
to overcome contact line pinning and cause the particles to
rotate relative to the interface. Hence, thermal fluctuations will
only be able to rotate nano- and microparticles by negligible
amounts. Every time thermal fluctuations cause the particle to
rotate, the pinned contact line will restore it back to the
equilibrium configuration, thus preventing any continuous
rotation.
Particle Surrounded by a Meniscus.When a hydrophilic

particle is placed in contact with a hydrophilic surface in air, a
water meniscus forms around the contact region due to the
condensation of water vapor from the atmosphere (Figure
5a).13,32 Capillary condensation leads to an increase in the
normal adhesion force between particles and surfaces due to
capillary forces acting through the water meniscus. The
presence of a small meniscus between particles (e.g., moist
sand grains) or between a particle and a flat surface also
influences their rolling friction. One of the factors that
contribute to the rolling friction is the capillary torque.
When the contact line diameter between the particle and the
meniscus is d (as sketched in Figure 5), the resistive capillary
torque that needs to be overcome to roll the particle is
obtained by substituting d = 2R sin ϕ in eq 5

M kdR(cos cos )R Aγ= Θ − Θ (10)

This expression agrees with the expression derived by Schade
and Marshall (2011) and by Marshall (2014),16,17 except for
the prefactor. Marshall considered the torque about a single
point at the center of the particle, rather than about the axis of
rotation. In Figure 5b, M/γdR (eq 10) is plotted against
contact angle hysteresis for different average contact angles.
We see that the capillary torque increases with contact angle
hysteresis and is symmetric about Θ = 90°. For any contact
angle hysteresis, the maximum corresponds to an average
contact angle of 90° because in this case, the tangential
component of surface tensions oppose rotation on both the

advancing and receding sides. This is not the case for other
values of Θ. For instance, when ΘA = 50° and ΘR = 30°, the
tangential component of surface tension still opposes rotation
on the receding side but acts in the direction of rotation on the
advancing side. Therefore, the overall resistive torque is lower
than when Θ = 90°.
Equation 10 is also valid for a particle rolling on a thin liquid

film, like in the experiments performed by Bico et al.33 and
Schade and Marshall (2011).16 However, in this case, capillary
torque is only one of the several contributing factors to the
resistive force acting on the particle. For a full description, the
solid−solid rolling friction, which arises due to deformation
losses and due to the energy required to peel the rear contact
between the two solid surfaces,34 has to be included.
Furthermore, the viscous forces and Laplace pressure
distribution inside the meniscus have to be considered.17

The relative importance of each of these contributions depends
on the material properties (viscosity, surface roughness,
viscoelastic properties, and surface energies) of the particle,
the flat substrate, and the liquid meniscus.17

Interestingly, capillary torque implies that the onset at which
a particle begins to roll on a wet inclined surface occurs at a
finite angle of inclination, even when there is no solid−solid
rolling friction between the particle and the surface. To gain
intuition on how significant the capillary torque is, we consider
a particle on a flat surface tilted by an angle α to the horizontal.
Our aim is to calculate how large the particle has to be for it to
begin rolling down the inclined surface. We assume that the
contact lines between the meniscus and the particle and
between the meniscus and the flat surface remain pinned until
rolling starts. The onset of rolling occurs when the driving
torque due to the particle’s weight becomes equal to the
capillary torque. The torque produced by the weight of the
particle is mgR sin α, where m is the mass, g = 9.81 m s−2 is the
gravitational acceleration, and R is the radius of the particle,
whereas the capillary torque is given by eq 10. Rolling only
starts when

Figure 5. (a) Particle rolling on a flat surface with a liquid meniscus
between the particle and the surface. (b) Capillary torque as a
function of average contact angle, Θ = (ΘA + ΘR)/2, for different
contact angle hysteresis, ΔΘ = ΘA − ΘR.
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mgR kdRsin (cos cos )R Aα γ> Θ − Θ (11)

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
R

kd
g

3 (cos cos )
4 sin

R A
1/3

γ
πρ α

→ >
Θ − Θ

(12)

where we have expressed m in terms of the volume of the
particle (4πR3/3) and its density, ρ. As an example, we
consider a glass particle (ρ ≈ 2500 kg m−3) surrounded by a
small water meniscus with d = R/5, ΘA ≈ 45°, and ΘR ≈ 10°,35

on a surface tilted by α = 30°. A particle with these parameters
only starts rolling if its radius is larger than ≈250 μm. Even
though we have assumed that the capillary torque is the only
source of resistance in this example, we still obtain a radius that
is larger than the radius above which a dry particle would
usually start rolling down a dry flat surface (a dry 100 μm glass
bead easily rolls down an inclined glass slide).
Capillary torque could also be a significant factor that

contributes to reducing the mobility of humid granular matter.
Dry granular matter flows easily, as exemplified by sand flowing
in an hourglass. In contrast, humid sand hardly flows and can
even be molded into various stable structures, such as
sandcastles.36 It appears that so far, capillary torque has not
been considered when modeling humid granular matter.
Unifying the Results. The expression for the capillary

torque acting on a particle rotating at the surface of a liquid (eq
5) is similar to that for the capillary torque acting on a particle
surrounded by a small meniscus on a flat surface (eq 10).
Interestingly, when normalized by the contact line diameter
and the particle’s radius, these expressions are equivalent to the
expression describing the friction force (per unit diameter)
experienced by a drop moving on a flat surface.20−22,37−45 For
all three cases (Figure 6), the effective force is

F
L

k(cos cos )R Aγ= Θ − Θ
(13)

where L is the diameter of the contact line and k = 24/π3 for a
cubic contact angle variation. The prefactor k may vary
depending on the precise contact line geometry and contact
angle variation. In the case of the rotating particles, the
effective force given by eq 13 corresponds to a force applied
tangentially along the circumference of the particle.
We can take advantage of the similarity of the scenarios

sketched in Figure 6 to indirectly determine the capillary
torque (experimentally). Several methods have been developed
to measure drop friction on various surfaces. In contrast, it is
unusual, as well as practically challenging, to measure the
torque required to rotate a small particle at an interface.
Therefore, an estimate for the capillary torque that a particle
made of material B would experience when it rotates at the
interface between liquid A and air can be conveniently
obtained by instead measuring the force required to move a
drop of liquid A on a flat surface of material B.

■ CONCLUSIONS
We have investigated the capillary forces acting on a particle
when it rotates at an interface. We showed that a particle
rotating at an interface experiences a resistive capillary torque.
The larger the contact angle hysteresis, the greater the capillary
torque. The expression for the capillary torque is similar to the
expression for the friction force between a moving drop and a
flat surface.
Our theory predicts that even for very small (nano/micro)

particles, the energy required to overcome the capillary torque
is much larger than thermal energy. Therefore, particles
moving at an interface due to thermal energy do not rotate.
Furthermore, capillary torque may be an important factor that
needs to be included when modeling the flow of moist granular
matter.

■ EVALUATION OF CAPILLARY TORQUE
To evaluate the cross product in eq 2, we express γ in
Cartesian coordinates using the transformation

i

k

jjjjjjjjjjj

y

{

zzzzzzzzzzz

i

k

jjjjjjjjjjj

y

{

zzzzzzzzzzz

i

k

jjjjjjjjjj

y

{

zzzzzzzzzz

r x
y

z

sin cos sin sin cos

cos cos cos sin sin

sin cos 0

ϕ

α

ϕ α ϕ α ϕ

ϕ α ϕ α ϕ
α α

̂
̂

̂

= −
−

̂
̂

̂ (14)

After applying the transformation to eq 3, we obtain γ in terms
of the Cartesian unit vectors

i

k

jjjjjjjjjjjj

y

{

zzzzzzzzzzzz

sin ( )sin cos cos ( )cos cos
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Integrating the x̂ component of r⊥ × γ around the contact line
(eq 2) gives

Figure 6. Equivalent scenarios. The same expression describes the force required to (1) move a drop on a flat surface, (2) rotate a particle at an
interface, and (3) initiate the rolling of a particle on a flat surface when there is a liquid meniscus between the particle and the surface.
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2

0

2
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(19)

The ŷ component of the integral is

M R sin ( ) sin cos cos ( ) cos

sin cos d 0

y
2

0

2
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(20)

My evaluates to zero because the terms in α are sinΘ(α) cos α
and cosΘ(α) cos α, which both evaluate to zero when
integrated from 0 to 2π. These terms integrate to zero because
sinΘ(α) and cosΘ(α) are even functions about the yz plane,
whereas cos α is an odd function.
Hence, overall, the integrand is an odd function and

therefore integrates to zero.
The z ̂ component of the integral is

M
R
2

sin ( ) sin cos ( ) sin cos

sin sin 2 d

0

z

2

0

2
2∫γ α ϕ α ϕ ϕ

ϕ α α

=− [ Θ + Θ ]

=

π

(21)

Mz evaluates to zero because the terms in α are sinΘ(α) sin 2α
and cosΘ(α) sin 2α, which are both odd functions about the
yz plane. Intuitively,My = 0 andMz = 0 are expected due to the
symmetry of the surface tension vector about the yz plane. Any
surface tension component that produces a moment along the
+y or +z direction is canceled by an equal and opposite
component pointing along −y or −z, respectively. Thus, the
only nonzero torque component is Mx. Since the capillary
torque opposes rotation, we expect Mx to be negative. As we
are interested in the magnitude of the torque, we will consider
−Mx, which is positive. In the following, we will also drop the
subscript and simply refer to −Mx as M.
For simplicity, we first consider a circular contact line

divided between an advancing and a receding side with the
following contact angle dependence

( )
, 0

, 2
R

A
α

α π

π α π
Θ =

Θ < <

Θ < < (22)

For this case, eq 19 (without the negative sign) can be written
as
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cos sin sin d cos sin
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2 0
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R A
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ϕ α α ϕ

α α
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π

π
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(23)

When a more realistic and complex expression is used to
describe Θ(α), the resulting expression is similar to eq 23, but
with a different prefactor

M
R

k2 sin (cos cos )2 R Aγ
ϕ= Θ − Θ

(24)

When cosΘ(α) is given by a cubic polynomial in α, we obtain
k = 24/π3 (Supporting Information).
Alternatively, we can write eq 24 as

M
R

k4 sin sin sin
22γ

ϕ= Θ ΔΘ
(25)

where Θ = (ΘA + ΘR)/2 is the mean contact angle and ΔΘ=
ΘA − ΘR is the contact angle hysteresis. The following
trigonometric identity was used to arrive at eq 25 from eq 24

cos A cos B 2 sin
A B

2
sin

A B
2

− = − + −
(26)
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