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Dynamics of geodesics, and Maass cusp forms

Anke Pohl and Don Zagier

Abstract. �e correspondence principle in physics between quantum mechanics and classical
mechanics suggests deep relations between spectral and geometric entities of Riemannian
manifolds. We survey – in a way intended to be accessible to a wide audience of
mathematicians – a mathematically rigorous instance of such a relation that emerged
in recent years, showing a dynamical interpretation of certain Laplace eigenfunctions of
hyperbolic surfaces.
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1. Introduction

Suppose we have a huge space, such as the earth or a billiard table, and a
small marble sitting on this space. We give this marble an initial push and observe
its trajectory as it travels over the space. As we experienced from a very young
age on, the marble goes straight until it hits an obstacle, e.g., the boundary of the
billiard table, from which it bounces o� with outgoing angle equal to incoming
angle, and then continues its straight path until the next obstacle where the same
game restarts.

Figure 1
Trajectory on a stadium-shaped billiard table
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Figure 2
Trajectory on a hill, given by a disk with a bump in the middle,
viewed from above. Height level curves are indicated by dotted circles.

In Figure 1 this situation is depicted for a �at stadium-shaped billiard table.
In Figure 2 it is shown for a disk with a bump in the middle, indicating that
‘straight path’ here means ‘path of minimal resistance’ or ‘path of minimal e�ort’.

In terms of physics, the motion of the marble is predicted by the laws of
classical mechanics. In such a description, moving objects are often modeled as
point particles, that is, as objects without size or dimension, identifying the object
with its center of mass.

In reality, any real-world object has a non-zero size, and the idealization as a
point is not always desirable or correct. If we consider a very small marble which
is almost a point, say of the size of an electron, or if we zoom in into our previous
marble and try to describe the trajectory of a single electron of it then we notice
that the classical mechanics model is not accurate on this subatomic level. One
of the obstacles is the impossibility to determine simultaneously with absolute
precision the position and momentum of the considered particle, as expressed
by Heisenberg’s famous uncertainty principle. �us, the classical mechanical
principles of determinism and time reversibility are not valid anymore. On
such small scale, a more accurate model is provided by quantum mechanics,
which describes the probability with which the particle attains a speci�c position-
momentum combination.

�e correspondence principle in physics states that, in the limit of passing to
large scale, the predictions of quantum mechanics reproduce those of classical
mechanics. However, the precise relation between classical and quantum mechanics
is not yet fully understood, and its investigation gives rise to many interesting
mathematical questions.

In terms of mathematics, the classical mechanical aspects of the motion of
the marble considered above translate to properties of the geodesic �ow on a
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Riemannian manifold X , whereas the quantum mechanical description relates
to the Laplace operator on X and its (L2 -)eigenvalues and eigenfunctions. �e
correspondence principle then suggests an intimate relation between geometric-
dynamical aspects of X on the one hand, and its spectral aspects on the other:

Physics Mathematics

classical mechanics ! geometric entities :
´
periodic geodesics
lengths of periodic geodesics

quantum mechanics ! spectral entities :
´
Laplace eigenfunctions
Laplace eigenvalues

During the last century, many results showing relations between geometric-
dynamical and spectral properties of Riemannian manifolds have been obtained.
In Section 2 we will discuss – as an appetizer – the �at 1 -torus where a clear
relation between the lengths of periodic geodesics (‘classical mechanical objects’)
and the Laplace eigenvalues (‘quantum mechanical objects’) appears.

�e main aim of this article is to present a much deeper relation between
periodic geodesics and Laplace eigenfunctions that has emerged in recent years,
but now for a class of hyperbolic surfaces.

In a nutshell, this goes as follows. A well-chosen discretization of the �ow
along the periodic geodesics gives rise to a one-parameter family of transfer
operators, which are evolution operators that are reminiscent of weighted graph
Laplacians and that also may be thought of as discretizations of the hyperbolic
Laplacian. As such, these operators are simultaneously objects of classical and
quantum mechanical nature, and therefore can serve as mediators between the
dynamical and spectral entities of the hyperbolic surface under consideration. In
our case, highly regular, rapidly decaying eigenfunctions (called period functions)
of eigenvalue 1 of the transfer operator with parameter s are in bijection
with rapidly decaying Laplace eigenfunctions (called Maass cusp forms) with
spectral parameter s . �is provides a purely dynamical interpretation of the
Maass cusp forms (not just their eigenvalues), shows a close dependence between
periodic geodesics and these Laplace eigenfunctions, and provides a deep-lying
mathematical realization of an instance of the correspondence principle.

�e modular surface was the �rst hyperbolic surface for which such a result
could be established, through combination of work by E. Artin [Art], Series [Ser],
Mayer [May1, May2], Lewis [Lew], Bruggeman [Bru], Chang–Mayer [CM], and
Lewis–Zagier [LZ1, LZ2]. Taking advantage of the constructions involved, an
extension to a class of �nite covers of the modular surface was achieved in
the combination of [CM, DH, FMM]. An alternative proof for the modular
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surface was provided in [BM, MMS]. �e recent development of a new type
of discretizations for geodesic �ows on hyperbolic surfaces [Poh3] and of a
cohomological interpretation of the Maass cusp forms [BLZ] allowed to prove
such a relation between periodic geodesics and Laplace eigenfunctions for a large
class of hyperbolic surfaces far beyond the modular surface and in a very direct
way [MP, Poh1, Poh2].

In Sections 3–7 we will survey this new approach, although in an informal
way and restricting for simplicity to the modular surface. We attempt to provide
su�ciently precise de�nitions and enough details to keep the exposition as
understandable as possible without introducing too much technical material. As
a general principle we invite all readers to rely on their intuitive understanding
of the geometry and dynamics of Riemannian manifolds, to use the many �gures
as a support, and to ignore the exact expressions of all formulas.

To end this introduction, we brie�y mention another example of the many
other strands of research seeking for and establishing relations between geometric-
dynamical and spectral properties of Riemannian manifolds, where considerable
progress has been made in the last two decades and that provides another concrete
incarnation of the correspondence principle: the problem of quantum unique
ergodicity. �is problem concerns the distribution of the mass of high energy
Laplace eigenfunction (i.e., with large eigenvalue). A conjecture by Rudnick and
Sarnak states that on surfaces with su�ciently chaotic geodesic �ows, the mass
of Laplace eigenfunctions equidistributes as their eigenvalues tend to in�nity. In
other words, for such surfaces, the limiting behavior of the mass distribution of
Laplace eigenfunctions is expected to be governed by the behavior of the geodesic
�ow. We refer to [Has, Sar, Zel] for precise statements and excellent surveys of
the recent developments.

2. An appetizer

In this section we will treat the ‘baby case’ of the �at 1 -torus

T D R=Z D Œ0; 1�=¹0D1º ;

and show an intimate and very clear relation between geometric and spectral
entities, and hence a mathematical rigorous instance of the correspondence
principle.

Of course, this speci�c one-dimensional Riemannian manifold is much too
simple to be representative of the general situation. However, it allows us to provide
– without too much technical e�ort – a �rst instance of the relation between the
geometry and the spectrum as motivated by the considerations from physics. We
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will also use this ‘baby example’ to carefully introduce the relevant geometrical
and spectral concepts, whose counterparts in the situation of hyperbolic surfaces
will be treated in the main body of this paper.

2.1. �e �at 1-torus. For a pictorial, but rather sketchy construction of the �at
1 -torus T we may imagine the set R of real numbers as a number line, and
glue together this line at any two points that are separated by an integer distance.
�e glueing process can be visualized as rolling up the line to a unit circle. (See
Figure 3.) Alternatively, we may take the interval Œ0; 1� and glue together its two
endpoints 0 and 1 .

. . . = −1 = 0

1 2

Figure 3
Rolling up R to form T

Both these geometric constructions indicate that T carries more structure than
just being a set. In particular, as we will explain now, a well-de�ned notion of
distances on T exists, and derivatives of maps from and to T can be de�ned.

In order to be able to formulate such additional structures in precise terms
and to work with them, we use a formula-based de�nition of T . For that, we
identify any two points of R that di�er by an integer only. �us, for each r 2 R ,
all points in the set

(1) ¹r Cm j m 2 Zº

are uni�ed to a single element, which we denote by Œr� . �e torus T , as a set,
consists of all these elements. �e glueing process in the pictorial construction
is a visualization of the projection map

(2) �T W R! T ; r 7! Œr� :

�is map is locally injective, which means that for any r 2 R we �nd a small " > 0
such that the restriction of �T to the interval .r � "; r C "/ is injective. Here, we
may choose " D 1

2
for each r 2 R . In rough terms, small pieces of the torus T

look exactly like small pieces of R . It is precisely this property which allows us
to push certain structures of R to T .

2.2. Geometric entities. �e geometric entity or, from the standpoint of the
introduction, the classical mechanical object that we are interested in is the set
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of all periodic geodesics. A geodesic is a path on T of a speci�c type that we
now introduce.

In order to de�ne the di�erentiability of a function mapping from an open
interval in R to T we pick for each x 2 T a representative rx 2 R (thus,
Œrx� D x ) and denote by �x the inverse of the restriction of the projection
map �T to the interval .rx � 1

2
; rx C

1
2
/ . (We recall that �T is locally injective.)

�en �x is the bijective map

�x W T X ¹Œrx C
1
2
�º !

�
rx �

1
2
; rx C

1
2

�
satisfying

�T ı �x D idTX¹ŒrxC1=2�º :

Let I � R be an open interval and p W I ! T a map. �en p is di�erentiable
at t 2 I if there exists ı > 0 such that the map

�p.t/ ı p W .t � ı; t C ı/! R

is well-de�ned and di�erentiable at t . In this case, the derivative of p at t is

p0.t/ WD .�p.t/ ı p/
0.t/ :

It is straightforward to check that neither the property of di�erentiability nor the
derivative depends on the choice of the representative of p.t/ in R . �e map p
is a path on T if it is di�erentiable at any point of I , a property also called
di�erentiable for short. For any path p W I ! T , the set I should be thought of
as a time interval, and p.t/ as the position where we are at time t if we travel
along the path p . �e derivative p0 is the speed of p , and p is said to be of
unit speed if jp0.t/j D 1 for all t 2 I .

A path p W I ! T is straight or a geodesic on T if – roughly said – for any
two nearby points on the path no shorter way between them exists than the path
itself. To be more precise, we de�ne the distance between two points x; y 2 T

to be the minimal distance between any two of their representatives in R , hence

dT .x; y/ WD min
®
dR.rx ; ry/

ˇ̌
Œrx� D x; Œry � D y

¯
;

where
dR.rx ; ry/ WD jrx � ry j

is the usual euclidean distance on R . A path p W I ! T of unit speed is straight
if for any t 2 I there exists " > 0 such that for all t1; t2 2 .t � "; t C "/ \ I we
have

dT

�
p.t1/; p.t2/

�
D

ˇ̌̌̌Z t2

t1

jp0.t/j dt

ˇ̌̌̌
D

ˇ̌
t1 � t2

ˇ̌
D dR.t1; t2/ :
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�at is, the distance between p.t1/ and p.t2/ equals the length of the path
between p.t1/ and p.t2/ , which here also equals the euclidean distance be-
tween t1 and t2 . From now on, ‘geodesic’ will always mean a unit speed,
complete geodesic, i.e., a straight path of unit speed with time interval I D R .

In everyday language, the notion of path usually does not refer to the motion,
i.e., to a map p W I ! T , but rather to the static object, i.e., to the image p.I /
of p . �e orientation, however, is important: ‘the path from a to b ’. We too
will use the notion of geodesic more �exibly and apply it to refer to either

(G1) a geodesic p W R! T de�ned as above as a path, or

(G2) the oriented image of such a geodesic, or – more precisely – its
equivalence class when we identify any two such geodesics that di�er
only by a shift in their arguments.

�e motivation for the second usage is that we are typically not interested in the
speci�c time parametrization of a geodesic. �e context should always clarify
which version is being used.

In our one-dimensional ‘baby example’ there are only two geodesics in the
sense (G2), namely those represented by the two geodesics in the sense (G1)
given by

p˙ W R! T ; t 7! Œ˙t � :

(See Figure 4.) Both these geodesics are periodic, that is, they ‘close up’, or in
rigorous terms, there exists t0 > 0 such that for all t 2 R ,

p˙.t/ D p˙.t C t0/ :

�e minimal such t0 is called the (primitive) period or (primitive) length `.p˙/

of the geodesic p˙ , which here is `.p˙/ D 1 in both cases. Periodicity and
lengths are invariants under the equivalence of geodesics, and hence an intrinsic
notion for geodesics in the sense (G2).

p+ p−

Figure 4
�e two periodic geodesics on T
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For this ‘baby example’ we are interested in the (primitive) geodesic length
spectrum LT , de�ned as the multiset (D set with multiplicities) of lengths of
the periodic geodesics in the sense (G2). In our case, this is

LT D ¹lengths of periodic geodesicsºM D ¹1; 1ºM :

2.3. Spectral entities. �e spectral entity or the quantum mechanical object that
we need here is the Laplace spectrum of T , which we now explain.

In analogy with the de�nitions of di�erentiability for maps I ! T , we use
the local injectivity of the projection map �T to characterize the di�erentiability
of functions T ! C . �en a function f W T ! C is di�erentiable if the map

F WD f ı �T W R! C

is di�erentiable. �e derivative of f at Œr� 2 T is then the derivative of F
at r 2 R , and again it is straightforward to check that f 0.Œr�/ is indeed well-
de�ned.

Further, a function f W T ! C is square-integrable or, for short, in L2 , if
the map

Qf WD f ı �T jŒ0;1/ W Œ0; 1/! C

is square-integrable in the usual sense. In particular, Qf is integrable andZ 1

0

j Qf .r/j2 dr <1 :

We identify two such functions f1 , f2 if
R 1
0
j Qf1.r/� Qf2.r/j

2 dr D 0 and denote
the set of all equivalence classes by L2.T / .

�e Laplace operator on T , given by

�T WD �
d2

dŒr�2
;

acts on L2.T / . As Fourier theory shows, a basis for its L2 -eigenfunctions is
constituted by the family

fk W T ! C ; fk
�
Œr�
�
WD e2�ikr .k 2 Z/ :

An immediate calculation gives

�Tfk D .2�k/2fk :

�us, the Laplace spectrum of T is the multiset

�.T / D ¹Laplace eigenvaluesºM D
®
.2�k/2 j k 2 Z

¯
M :
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2.4. Relation between geometric and spectral entities. �e physics-informed
intuition on a close relation between the geodesic length spectrum LT of T and
the Laplace spectrum �.T / can be proven mathematically rigorously in di�erent
ways of which we provide one here. For that we consider the dynamical zeta
function

�T .s/ WD
Y
`2LT

�
1 � e�s`

�
D .1 � e�s/

2
:

�en
�T .s/ D 0 () s D 2�ik for some k 2 Z ,

and the order of each zero is 2 . In other words,

(3) �T .s/ D 0 () .is/2 2 �.T / ;

and the order of s as a zero corresponds to the order of .is/2 as eigenvalue,
except for s D 0 , where the order of the Laplace eigenvalue .is/2 D 0 is 1 ,
whereas the order of the zero s D 0 of �T is 2 .

�us knowing the geodesic length spectrum LT , and hence the dynamical
zeta function �T , we can deduce all Laplace eigenvalues, and even their
multiplicities up to the di�culty at s D 0 . Conversely, if we are given the
Laplace spectrum �.T / (with multiplicities), and hence all zeros of �T with
almost all multiplicities, then we can easily deduce the exact formula of �T and
thus the geodesic length spectrum.

�is ends the 1 -dimensional ‘appetizer’. In the rest of the paper we will study
a 2 -dimensional case, again describing �rst the geometric side, then the spectral
side, and then the relation between them. Of course, this case is much more
involved, but we have tried to introduce the concepts in this one-dimensional
torus case in such a way that they generalize naturally.

3. Geometric and spectral sides of the modular surface

In the previous section we considered the torus T , which is a quotient of the
�at 1 -manifold R by a discrete group action. From now on, we will consider
hyperbolic surfaces, which are orbit spaces of the hyperbolic plane H by discrete
groups of Riemannian isometries. For concreteness we will discuss only the
modular surface X D PSL2.Z/nH , even though the results hold for a much
larger class. We will provide precise de�nitions of all objects further below in
this section.

In the course of the following four sections we will survey – as already
mentioned in the introduction – a rather deep relation between the geodesic
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�ow on X and the rapidly decaying Laplace L2 -eigenfunctions for the modular
group PSL2.Z/ , the Maass cusp forms. �is results in a dynamical interpretation
of Maass cusp forms, or from a physics point of view, in a description of certain
quantum mechanical wave functions using only tools and objects from classical
mechanics. �e proof of this relation is split into three major steps:

(I) A cohomological interpretation of Maass cusp forms, which we will explain
in Section 4. Representing Maass cusp forms faithfully as cocycle classes in
suitable cohomology spaces provides an interpretation of these forms in a
rather algebraic way of which we will take advantage.

(II) A well-chosen discretization of the geodesic �ow on X , which we will
construct in Section 5. �is discretization extracts those geometric and
dynamical properties from the geodesic �ow on X that are crucial for
the relation to Maass cusp forms, and it discards all the other additional
properties. �is condensed, discrete version of the geodesic �ow is also of
a rather algebraic nature.

(III) A connection between the discretization of the geodesic �ow and the
cohomology spaces, as discussed in Section 6. �e central object mediating
between these objects is the evolution operator (with speci�c weights, adapted
to the spectral parameter of Maass cusp forms; a transfer operator) of the
action map in the discrete version of the geodesic �ow. We will see that the
highly regular eigenfunctions of the evolution operator with parameter s are
building blocks for the cocycle classes in the cohomological interpretation
of the Maass cusp forms with spectral parameter s , and will establish an
explicit bijection between these eigenfunctions and the Maass cusp forms.

Even though the �rst two steps are technically independent of each other, crucial
choices in the construction of the discretization of the geodesic �ow in the
second step can be motivated by the precise expressions in the cohomological
interpretation of Maass cusp forms in the �rst step. �erefore we recommend
the reader to go through these steps in the order as presented. �e third step
necessarily takes advantage of the results from Sections 4 and 5. From a technical
point of view, only the �nal results of these sections are needed for Step (III), not
the information on how they were obtained, so readers who are only interested
in this step may proceed directly to Section 6 after familiarizing themselves with
the general setup and �eorems 4.1 and 5.1. In Section 7 we will provide a brief
recapitulation.

In the remainder of this section we introduce the geometric and spectral objects
that we will need further on. We restrict ourselves here to the absolutely necessary
minimum. �ere are many excellent textbooks which provide much more detail
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on these objects and comprehensive treatments of hyperbolic surfaces. We refer
in particular to [Ber, Rat, Ven].

3.1. �e hyperbolic plane. �e hyperbolic plane is a certain two-dimensional
manifold with Riemannian metric in which Euclid’s parallel axiom fails: on the
hyperbolic plane, for every straight line L (in�nitely extended in both directions)
and any point p not on L there are in�nitely many lines QL passing through p

that do not intersect L .
Abstractly, the hyperbolic plane is the unique two-dimensional connected,

simply connected, complete Riemannian manifold with constant sectional curva-
ture �1 (see, e.g., [Boo, �eorem 6.3]). �ere are many models for the hyperbolic
plane. We use its upper half plane model1

H WD ¹z 2 C j Im z > 0º ;

where the line element of the Riemannian metric is given by

(4) ds2xCiy WD
dx2 C dy2

y2
:

Informally, the Riemannian metric allows us to measure distances and angles.
Angles in hyperbolic geometry are identical to the euclidean angles in H .
Distances between points however are changed in hyperbolic geometry when
compared to euclidean geometry. From a euclidean point of view, hyperbolic
distances between two points increase when these move nearer to the real axis R .

For the torus T we discussed two notions of geodesics in Section 2.2: the
(G1)-version in which we understand geodesics as paths, and the (G2)-version
where we understand geodesics as oriented subsets. In the upper half plane model
of the hyperbolic plane, the (G2)-version of geodesics, i.e., in�nite paths that are
straight with respect to this metric, are the (oriented) semi-circles with center
on R and the vertical rays based on the real axis. (See Figure 5.)

�e upper half plane H has a boundary whose de�nition is motivated by the
dynamics of the geodesics on H ; it consists of all ‘in�nite endpoints’ of the
geodesics. Considering Figure 5, this boundary is given by

P1.R/ WD R [ ¹1º :

A Riemannian isometry is a bijective map on H which preserves the distance
between any two points. In particular, any Riemannian isometry maps geodesics

1Another widely known model for the hyperbolic plane is the Poincaré disk model, which prominently
features in several of M. C. Escher’s pictures.
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0

i

Figure 5
Geodesics on H

to geodesics. �e group of orientation-preserving Riemannian isometries on the
hyperbolic plane is isomorphic to the (projective) matrix group

G WD PSL2.R/ WD SL2.R/=¹˙ idº :

�e element g 2 G represented by the matrix
�
a b
c d

�
2 SL2.R/ is denoted

by g D
�
a b
c d

�
, with square brackets. It then has one other representative

in SL2.R/ , namely
�
�a �b
�c �d

�
. �e action of G on H is given by

(5)
"
a b

c d

#
�z WD

az C b

cz C d
:

Occasionally, we will omit the dot � in the notation. �e action of G on H ,
as de�ned in (5), extends continuously to an action of G on H [ P1.R/ in the
obvious way, using that in hyperbolic geometry the equality 1=0 D 1 is valid.
�us, the right hand side of (5) is replaced by a=c if z D 1 and c 6D 0 , and
by 1 if z D1 and c D 0 or if czC d D 0 . We use the notation from (5) also
for this extended action.

3.2. �e modular surface. A subgroup of G of particular importance is the
modular group

� WD PSL2.Z/ :

It acts on H preserving the tesselation by triangles as indicated in Figure 6. �e
modular surface is the orbit space

X WD �nH ;

that is, the space we obtain if we identify any two points of H that are mapped
to each other by some element of � . We let

(6) � W H! X D �nH

be the projection map. �e space X can be compacti�ed by adding an additional
point that is represented in H by 1 .D i1/ . For future purpose we note that
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Figure 6
Tesselation of H by triangles

P1.Q/ WD Q[¹1º is the � -orbit of 1 and that the map � extends canonically
to a map

H [ P1.Q/! X D �n
�
H [ P1.Q/

�
;

which we continue to denote � .
A model of X is given by the (closed) fundamental domain

F0 WD
®
z 2 H

ˇ̌
jzj � 1; jRe zj � 1

2

¯
(see Figure 7). It contains at least one point of any � -orbit, thus �.F0/ D X .
Only points in the boundary of F0 can be identi�ed under the action of � ,

0

i

− 1
2

1
2

T

S

̺ ̺

F0

Figure 7
Fundamental domain F0 for �
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cusp

π(∞)

conical singularities

π(i)

π(̺)

Figure 8
�e modular surface X D �nH

namely the left vertical boundary is mapped to the right one by the element

(7) T WD

"
1 1

0 1

#
;

which acts on H by T �z D zC 1 , and the left bottom boundary (the arc from %

to i ) is mapped to the right bottom boundary (the arc from % to i ) by

(8) S WD

"
0 1

�1 0

#
;

which acts on H by S �z D �1=z . If we glue F0 together according to these
boundary identi�cations then we obtain the modular surface X , as illustrated
in Figure 8. �is is just like what we did when we represented T D R=Z

as Œ0; 1�=¹0 D 1º . Clearly, there is more than one fundamental domain for the
modular surface. Another fundamental domain is, e.g.,

F WD
°
z 2 H

ˇ̌
jz � 1j � 1; 0 � Re z � 1

2

±
(see Figure 9). It arises from F0 by cutting o� the left half FL WD F0 \ ¹Re z < 0º
from F0 , gluing S�FL to the right half of F0 and adding all topological boundaries.
�us,

F D S �FL [ .F0 X FL/ ;
where FL D F0 \ ¹Re z � 0º denotes the closure of FL in H . For our
constructions in Section 5 below, the fundamental set F is more convenient
than F0 .
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0

i

1
2

̺

F

Figure 9
Fundamental domain F for �

�e modular surface has an in�nite ‘end’ of �nite volume, called the cusp. In
the fundamental domain F0 it is represented by the strip going to 1 . In terms
of � , the presence of the element T in � caused the presence of this cusp. As
we will see, this cusp and the element T play a special role throughout.

For completeness we remark that the modular surface is not a hyperbolic
surface in the strict sense because it is not a Riemannian manifold but rather an
orbifold. It has the two conical singularities at i and % (see Figures 7–9). At
these points the structure of the quotient space X D �nH is not smooth. �e
non-smoothness, however, does not in�uence any step in our discussions.

3.3. Geometric entity: Geodesics. Just as in the case of the torus, the ‘geometric
entities’ for the modular surface are the periodic geodesics and their lengths. A
geodesic on X is the image under the projection map � W H! X of a geodesic
on H , as illustrated in Figure 10. Geodesics on H are in�nitely long, but
geodesics on X can be either in�nitely long or else periodic and of �nite length.
�e (primitive) geodesic length spectrum LX of X is by de�nition the multiset
of the lengths of periodic geodesics. �e periodic geodesics on X are closely
related to those elements g 2 � with j tr.g/j > 2 , the hyperbolic elements: For
every periodic geodesic b on X and any representing geodesic  of b on H

(i.e., �./ D b ) there exists a hyperbolic element g 2 � such that g: is a
time-shifted version of  , i.e., there exists tg > 0 such that

(9) g:.t/ D .t C tg/ for all t 2 R .

If in (9) the value tg is minimal among all possible choices of g 2 � , then g is
primitive hyperbolic. An equivalent characterization is that g is hyperbolic and
not of the form hn with h 2 � and n � 2 .



320 A. Pohl and D. Zagier

π(∞)

π(i)

π(̺)

Figure 10
A geodesic on the modular surface

Conversely, whenever  is a geodesic on H and there exists g 2 � and
tg > 0 such that (9) holds, then g is hyperbolic and �./ is a periodic geodesic
on X . Furthermore, every hyperbolic element in � time-shifts a unique geodesic
on H . Under this assignment of primitive hyperbolic elements in � to periodic
geodesics on X , the set of periodic geodesics on X is bijective to the set of
conjugacy classes of the primitive hyperbolic elements in � , and the (primitive)
geodesic length spectrum of X is the multiset

LX D

²
2 acosh

�
j tr.g/j
2

� ˇ̌̌
g 2 HP

³
M
;

where HP is any set of representatives for the conjugacy classes of primitive
hyperbolic elements in � . �e smallest element in LX is

2 acosh
�
3

2

�
D 2 log

 
3C
p
5

2

!
;

and more generally the full multiset LX consists of all numbers of the form

2 log
 
t C
p
t2 � 4

2

!
with t 2 Z�3 with multiplicities that can be described explicitly in terms of
class numbers of inde�nite quadratic forms. We refer the interested reader to
[Ter, Exercises 18-20 in Section 3.7, and the paragraph below them] and omit
any discussion of this relation here.
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3.4. Spectral entity: Laplace eigenfunctions. We now introduce the spectral
objects we are interested in: the Maass wave forms for � , and the more special
Maass cusp forms.

�e Laplacian on H , the hyperbolic Laplacian, is

(10) � WD �y2
�
@2x C @

2
y

�
.z D x C iy/ :

�e di�erential operator � commutes with all elements of the group G D

PSL2.R/ of orientation-preserving Riemannian isometries; the factor y2 in (10)
corresponds to the factor y�2 in the formula of the line element of the Riemannian
metric in (4). Initially, � is de�ned as an operator on all functions H! C that
are twice partially di�erentiable. However, it can also be understood as an operator
on more general spaces. We refer to [Hoe, Ven] for extensive discussions.

Now let u W H! C be a � -invariant eigenfunction of � , that is, a function
satisfying u.g �z/ D u.z/ for all g 2 � and all z 2 H , and

(11) �u D s.1 � s/u

for some s 2 C . Further below we will see that it is more convenient to work
with the spectral parameter s rather than with the eigenvalue s.1� s/ itself. We
do not need to specify a priori the precise regularity of u , it su�ces to require u
to be a hyperfunction or continuous (which is much stronger): since the Laplace
operator is elliptic with real-analytic coe�cients, the function u is automatically
real-analytic (see [Hoe, �eorem 9.5.1] or [Fol, �eorem 6.33 and its remarks]).

�e invariance of u under the element T 2 � from (7) shows that u is
1 -periodic, and hence has a Fourier expansion of the form

u.x C iy/ D
X
n2Z

an.y/ e
2�inx :

By separation of variables in (11) we see that each function an is a solution of a
second-order di�erential equation (depending on s ), a modi�ed Bessel di�erential
equation. �is equation has two independent solutions, one exponentially big and
one exponentially small as y ! 1 , except if n D 0 , where two independent
solutions are ys and y1�s for s 6D 1

2
, and y1=2 and y1=2 logy for s D 1

2
. If we

assume in addition that u has polynomial growth at in�nity, in which case u is
called a Maass wave form for � , then the Fourier expansion becomes

u.x C iy/ D c1y
s
C c2y

1�s
C y

1
2

X
n2Z
n 6D0

AnKs� 1
2
.2�jnjy/ e2�inx ;

where the �rst two terms must be replaced by c1y1=2Cc2y1=2 logy if s D 1
2
. Here

K� is the appropriately normalized solution of the Bessel di�erential equation
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that is exponentially small at in�nity, the so-called modi�ed Bessel function of
the second kind with index � 2 C , whose precise de�nition plays no role in our
further discussion and is therefore omitted. �e An are complex numbers that
automatically have polynomial growth.

If we further assume that u is bounded, then c1 D c2 D 0 and

u.x C iy/ D y
1
2

X
n2Z
n6D0

AnKs� 1
2
.2�jnjy/ e2�inx :

In this case, the function u has rapid decay at in�nity and is called a Maass
cusp form with spectral parameter s . It is known that the real part of s then
always lies between 0 and 1 . Since any Maass wave form u is � -invariant, we
can also consider u as a true function on X D �nH , and characterize Maass
cusp forms as eigenfunctions of � on X having rapid decay as their argument
tends to the cusp.

�e Friedrichs extension allows us to de�ne � as an operator on the Hilbert
space L2.X/ , which can be understood as the space of the (Lebesgue-equivalence
classes of) � -invariant functions H! C that are locally square-integrable [Ven].
�e L2 -eigenfunctions of � on X are the constant functions (with eigenvalue 0 )
and the Maass cusp forms, whose eigenvalues are positive and tend to in�nity,
giving an L2 -Laplace spectrum

�.X/ D
®
0; 91:141 � � � ; 148:432 � � � ; 190:131 � � � ; : : :

¯
whose elements can be computed numerically to high precision [BSV], but are
not known in closed form.

3.5. Dynamical zeta function. An analogue of the dynamical zeta function �T

of the torus is the Selberg zeta function ZX , which has an Euler product given
by the lengths of periodic geodesics and an Hadamard product in terms of the
Laplace resonances (i.e., spectral parameters of generalized eigenfunctions). More
precisely, ZX .s/ is de�ned for Re s > 1 by

ZX .s/ D
Y
`2LX

1Y
kD0

�
1 � e�.sCk/`

�
;

and the analogue of (3) is Selberg’s theorem that this function extends mero-
morphically to C and vanishes if s is a spectral parameter. See [Sel] or [Ven,
Chapter 7].
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4. �e cohomological interpretation of Maass cusp forms

We now turn to the �rst step in the passage from geodesics on the modular
surface X to Maass cusp forms for � : the interpretation of Maass cusp forms
in terms of parabolic 1 -cohomology as provided in [BLZ].

�e essential part of this cohomological interpretation, of which we take
advantage here, is that every Maass cusp form u with spectral parameter s is
characterized by a vector .cug /g2� of functions P1.R/ ! C given by integrals
of the form

(12) cug .t/ D

Z 1
g�11

!s.u; t/

for t 2 R , and at 1 by smooth (C1 ) extension (see below for a de�nition).
Here, !s.u; �/ is a certain closed 1 -form on H de�ned below and the integration
is along any path in H [ P1.Q/ from g�11 to 1 with at most �nitely many
points in P1.Q/ (and which approaches these, say, within a sector). In fact, we
usually take a piecewise geodesic path. �e functions .cug /g2� satisfy certain
relations among each other, so-called cocycle relations, showing that a suitable
cohomology theory is the natural home of this setup.

For completeness of exposition and for the convenience of the reader we
provide a rather detailed de�nition of this cohomology (specialized to the modular
group � ), even though these details will not be needed further on. Readers who
want to proceed faster to the �nal result are invited to skip the remaining
part of this section after having read �eorem 4.1. �ey should interpret the
space H 1

par.�IV?s / de�ned below as a vector space whose elements are equivalence
classes of maps from � to the space of su�ciently regular functions on P1.R/ ,
where the notion of ‘su�ciently regular at 1 ’ depends on the parameter s .
�eorem 4.1 then states that the assignment of Maass cusp forms u with spectral
parameter s to the equivalence classes of the vectors .cug / is linear and injective,
and surjects onto H 1

par.�IV?s / .
For the detailed description we start with a few preparations. �e parabolic

cohomology will then be seen to be a re�nement of the standard group cohomology
in order to account for the cusp of the modular surface and the rapid decay of
the Maass cusp forms towards this cusp. �e name parabolic alludes to the fact
that elements in G that stabilize a single point in P1.R/ , such as T , are called
parabolic.

For any s 2 C , we de�ne an action of G on partial functions P1.R/ ! C

by setting

(13) �s.g
�1/f .t/ WD

�
g0.t/

�s
f .g �t /
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(sometimes also denoted f j2sg ) wherever it is de�ned. We recall that such a
partial function need not be de�ned on all of P1.R/ . In the situation of (13), the
function �s.g�1/f will not be de�ned on g�1�1 (and maybe additional points).

Let V?s (called the space of smooth, semi-analytic vectors of the principal
series representation with spectral parameter s in the line model) denote the
space of smooth functions ' W P1.R/ ! C that are real-analytic on R up to a
�nite set that may depend on ' , with the action (13). Smoothness at the point 1
here means that the map

�s.S/' W t 7! jt j
�2s'

�
�
1
t

�
extends smoothly (C1 ) to the point 0 (recall the element S from (8)). For
completeness we remark that in [BLZ] the space V?s is denoted V!�;1s .

�e vector space Z1par.�IV?s / of parabolic 1 -cocycles is then the space of
maps c W � ! V?s such that
� for all g; h 2 � , we have

(14) cgh D �s.h
�1/cg C ch ;

where cg denotes the function c.g/ , and
� there exists ' 2 V?s such that

(15) cT D �s.T
�1/ˆ �ˆ :

(For general discrete subgroups we would need a similar condition for
representatives of each conjugacy class of parabolic elements.)

�e subspace B1.�IV?s / of 1 -coboundaries consists of the maps c W � ! V?s for
which there exists ' 2 V?s such that

(16) cg D �s.g
�1/' � ' for every g 2 � .

For c 2 B1.�IV?s / and ' 2 V?s as in (16) we �nd for all g; h 2 � the identity

cgh D �s
�
.gh/�1

�
' � ' D �s

�
h�1g�1

�
' � '

D �s
�
h�1

��
�s
�
g�1

�
' � '

�
C �s

�
h�1

�
' � '

D �s
�
h�1

�
cg C ch ;

which shows that every 1 -coboundary is a 1 -cocycle, and also that B1.�IV?s /
is a subspace of Z1par.�IV?s / (take ˆ D ' in (15)). �e quotient space

H 1
par.�IV?s / WD Z1par.�IV?s /=B1.�IV?s /

is called the space of parabolic 1 -cohomology classes with values in V?s .
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For any two real-analytic functions u; v on H we de�ne the Green’s form to
be the real-analytic 1 -form

Œu; v� WD
@u

@z
� v � dz C u �

@v

@z
� dz ;

which is easily seen to be closed (i.e., dŒu; v� D 0 ) if u and v are eigenfunctions
of � with the same eigenvalue. For any s 2 C and any t 2 R the
function R.t I �/s W H! C , where

R.t I z/ WD Im
1

t � z
;

is an eigenfunction of � with eigenvalue s.1 � s/ . �erefore, if u is a Maass
cusp form with spectral parameter s , then for any t 2 R the 1 -form

!s.u; t/ WD
�
u;R.t I �/s

�
is closed. From this it follows that, for any g 2 � , the integral

(17) cug .t/ WD

Z 1
g�11

!s.u; t/

is independent of the chosen path from g�11 to 1 . �e integral is convergent
due to the rapid decay of u at the cusp. �e regularities of u and R.� I �/s yield
cug 2 V?s . Furthermore, the � -invariance of u implies the transformation formula

(18) �s.g/

Z b

a

!s.u; t/ D

Z g �b

g �a

!s.u; t/ .g 2 �; a; b 2 P1.R/; t 2 R/

and from this one easily deduces that the map cu satis�es the cocycle relation (14)
and the relation in (15) and hence is a parabolic cocycle. �en we have:

�eorem 4.1 ([LZ2, BLZ]). For s 2 C , Re s 2 .0; 1/ , the map u 7! Œcu� de�nes
an isomorphism of vector spaces

¹Maass cusp forms with spectral parameter s º
Ï
�! H 1

par.�IV?s / :

5. Discretization of geodesics

In this section we will discuss the second step in the passage from geodesics
on the modular surface X to Maass cusp forms for � : the construction of a
discretization of the motion along the geodesics on X .
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�e two elements (generators)

(19) T1 WD

 
1 0

1 1

!
and T2 WD

 
1 1

0 1

!
of � and the map

F W .0;1/ XQ! .0;1/ XQ

given by the two branches

(20)

8<:.0; 1/ XQ
�
�! .0;1/ XQ ; x 7! T �11 x D x

1�x

.1;1/ XQ
�
�! .0;1/ XQ ; x 7! T �12 x D x � 1

will play a crucial role. By iterating the map F we get a discrete(-time) dynamical
system

(21) N0 �
�
.0;1/ XQ

�
! .0;1/ XQ ; .n; x/ 7! F n.x/ ;

which we denote for short by F as well. (It will always be clear if F refers to
the map in (20) or to the map in (21).) We will show that this discrete dynamical
system can be thought of as a discrete version of the geodesic �ow on X : �e
map F and its iterates capture the essential geometric and dynamical properties
of the geodesic �ow that will be needed for establishing the relation between the
geodesics on X and the Maass cusp forms for � . In particular, the orbits of the
map F describe the future behavior of (almost all) geodesics on X , and periodic
geodesics on X correspond to points x 2 .0;1/ XQ with periodic (i.e., �nite)
orbits under F .2

�e construction of F from the geodesic �ow on X proceeds in several
steps: We �rst choose a ‘good’ cross section (in the sense of Poincaré) for the
geodesic �ow on X , i.e., a subset bC of the unit tangent bundle of X that is
intersected by all periodic geodesics at least once, and each intersection between
any geodesic on X and bC is discrete. We refer to the discussion below for
precise de�nitions. �e choice of bC yields a �rst return map, which is the
map that assigns to each element bv 2 bC the next intersection between bC and
the geodesic on X starting at time 0 in the direction bv . �e �rst return map
provides a �rst discretization of the geodesic �ow on X .

�en we choose a ‘good’ set of representatives for bC , i.e., a subset C � of
the unit tangent bundle of H that is bijective to bC with respect to the canonical
quotient map. �e speci�c properties of C � will allow us to semi-conjugate the
�rst return map to a map on .0;1/ XQ , which is precisely the map F .

2We remark that the formula for F is identical to the map ˆ given in [CZ, Section 1.1, Lemma]
in connection with the so-called rational period functions.
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�e construction we will present below is a special case of the algorithm
in [Poh3] for �nding good discretizations for geodesic �ows on much more
general hyperbolic surfaces. We refer to [Poh3] for further details and all omitted
proofs, in particular to [Poh3, Proposition 8.2, �eorem 8.15, Corollary 8.16] and
their specialization to the modular surface as in [Poh3, Example 3.3].

As in Section 5, readers who want to proceed faster to the �nal result are
invited to skip the remaining part of this section after having read �eorem 5.1
below. In Section 6 only the map F will be needed, not the details of its
construction.

5.1. Geodesics. While in Section 3 we used the notion of geodesics in the
sense (G2) (adapted to the hyperbolic plane and the modular surface in place of
the real line and the torus), we now also need geodesics in the sense (G1).

A geodesic  on H in the sense (G1) is completely determined by requiring
that it passes through a given point z 2 H at time t D 0 in a given direction.
Recall that we consider only geodesics of unit speed, so that the speed in the given
direction does not form another parameter. �erefore we may identify geodesics
in the sense (G1) with the set of all unit length direction vectors at all points
of H , thus, with the unit tangent bundle SH of H .

For v 2 SH we let v W R! H be the (unique) geodesic on H such that

(22)  0v.0/ D v :

Both the tangent vector  0v.0/ to v at time t D 0 and the element v 2 SH

are combinations of position and direction, the position v.0/ being the base
point base.v/ 2 H . �e geodesic �ow on H (the motion along geodesics on H )
is the map

(23) R � SH! SH ; .t; v/ 7!  0v.t/ :

�e action of G on H by Riemannian isometries induces an action of G on SH

by
g �v WD .g �v/

0.0/ .g 2 G; v 2 SH/ :

�e unit tangent bundle of X is then just the quotient

SX D �nSH :

We denote the projection map

(24) � W SH! SX

with the same symbol as the projection map H ! X from (6). �e context
always clari�es which one is meant. We typically denote a geodesic on H by 
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and a unit tangent vector in SH by v , and use b and bv for the corresponding
geodesic �./ on X and unit tangent vector �.v/ 2 SX . In analogy with (22),
for any bv 2 SX we let bv denote the geodesic on X determined by

b 0v.0/ D bv :
Also the geodesic �ow on X is inherited from the geodesic �ow on H as de�ned
in (23), and hence is the map

R � SX ! SX ; .t; bv / 7! b 0v.t/ :
5.2. Cross section. By a cross section we mean (slightly deviating from the
standard de�nition) a subset bC of SX such that

(C1) every periodic geodesic on X intersects bC . In other words, for any periodic
geodesic b there exists t 2 R such that b 0.t/ 2 bC .

(C2) each intersection of any geodesic on X with bC is discrete. In other words,
for any geodesic b and t 2 R with b 0.t/ 2 bC there exists " > 0 such
that b 0�.t � "; t C "/� \ bC D ®b 0.t/¯ :

We de�ne a set of representatives C � for a cross section bC to be a subset of SH

that is bijective to bC under the projection map � from (24). (We write C �

rather than C because the latter traditionally denotes the full preimage of bC
in SH .) Of course, to characterize a cross section bC it su�ces to provide a
set of representatives, but choosing a cross section and a set of representatives
that serves our purposes is an art. For the modular surface we will take

C � WD ¹v 2 SH j base.v/ 2 iRC; v.1/ 2 .0;1/ XQº

as set of representatives, where

v.1/ WD lim
t!1

v.t/ :

�e associated cross section bC WD �.C �/

is the set of unit tangent vectors bv 2 SX sitting on the geodesic from �.i/

to �.1/ such that the geodesic emanating from bv does not converge to the
cusp �.1/ in future or past time. A pictorial representation of C � and bC
is given in Figure 11. Choosing a set of representatives C � such that the base
points of its elements forms the geodesic from 0 to 1 in H is motivated by
the integral expression in (17). Its e�ect will become clearer in Section 6.



Dynamics and Maass forms 329

5.3. Discretization. We will now show how to relate the geodesic �ow on X

to a discrete dynamical system on (a subset of) R>0 . In the case of the modular
surface, this construction is closely related to continued fractions, more precisely
to Farey fractions. �e reader interested in this connection may �nd the articles
[Art, Ric, Ser, KU] useful.

Let bv 2 bC be an element of the cross section and consider the associated
geodesic bv on X . By the choice of bC , the geodesic bv intersects bC again
in future time. Let t0 > 0 , the �rst return time, be the minimal positive number
such that bw WD b 0v.t0/ 2 bC :
(See Figure 12.) Let v;w 2 C � be the elements in the set of representatives
corresponding to bv ; bw , and v; w the associated geodesics on H . (See
Figure 13.) Since the unit tangent vector  0v.t0/ 2 SH projects to bw under
� , that is,

�
�
 0v.t0/

�
D bw ;

there exists a unique element g 2 � such that

 0v.t0/ D g �w :

�is element is characterized by the property that

(25)  0v.t0/ 2 g �C �;

i.e., by the �rst intersection of v with some � -translate of C � after passing
through v D  0v.0/ . To �nd the element g we consider the neighboring translates
of the fundamental domain F and the relevant translates of C � .

π(i)

π(∞)

Ĉ

π(̺)

C∗

0
endpoint γv(∞) is irrational

base(v)
v

Figure 11
�e set of representatives C� and the cross section bC . �e gray
shadows indicate the directions of the elements of bC and C� .
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We observe that, as shown in Figure 14, the unit tangent vector  0v.t0/ can be
only in T1 �C

� or T2 �C � with T1; T2 as in (19). In Figure 15 we have g D T1 ,
so that here

w D T �11  0v.t0/ ; w.1/ D T �11 v.1/ :

We further observe that for every point x 2 .0;1/XQ , no matter which v 2 C �
with v.1/ D x we consider, we �nd the same value for the element g 2 �
in (25). �is is caused by the property of C � that for j 2 ¹1; 2º the set of base
points of the vectors in Tj �C � split the hyperbolic plane H into two half-spaces
and that Tj �C � consists of all relevant vectors pointing into one of these half-
spaces. �erefore the element g de�ned by (25) depends only on x , not on the
speci�c element v 2 C � with v.1/ D x . �e procedure just described induces
a discrete dynamical system

(26) F W .0;1/ XQ! .0;1/ XQ ;

where for each x 2 .0;1/XQ , we pick v 2 C � such that v.1/ D x , let g be
the element in � such that  0v.t0/ 2 g �C � and set

F.x/ WD g�1 �x :

�eorem 5.1 ([Poh3]). �e set bC is a cross section for the geodesic �ow on
X , and C � is a set of representatives for bC . �e induced discrete dynamical
system (as in (26)) is the map F as given in (20).

v̂

γ̂v

ŵ

π(∞)

π(i)

π(̺)

Figure 12
�e geodesic determined by bv and its �rst return to bC
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v

γw

γw(∞)

γv

γv(∞)0 1

w

Figure 13
Associated geodesics on H

C∗

F TS ·F

(TS)2 ·F

T1 ·C∗

T1 ·F

T2 ·C∗

T2 ·F

0 1

Figure 14
Relevant � -translates of F and C�

6. Transfer operators and Maass cusp forms

In this section we carry out the third and �nal step in the passage from
geodesics on the modular surface X to Maass cusp forms for � : to tie together the
discrete dynamical system F from Section 5 and the cohomological interpretation
of Maass cusp forms from Section 4.
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v

γw

γw(∞)

w

γv

γv(∞)0 1

C∗

T2 ·C∗

T1 ·C∗

Figure 15
Next intersection. Recall that v D  0v.0/ and w D  0w.0/ .

�e mediating object between both sides is the transfer operator family .Ls/s2C

associated to F . �e transfer operator Ls with parameter s acts on the vector
space of functions from .0;1/ to C and is given by

(27) Lsf .t/ WD
X

w2F�1.t/

jF 0.w/j�sf .w/

for f 2 C.0;1/ , t 2 .0;1/ . �is operator has its origin in the thermodynamic
formalism of statistical mechanics. It is a generalization of the transfer matrix for
lattice–spin systems, which is used to �nd equilibrium distributions. �e weight,
being the .�s/ th-power of the derivative of F , is motivated within this framework,
where s serves as an inverse Boltzmann constant and temperature. From a purely
mathematical point of view, this operator can be seen as an evolution operator
or as a graph Laplacian on a somewhat generalized graph, in both cases with
appropriate weights. �e explicit expression for F allows us to evaluate (27) in
our special case to

Lsf .t/ D f .t C 1/ C .t C 1/�2sf
� t

t C 1

�
; t > 0 ;

or, using (13), to
Ls D �s.T

�1
1 / C �s.T

�1
2 / :

(�is simple formula is for the modular group only. For other groups one can
have a vector of more complicated �nite sums.)
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�e correspondence that we have been aiming at is a bijection between the
eigenfunctions of Ls with eigenvalue 1 and the Maass cusp forms with spectral
parameter s . More precisely, we have the following theorem.

�eorem 6.1 ([MP, Poh1]). Let s 2 C , 1 > Re s > 0 . �en for any Maass cusp
form u with spectral parameter s , the function fu W .0;1/! C de�ned by

(28) fu.t/ WD

Z 1
0

!s.u; t/

is a real-analytic eigenfunction of Ls with eigenvalue 1 . �e map u 7! fu is
a linear isomorphism between the space of Maass cusp forms with spectral
parameter s and the space of real-analytic eigenfunctions f of Ls with
eigenvalue 1 for which the map R X ¹0º ! C de�ned by

(29)
´
f on .0;1/
��s.S/f on .�1; 0/

extends smoothly to 0 .

We will now explain the main steps of the proof with an emphasis on intuition
and heuristics. Some steps will be omitted, most prominently some discussions
of convergence and regularities. We hope to convince the reader that a major part
of the proof is encoded in Figure 16 and that the choice of the integral path in
(28) and the function in (29) is natural.

C∗S ·C∗

T−1
1 C∗

T−1
2 C∗

0−1

Figure 16
Relevant � -translates for proof of �eorem
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Proof (key elements). We present the main ideas of the proof, split into four
steps.

Step 1: Relation between Ls and C � . We �rst reconsider the transfer
operator Ls and its domain C.0;1/ . We may think of any f 2 C.0;1/ as
being a mass distribution or density on .0;1/ of which the transfer operator
evaluates its s -weighted evolution under one application of F . Recalling that F
is a discrete version of the geodesic �ow on X , that Ls is a weighted evolution
operator of F , and that the essential ingredient of this discretization is the set C � ,
we may intuitively think of f as being a ‘shadow’ of some function f � on C �
that is constant on any set of the form

Et WD
®
v 2 C � j v.1/ D t

¯ �
t 2 .0;1/

�
:

�us,
f .t/ D f �.v/ for any v 2 Et .

When developing the formula for F we asked where the geodesics determined
by the elements in C � go to. In the expression for Ls , the preimage of F is
used. Hence, when building Ls , we may alternatively ask where these geodesics
come from. For the modular group � , the relevant sets are T �11 C � and T �12 C � .
(See Figure 16.)

Step 2: Relation between Maass cusp forms and C � . Let u be a Maass cusp
form with spectral parameter s . We use the characterization of u via a cocycle
class in the space H 1

par.�IV?s / from �eorem 4.1, and then use the family of
functions .cug /g2� from (17) as a representative for this cocycle class. We think
of each cg as being the integral along the geodesic from g�11 to 1 , or even
better, as an integral over the set of unit tangent vectors based on this geodesic.
In particular, for g D S we have S�11D 0 , so that

(30) cuS .t/ D

Z 1
0

!s.u; t/ .t 2 R/

is the integral along the geodesic from 0 to 1 . �us, in an intuitive way, we
may think of cuS as an integral over C � [ S �C � and of each value cuS .t/ as the
mean of some (�ctive) function QcuS .t/ de�ned on C � [ S �C � .

Step 3: From Maass cusp forms to eigenfunctions of Ls . Let u be a Maass
cusp form with spectral parameter s and .cug /g2� the associated family of
functions from (17). We want to associate to u in a natural way an eigenfunction f
of Ls with eigenvalue 1 . �e intuitive way of thinking of cuS and any function f
as objects related to C � suggests using C � as mediating element. Staying with
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this intuition, we should restrict cuS to an integral over C � and use a relation like
f �.v/ D QcuS .t/jC� for v 2 Et . In terms of the actual objects (and their rigorous
de�nitions) we are led to set

(31) f WD cuS j.0;1/ ;

which is precisely (28).
We now show that (31) indeed de�nes an eigenfunction of Ls with eigen-

value 1 . So far we have used in (30), and hence in (31), the geodesic from 0

to 1 as path of integration. Since the 1 -form !s.u; t/ is closed, we may change
the path to be the geodesic from 0 to �1 followed by the geodesic from �1
to 1 : Z 1

0

!s.u; t/ D

Z �1
0

!s.u; t/ C

Z 1
�1

!s.u; t/ :

Using the transformation formula (18) we now �nd, for any t 2 .0;1/ ,

f .t/ D

Z 1
0

!s.u; t/

D

Z T�1
1
1

T�1
1
0

!s.u; t/ C

Z T�1
2
1

T�1
2
0

!s.u; t/

D �s.T
�1
1 /

Z 1
0

!s.u; t/ C �s.T
�1
2 /

Z 1
0

!s.u; t/

D �s.T
�1
1 /f .t/ C �s.T

�1
2 /f .t/ :

�erefore f D Lsf .

Step 4: From eigenfunctions of Ls to Maass cusp forms. Conversely, let
f be a real-analytic eigenfunction of Ls with eigenvalue 1 that satis�es the
requirement in (29). We want to associate to f a Maass cusp form u in a way
which inverts the mapping from Step 3 and which is also natural. Instead of trying
to do this directly, we will de�ne a parabolic 1 -cocycle c D cf in Z1par.�IV?s / .
�eorem 4.1 then implies that the cocycle c is indeed of the form c D cu for a
unique Maass cusp form u .

In order to de�ne c we prescribe it on the group elements T and S .
Applying (17) for g D T , in which case the integral in (17) vanishes, motivates
setting

cT WD 0 :

Further, the intuition explained above suggests de�ning

(32) cS WD

´
f on .0;1/
��s.S/f on .�1; 0/ .
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�e minus sign in the second row is motivated by the fact that S ‘changes the
direction’ of the geodesic from 0 to 1 . Since the functions in (32) and (29)
coincide, the regularity properties of f imply that cS as de�ned in (32) on
P1R X ¹0;1º extends smoothly to 0 and 1 .

Since T and S generate all of � , the cocycle relation (14) dictates the value
of c on all other elements. It remains to show that c is well-de�ned, which
here means that if a word in T , T �1 and S equals the identity in � , then the
corresponding ZŒ�� -combination of cT and cS vanishes. To that end we use the
presentation

� D
D
S; T

ˇ̌̌
S2 D

�
T �1S

�3
D id

E
and show that

�s.S/cS C cS and
�
�s
�
.ST /2

�
C �s.ST /C 1

��
�s.S/cT�1 C cS

�
vanish identically. For the �rst expression, this follows immediately from (32).
For the second expression we use cT D 0 , deduce �rst cT�1 D ��s.T /cT D 0

and then �nd�
�s
�
.ST /2

�
C �s.ST /C 1

��
�s.S/cT�1 C cS

�
D �s

�
.ST /2

�
cS C �s.ST /cS C cS

D

8̂̂̂̂
<̂
ˆ̂̂:
��s

�
T �12

�
f � �s

�
T �11

�
f C f on .0;1/

�s
�
T �11 S

� �
��s

�
T �11

�
f C f � �s

�
T �12

�
f
�

on .�1; 0/

�s
�
T �1S

� �
f � �s

�
T �12

�
f � �s

�
T �11

�
f
�

on .�1;�1/ ,

which vanishes since f D Lsf . �is calculation can also be read o� from
Figure 17, as the reader can verify.

7. Recapitulation and closing comments

We have surveyed an intriguing relation between the periodic geodesics on the
modular surface X D �nH (‘classical mechanical objects’) and the Maass cusp
forms for � (‘quantum mechanical objects’). For this, we started simultaneously
on both ends:

On the geometric side, we developed a discrete version of the (periodic part
of the) geodesic �ow on the modular surface by means of a cross section in the
sense of Poincaré. We realized this discretization as a discrete dynamical system
on .0;1/ by using a well-chosen representation of the cross section on the upper
half plane. �is step turns the geodesic �ow into a discrete and somehow �nite
object while preserving its essential dynamical features.
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C∗S ·C∗

T−1
1 C∗ = ST2S ·C∗

T−1
1 S ·C∗ = ST2 ·C∗

T−1
2 C∗ = (ST2)

2S ·C∗T−1
2 S ·C∗

0−1

Figure 17
Relevant � -translates for proof of �eorem

On the spectral side, we characterized the Maass cusp forms as cocycle classes
in a certain precise cohomology space. �e isomorphism from Maass cusp forms
to cocycle classes is given by an integral transform, where a certain 1 -form
is integrated along certain geodesics. Even though the cocycle classes remain
objects of quantum mechanical nature, this characterization of Maass cusp forms
constitutes a �rst and very important step towards the geometry and dynamics of
the modular surface.

Connecting these two sides is the family of transfer operators, which from
their de�nition are purely classical mechanical objects but which clearly exhibit a
quantum mechanical nature. �ese transfer operators depend heavily on the choice
of the discretization. �e proof of the isomorphism between eigenfunctions of the
transfer operators and the parabolic 1 -cocycles clearly shows that the shape of
the set of representatives is crucial. Here, it is the set of (almost) all unit tangent
vectors that are based on the geodesic from 0 to 1 and that point ‘to the right’.

�is set of representatives and its � -translates can be seen as a geometric
realization of the cohomology. �e transfer operator then encodes the cocycle
relation. An eigenfunction with eigenvalue 1 of the transfer operator obeys a
geometric variant of the cocycle relation, and hence can be related to an actual
cocycle, which in turn characterizes a Maass cusp form.
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