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SUPER-EXPANDERS AND WARPED CONES

by Damian SAWICKI (*)

Abstract. — For a Banach space X, we show that any family of graphs quasi-
isometric to levels of a warped cone OΓY is an expander with respect to X if and
only if the induced Γ-representation on L2(Y ; X) has a spectral gap. This provides
examples of graphs that are an expander with respect to all Banach spaces of
non-trivial type.
Résumé. — Pour un espace de Banach X, on montre que toute famille de

graphes, quasi-isométriques à des niveaux d’un cône tordu OΓY , est un expan-
seur relativement à X, si et seulement si la Γ-représentation induite sur L2(Y ; X)
a un trou spectral. Ceci fournit des examples de graphes qui sont un expanseur
relativement à tous les espaces de Banach de type non trivial.

1. Results

The aim of this paper is to prove expansion with respect to large classes
of Banach spaces for new families of graphs. The graphs are 1-skeleta of
Rips complexes of a family of compact metric spaces (tY, dΓ)t>0, which
originates in an action of a finitely generated group Γ on a compact metric
space Y . Such families were introduced by J. Roe under the name of warped
cones [34], and the idea of studying graphs quasi-isometric to them comes
from Vigolo [40].

We prove that the spectral gap of the Koopman representation on the
Bochner space L2(Y, µ;X) is equivalent to the expansion of these graphs
with respect to the Banach space X. Since expansion is a quasi-isometry
invariant (Lemma 4.4), the same can be said about any family of graphs
quasi-isometric to the warped cone OΓY .

Keywords: expander graph, spectral gap, warped cone, quasi-isometry, Rademacher type.
2020 Mathematics Subject Classification: 46B85, 05C25, 37A30, 37C85.
(*) The author was partially supported by Narodowe Centrum Nauki grant Preludium
number 2015/19/N/ST1/03606 and by the Max-Planck-Gesellschaft.



1754 Damian SAWICKI

Theorem 1.1. — Let (Y, d, µ) be a geodesic Ahlfors regular compact
metric measure space with an action by Lipschitz homeomorphisms of a
finitely generated group Γ and X be any Banach space.
Then, the action has a spectral gap in L2(Y, µ;X) if and only if the

family (tY, dΓ)t>0 = OΓY is quasi-isometric to an expander with respect
to X.

In particular, this dynamical construction provides a large new class
of expanders with respect to Banach spaces of non-trivial type. Such ex-
panders (the strongest expanders presently known) have been previously
obtained among quotients of groups (see the seminal papers of V. Laf-
forgue [20, 21] and the generalisation of Liao [22]).

Corollary 1.2. — Let Γ y (Y, d, µ) be a measure-preserving ergodic
action as in Theorem 1.1, and assume that Γ has Lafforgue’s Banach prop-
erty (T).
Then, any family of bounded degree graphs quasi-isometric to OΓY is

an expander with respect to all Banach spaces of non-trivial type.

In order to address some recent developments [2, 6, 7] regarding local
versions of the spectral gap condition, we verify Theorem 1.1 not only for
an action of a group generated by a finite set S but also for a finite family
S of partially-defined bi-Lipschitz maps (Theorem 4.2).
The notion of expanders or non-linear spectral gaps of [27] has been

extensively studied also in the case when X is a metric space (see, for in-
stance, [28] and references therein). Theorem 1.1 may also find applications
in this context because it remains true under very mild assumptions about
the space X (namely, density of C(Y ;X) in L2(Y, µ;X)), which are satis-
fied by large classes of metric spaces, notably CAT(0) (Hadamard) spaces
considered in [28].

Super-expanders

Roughly speaking, a sequence (Gn) of graphs is an expander with re-
spect to a Banach space X if for every map f : Gn → X the norm of its
global coboundary (i.e. the average of ‖f(v) − f(w)‖ over v, w ∈ Gn) can
be estimated by its local gradient (i.e. the average of ‖f(v) − f(w)‖ over
{v, w} forming an edge). The former average involves a quadratic number
of terms, while (for sparse graphs) the latter only a linear number, which
is a significant computational advantage (cf. [28] and references therein).
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The comparability of the global and local statistics implies in particular
that a sequence of such maps fn : Gn → X cannot preserve the metric struc-
ture of the graphs Gn, that is, it is never a bi-Lipschitz or coarse embedding
(an observation originally due to Gromov). Yu proved the Novikov conjec-
ture for groups admitting a coarse embedding into a Hilbert space [42], and
Kasparov and Yu proved the coarse Novikov conjecture for bounded geome-
try metric spaces admitting a coarse embedding into a uniformly convex Ba-
nach space or, equivalently, into a super-reflexive Banach space [16]. Hence,
it was natural for Kasparov and Yu to ask whether there exist expanders
with respect to all super-reflexive Banach spaces, or super-expanders for
short.
The positive answer was given by V. Lafforgue [20], who obtained super-

expanders as finite quotients of groups with his Banach property (T). Sub-
sequently, he generalised these results from super-reflexive Banach spaces
to an even larger class of Banach spaces, namely Banach spaces of non-
trivial Rademacher type (or, equivalently, K-convex Banach spaces) [21].
This is the largest class of Banach spaces for which expanders have been
constructed.
Mendel and Naor [27] gave an independent construction of expanders

with respect to super-reflexive Banach spaces, using the zig-zag product
construction of [33].

The aim of this work is to provide another construction of super-ex-
panders, including expanders with respect to Banach spaces of non-trivial
Rademacher type.

Previous work

Warped cones were introduced by J. Roe [34] as a construction re-
lating compact dynamical systems with large scale geometry. Drut̨u and
Nowak [11] noticed that a particularly interesting case is when the system
has a spectral gap, conjecturing that it may yield new counterexamples to
the coarse Baum–Connes conjecture.

Following this direction, Nowak and the author [30] proved that for an
action ΓyY with a spectral gap in L2(Y, µ;X), the warped cone OΓY does
not embed coarsely into X. If in addition the measure is Ahlfors regular
and the action is by Lipschitz homeomorphisms, they showed that the X-
distortion of levels tY ∈ OΓY is logarithmic.

Subsequently, assuming a condition equivalent to a spectral gap in
L2(Y, µ; `2), Vigolo [40] showed under similar hypotheses that the levels

TOME 70 (2020), FASCICULE 4



1756 Damian SAWICKI

tY are quasi-isometric to an expander (this implies the above result for X
being a Hilbert space) and that it is a sufficient and necessary condition.
Theorem 1.1 combines the advantages of the main results of [30] and [40]:

on the one hand, it applies to all Banach spaces, and on the other, it gives
a characterisation of expansion rather than a criterion for distortion or
non-embeddability.

The conjecture of Drut̨u and Nowak is established in the forthcoming
work [36] without requiring Y to be geodesic, a restriction important in [40]
and the present work, yielding in particular counterexamples to the coarse
Baum–Connes conjecture not coarsely equivalent to any family of graphs.

Further developments

Let us briefly report on some advancements in the area since the first
version of this note was made public. The progress regards rigidity proper-
ties of warped cones, showing in particular that our construction is a very
rich source of super-expanders and that expanders with respect to Banach
spaces of non-trivial type provided by the construction are indeed provably
distinct from (i.e. not quasi-isometric to) those previously known.

Jianchao Wu and the author [38] proved that for free actions the warped
coneOΓY admits an asymptotically faithful covering by the products Γ×Y ,
where the metric on Y is appropriately scaled. By an argument of Khukhro
and Valette [17], for an n-manifold Y it implies that a quasi-isometry
OΓY ' (Λ/Λi) with a Margulis expander (Λ/Λi) induces a quasi-isometry
of groups

(1.1) Γ× Zn ' Γ× Rn ' Λ,

see [19, 37] for details. As noticed in [19], it follows from quasi-isometric-
rigidity literature that our super-expanders cannot be quasi-isometric to
many super-expanders of Lafforgue and Liao.
David Fisher, Thang Nguyen, and Wouter van Limbeek [12] constructed

a continuum of actions ΓyY yielding pairwise non-quasi-isometric warped
cones satisfying the assumptions of Theorem 1.1 for all Banach spaces of
non-trivial type. This is a consequence of an impressive dynamical quasi-
isometric-rigidity result for warped cones that they obtain. An important
tool employed are coarse fundamental groups, which were also indepen-
dently studied in a very interesting work [39] by Federico Vigolo.
It follows from computations in [12, 39] that, for Y with a finite funda-

mental group, the coarse fundamental group of OΓY is virtually isomor-
phic to Γ. If OΓY is quasi-isometric to a Margulis expander (Λ/Λi), then
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combining (1.1) with the induced virtual isomorphism Γ ' Λ of coarse
fundamental groups, one gets a quasi-isometry Γ ' Γ× Zn, impossible for
many Γ. This way Vigolo [39] proves that there exist warped cones satis-
fying the assumptions of Corollary 1.2 that are not quasi-isometric to any
Margulis expander.

Methods and outline of the paper

Our treatment is functional-analytic in flavour and, like [30], utilises
Poincaré inequalities rather than isoperimetric inequalities, which are best-
suited for classical (Hilbert-space) expanders. Nonetheless, it picks up some
ideas from the measure-theoretic approach of [40], notably the key idea of
studying families of graphs quasi-isometric to a warped cone, which allows
the language of graph theory.

In Section 2 we introduce the definitions of an expander and an expander
with respect to a Banach space and discuss methods of constructing them.
Section 3 defines a spectral gap via a Poincaré-type inequality, relates it to
other definitions in the literature, and briefly reminds some examples.

Section 4 recalls the definition of a warped cone and the quasi-isometric
invariance of expansion (Lemma 4.4) and constructs certain graphs quasi-
isometric to the warped cone. We give the core of the argument in Sec-
tion 4.3. The basic idea is to consider the above graphs (whose vertex sets
are finer and finer partitions of Y ) and to reinterpret functions defined
on them as functions defined on Y or to approximate f ∈ L2(Y, µ;X) by
simple functions fn subordinate to these partitions. Then, we compare the
norms of the coboundary of f (i.e. F (u, v) ..= f(u)−f(v) for (u, v) ∈ Y ×Y )
and the coboundary of fn with the norms of a certain “gradient” of f with
respect to the action and the graph-theoretic gradient of fn. Finally, Sec-
tion 4.4 contains some remarks.

2. Expanders

Expanders are graphs that are simultaneously sparse and highly con-
nected.

Definition 2.1. — Let G = (V,E) be a finite graph. Its Cheeger con-
stant is defined as

h(G) = min
{

E(A, V \A)
min( A, (V \A)) : A ⊆ V with A 6= ∅, V

}
,

TOME 70 (2020), FASCICULE 4



1758 Damian SAWICKI

where E(A,A′) denotes the set of edges joining elements of the subsets A
and A′ of V , and X is the cardinality of X.
An infinite family of finite graphs (Gi)i∈I is an expander if their cardinal-

ities are unbounded, vertex degrees uniformly bounded above, and Cheeger
constants uniformly bounded away from 0.

Expanders are not all the same. One approach to compare the “strength”
of expanders is to consider constants measuring expansion (like the Cheeger
constant h from Definition 2.1), see [24, 26]. Another approach is to rephrase
the definition so that it is parametrised by a Banach space, and then mea-
sure the “strength” of an expander by the “size” of the class of Banach
spaces with respect to which it is an expander.

Definition 2.2. — Let X be a Banach space and (Gi)i∈I be a family
of finite graphs with uniformly bounded vertex degrees and unbounded
cardinalities. We say that (Gi) is an expander with respect to X if there
exists a constant η > 0 such that

(2.1)
∑
x∼y
‖f(x)− f(y)‖2X >

η

Gi

∑
x,y∈Gi

‖f(x)− f(y)‖2X

for any i ∈ I and any function f : Gi → X, where we sum over pairs of
vertices of Gi, and x ∼ y means that there is an edge joining x and y.

For more on Banach-space expanders, consult [9, 20, 21, 27, 29]. By
replacing norm distances ‖f(x)− f(y)‖X by distances dX(f(x), f(y)) with
respect to some metric dX , we can generalise Definition 2.2 to the case
where (X, dX) is a metric space. Note that, as long as X contains at least
two points, an expander with respect to X is an expander in the sense of
Definition 2.1, and — in the other direction — classical expansion implies
expansion with respect to any Hilbert space. In this generality, Mendel and
Naor proved that indeed the “strength” of expanders, measured by spaces
X, may differ [28].

Because of all the applications of expanders [8, 14, 15, 23], the problem
of constructing them has attracted a great deal of attention [15, 33]. The
first explicit construction due to Margulis and many subsequent construc-
tions used Cayley (or Schreier) graphs of groups, relying on group-theoretic
arguments, like (relative) property (T) of Kazhdan [25] or additive combi-
natorics [4]. In particular, the super-expanders of Lafforgue are constructed
with the approach of [25]. There is also a purely combinatorial construc-
tion via “zig-zag graph products” of Reingold, Vadhan, and Wigderson [33],
which was employed in the construction of super-expanders by Mendel and
Naor.

ANNALES DE L’INSTITUT FOURIER
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Our construction follows another approach, which dates back to 1980s
in some special cases [13]. More recently, it was applied by Bourgain and
Yehudayoff, who defined a continuous expander as a family of smooth maps
Ψ from a subinterval of Y = [0, 1] to Y such that for every measurable
A ⊆ Y with µ(A) 6 1/2, we have:

(2.2) µ

( ⋃
ψ∈Ψ

ψ(A)
)
> (1 + c)µ(A)

for some positive c not depending on A (where µ(A) denotes the Lebesgue
measure of A) [2, 6]. By “discretising” such a continuous expander, they
obtained the first monotone expander (see also [7]).

For much more general metric measure spaces Y equipped with a group
action, Vigolo proved that the family of graphs resulting from a similar
discretisation is an expander if and only if Y with a finite family Ψ coming
from the action is a continuous expander [40] (the “only if” implication is
the more difficult one).
The discretising procedure involves non-canonical choices. By using

warped cones (which corresponds to adding more edges to the discreti-
sations, called lavish approximating graphs by Vigolo [40]), one obtains
graphs that are unique up to quasi-isometry because they are essentially
1-skeleta of Rips complexes for a fixed family of metric spaces. As already
mentioned in the introduction, this novel treatment allows applying the
rapidly developing theory of warped cones to understand the geometry of
such expanders.

The above results [2, 6, 7, 13, 40] concerned only classical expanders (as
in Definition 2.1). In terms of the involved tools, these articles relate the
isoperimetric inequality (2.2) to the isoperimetric characterisation of ex-
panders via Cheeger constants (Definition 2.1). Relating Poincaré inequal-
ities (apart from being a new technique valid also in the classical setting)
allows obtaining expanders with respect to Banach spaces.

3. Spectral gaps

Our working definition of spectral gap, which will remove unnecessary
technical difficulties from the proof of the main result, will be the following
(in fact its slight generalisation, Definition 3.4). The definition remains
sound also for a metric space X, after replacing norm distances ‖f(u) −
f(v)‖X by metric distances dX(f(u), f(v)), but, for the sake of exposition,
we restrict ourselves to the case of Banach spaces.

TOME 70 (2020), FASCICULE 4
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Definition 3.1. — Let X be a Banach space, Γy (Y, µ) be a probabi-
lity-measure-preserving action, and L2(Y, µ;X) be the space of Bochner-
measurable square-integrable(1) X-valued functions. The action ΓyY has
a spectral gap in L2(Y, µ;X) if there exists a constant κ > 0 such that

(3.1)
∑
s∈S

∫
Y

‖f(u)− f(s−1u)‖2X du > κ
∫∫

Y 2
‖f(u)− f(v)‖2X dudv

for any function f ∈ L2(Y, µ;X).

Note that a spectral gap for any non-zero Banach space X implies a
spectral gap with X = `2, which is equivalent to “expansion in measure”
of [40].
Let L2

0(Y, µ;X) ⊆ L2(Y, µ;X) denote the subspace of functions f such
that

∫
f dµ = 0. Observe that it suffices to check inequality (3.1) for f ∈

L2
0(Y, µ;X) because adding a constant to f does not affect the inequality.

Another, more standard, characterisation of the spectral gap condition says
that there are no almost invariant vectors in L2

0(Y, µ;X) for the Koopman
representation π; that is, there exists a constant κ > 0 such that for every
f ∈ L2

0(Y, µ;X) we have

(3.2) max
s∈S
‖f − πsf‖ > κ‖f‖.

Indeed, note that the square of the left-hand side of (3.2) is proportional
to the left-hand side of (3.1) (with the proportionality constants depending
on the cardinality of S). Thus, in order to confirm that the above condition
is equivalent to the one from Definition 3.1, it suffices to check that for f ∈
L2

0(Y, µ;X) the expression ‖f‖2 is comparable to the integral
∫∫
Y 2 ‖f(u)−

f(v)‖2X dudv.

Lemma 3.2. — Let (Y, µ) be a probability space, X be any Banach
space, f ∈ L2

0(Y, µ;X), and F ∈ L2
0(Y × Y, µ × µ;X) be given by the

formula F (u, v) = f(u)− f(v). Then:
1
2‖f‖ 6 ‖F‖ 6 2‖f‖.

Proof. — The latter inequality follows from the triangle inequality: for
F1, F2 ∈ L2(Y × Y, µ× µ;X) given by F1(u, v) = f(u), F2(u, v) = f(v), we
have ‖F1‖ = ‖F2‖ = ‖f‖ and F = F1 − F2. For the former inequality ob-
serve that the projection onto constants P : L2(Y, µ;X) 7→ X ⊆ L2(Y, µ;X)

(1)For a metric space (X, dX), the square-integrability of f : Y → X with Y compact
means that f is at finite L2-distance from any (equivalently: every) continuous function,
where the distance is given by dL2 (f, g)2 =

∫
Y

dX(f(y), g(y))2 dy.

ANNALES DE L’INSTITUT FOURIER
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given by integration (
P (f)

)
(u) =

∫
Y

f(y) dy

is a contraction from L1 and hence also a contraction from L2, as our
measure is probabilistic. Thus we know that the complement projection
P0 = Id−P onto L2

0(Y, µ;X) has norm at most 2. Consequently:

4‖F‖2 = 4
∫∫
‖f(u)− f(v)‖2X dudv = 4

∫
‖f − f(v)‖2 dv

>
∫
‖P0(f − f(v))‖2 dv =

∫
‖f‖2 dv = ‖f‖2. �

The following gives a yet another characterisation.

Fact 3.3 (Drut̨u–Nowak [11]). — Assume that X is a uniformly convex
Banach space and the finite generating set S for Γ contains the identity
element. Then the action Γ y Y has a spectral gap in L2(Y, µ;X) if and
only if we have

(3.3)
∥∥∥∥ 1

S

∑
s∈S

πs

∥∥∥∥ < 1,

where the above operator norm is considered in the space of bounded op-
erators on L2

0(Y, µ;X).

Note that the above Markov operator M = 1
S

∑
s∈S πs — when con-

sidered as an operator on the whole of L2(Y, µ;X) — preserves constant
functions. Hence, if it satisfies (3.3), its spectrum intersects a certain neigh-
bourhood of 1 only at 1, justifying the name “spectral gap” in Definition 3.1.
In fact, the “if” implication of Fact 3.3 does not require X to be uniformly
convex, so for arbitrary Banach spaces our definition of the spectral gap
may be more general than condition (3.3).
Definition 3.1 can be slightly generalised. The following definition is in-

tended as an intrinsic version of the local spectral gap with respect to
Y ⊆ Z of an action Γ y Z — a condition introduced and studied in [7].

Definition 3.4. — LetX be a Banach space, (Y, µ) a probability space,
and S a finite set such that every s ∈ S is a measurable bijection s : dom s→
im s between measurable subsets of Y , and assume that S is closed under
inverses.
The set S has a spectral gap in L2(Y, µ;X) if there exists a constant

κ > 0 such that

(3.4)
∑
s∈S

∫
im s

‖f(u)− f(s−1(u))‖2X du > κ
∫∫

Y 2
‖f(u)− f(v)‖2X dudv

for any function f ∈ L2(Y, µ;X).

TOME 70 (2020), FASCICULE 4
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The main result of [7] is that actions of dense subgroups generated by
“algebraic elements” on non-compact simple Lie groups have a local spec-
tral gap. Restrictions of such actions give examples of sets S with a spectral
gap in the sense of Definition 3.4.
For s ∈ S, following the convention for group actions, we will later denote

the image of y ∈ dom s under s by sy. For U ⊆ Y we will shortly write sU
to denote the image of U ∩ dom s under s.

3.1. Examples

There are many sources of actions with a spectral gap, to which The-
orem 1.1 can be applied. Since [30, Section 4] and [40, Section 8] already
provide a detailed discussion, our treatment here is concise.

• Any ergodic action Γy(Y, µ) of a property (T) group has a spectral
gap.

• Some elementary actions are known to have a spectral gap, e.g.
SL2(Z) yT2.

• For dense subgroups generated by “algebraic elements” in compact
simple Lie groups, the action by left translations on the ambi-
ent group has a spectral gap by celebrated results of Bourgain–
Gamburd and Benoist–de Saxcé [1, 3, 5].

• The above ordinary spectal gap (that is, in L2(Y, µ;R)) for Γ y Y

is equivalent to a spectral gap in Lp(Y, µ;Lp) for any 1 < p < ∞
(see, for example, [30]).

• Any ergodic action Γ y (Y, µ) of a group with V. Lafforgue’s Ba-
nach property (T), robust property (T), or property (Tproj) with
respect to a class of Banach spaces E 3 L2(Y, µ;X) (this is typically
equivalent to E 3 X) has a spectral gap in L2(Y, µ;X) [18, 20, 21,
22, 31, 32, 35].

4. Proof of the main results

The following is an adaptation of the definition of J. Roe [34].

Definition 4.1. — Let (Y, d) be a compact geodesic metric space, and
let S be a finite and closed under inverses set of Lipschitz homeomorphisms
between closed subsets of Y .

ANNALES DE L’INSTITUT FOURIER
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The warped cone OSY is a collection of metric spaces ({t} × Y )t>0 (de-
noted (tY )t>0 for brevity), where each set tY is equipped with the largest
metric dS such that

dS(tx, ty) 6 td(x, y) and dS(ty, tsy)) 6 1,

where in the latter condition we consider all s ∈ S and y ∈ dom s.

Since replacing the metric on Y by a Lipschitz equivalent metric (see
Definition 4.3) yields Lipschitz equivalent warped cones, the assumption
that Y is geodesic can be satisfied in most cases of interest. We will assume
that Y is not a singleton.

Typically, in Definition 4.1 one assumes that S consists of homeomor-
phisms Y → Y . Then, if S′ is another such set generating the same group Γ
of homeomorphisms, the respective warped cones are Lipschitz equiva-
lent [34]. It justifies the standard convention of denoting the warped cone
by OΓY and its metrics by dΓ, which we conformed to in Theorem 1.1 and
Corollary 1.2. With notation explained, it is clear that Theorem 1.1 is a
special case of the following result.

Theorem 4.2. — Let (Y, d) and S be as in Definition 4.1, and as-
sume that (Y, d, µ) is an Ahlfors regular metric measure space and that
µ(∂ dom s) = 0 for all s ∈ S. Let X be any Banach space.
Then, S has a spectral gap in L2(Y, µ;X) if and only if the family

(tY, dS)t>0 = OSY is quasi-isometric to an expander with respect to X.

The assumption µ(∂ dom s) = 0 on the measure of boundaries will only
be relevant for the “if” implication.

4.1. Quasi-isometries

Let us fix some terminology and notation.

Definition 4.3. — A map f : (Y, dY )→ (Z, dZ) between metric spaces
is a quasi-isometry if there exist constants A > 0 and C > 1 such that

(4.1) C−1dY (x, y)−A 6 dZ(f(x), f(y)) 6 CdY (x, y) +A

for all x, y ∈ Y and such that the B-neighbourhood of im f is the whole of
Z for some B > 0.
A bijective map f : (Y, dY )→ (Z, dZ) is a Lipschitz equivalence (or sim-

ply bi-Lipschitz) if one can take A = 0 in (4.1).

TOME 70 (2020), FASCICULE 4
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Definition 4.3 applies respectively to families of maps (ft : Yt → Zt)t∈T ,
where one requires the constants to be universal. Our index set T will
typically be (0,∞).

The following result is well known among experts, at least for Hilbert-
space expanders. We include the proof for the reader’s convenience.

Lemma 4.4. — Expansion with respect to X is a quasi-isometry invari-
ant of families of graphs of uniformly bounded degree.

Proof. — Let G = (Gt) and H = (Ht) be two families of finite graphs
with degrees bounded by D < ∞ and i = (it : Gt → Ht) be a quasi-
isometry. That is, there exist positive constants A, B, C such that

C−1d(g, g′)−A 6 d(i(g), i(g′)) 6 Cd(g, g′) +A,

and for every h ∈ Ht there exists gh ∈ Gt with d(h, i(gh)) 6 B. Let us
denote by Kf the maximal cardinality of a fibre of i, which is bounded by
the maximal cardinality of a (closed) CA-ball in G, by KB the maximal
cardinality of a B-ball in H, and by KC+A the maximal cardinality of a
(C +A)-ball in H. All three can be bounded in terms of D.
We will show that if G is an expander with respect to X, then H is too.
Let f : Ht → X. We have:∑

h,k∈Ht

‖f(h)− f(k)‖2

6 3
∑

h,k∈Ht

(
‖f(h)− f(i(gh))‖2 + ‖f(i(gh))− f(i(gk))‖2

+ ‖f(i(gk))− f(k)‖2
)

6 3
∑

h,k∈Ht

‖f(i(gh))− f(i(gk))‖2 + 6 Ht

∑
h∈Ht

‖f(h)− f(i(gh))‖2.(4.2)

If one denotes a geodesic path from h to i(gh) by (hl)nl=0 (where n 6 B

depends on h), then the second sum
∑
h∈Ht

‖f(h) − f(i(gh))‖2 in (4.2) is
bounded by:

∑
h∈Ht

n

n∑
l=1
‖f(hl−1)− f(hl)‖2 6 BKB

∑
h∼k∈Ht

‖f(h)− f(k)‖2.

On the other hand, if we denote the composition f ◦ i by f ′, then, by
expansion of graphs Gt, the first sum in (4.2) can be bounded above as
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follows:
η

K2
B

∑
h,k∈Ht

‖f(i(gh))− f(i(gk))‖2 6 η
∑

g,j∈Gt

‖f ′(g)− f ′(j)‖2

6 Gt
∑
g∼j
‖f ′(g)− f ′(j)‖2,

and, after denoting a geodesic path from i(g) to i(j) by (pg,jl )ml=0 with
m 6 C +A, we get:∑

g∼j
‖f ′(g)− f ′(j)‖2 6

∑
g∼j

m

m∑
l=1
‖f(pg,jl−1)− f(pg,jl )‖2

6 (C +A)K2
f K

2
C+A

∑
h∼k

‖f(h)− f(k)‖2.

Summarising, we have just proved the lemma:∑
h,k∈Ht

‖f(h)− f(k)‖2

6

(3(C +A)K2
f K

2
BK

2
C+A Gt

η
+ 6 HtBKB

)∑
h∼k

‖f(h)− f(k)‖2

6

(3(C +A)K3
f K

2
BK

2
C+A

η
+ 6BKB

)
Ht

∑
h∼k

‖f(h)− f(k)‖2. �

4.2. Construction of graphs

Let B(y, r) denote the open ball about y of radius r.

Definition 4.5. — A metric measure space (Y, d, µ) is Ahlfors regular
if there exist constants c,m > 0 and C > 1 such that for any r 6 2 diamY

and y ∈ Y we have
crm 6 µ

(
B(y, r)

)
6 Ccrm.

Let (Y, d, µ) and S be as in Theorem 4.2. Given t > 0, pick a maximal 1/t-
separated set Z = Z(t) in Y and a respective measurable partition {Uz}z∈Z
such that B(z, 1/(2t)) ⊆ Uz ⊆ B(z, 1/t). In particular, diamUz 6 2/t and

1
K Z

6 µ(Uz) 6
K

Z
,

where K = 2mC for C and m coming from the definition of Ahlfors regu-
larity. Construct a graph G = G(t) with the vertex set Z and edges of two
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types, that is, there is an edge y ∼ z if y ∼1 z or y ∼2 z, where the latter
are defined by:

y ∼1 z ⇐⇒ d(y, z) 6 3/t,
y ∼s z ⇐⇒ sUy ∩ Uz 6= ∅, where s ∈ S,
y ∼2 z ⇐⇒ ∃ s ∈ S : y ∼s z.

The following lemma is a version of the fact that a Rips complex is
quasi-isometric to the ambient space. Note that we could as well define G
as the 1-skeleton of a Rips complex for Z with respect to the metric dS , but
the above definition, differentiating between edges of type (1) and (2), is
more convenient in our proof. The “moreover” part of the lemma is another
version of [34, Proposition 1.10] and [40, Proposition 4.1].

Lemma 4.6. — Under the hypotheses of Theorem 4.2 the inclusions
Z(t) ⊆ Y induce bi-Lipschitz embeddings G(t) ⊆ (tY, dS) with the Lip-
schitz constants uniform in t. In particular, the families (G(t))t>0 and
(tY )t>0 = OSY are quasi-isometric. Moreover, the graphs G(t) have vertex
degrees bounded by some constant D <∞ independent of t.

Proof. — Fix t > 0 and let y 6= z be vertices of G(t). Let n ∈ N be the
minimal number such that 1 6 dS(ty, tz) 6 n and observe that there exists
a sequence of points y = x0, . . . , x2n = z ∈ Y with td(x2i, x2i+1) 6 1 and
sx2i+1 = x2i+2 for some s ∈ S ∪ {idY } (cf. [34, Proposition 1.6]). Denote
by zi the unique element of Z with xi ∈ Uzi

and observe that for every
i = 1, . . . , 2n the pair {zi−1, zi} forms an edge. Hence, the distance dG(y, z)
is bounded by 2n 6 4dS(ty, tz). For the opposite bound it suffices to look
at edges: if y ∼1 z, then clearly dS(ty, tz) 6 td(y, z) 6 3; and if y ∼s z,
that is, there exists x ∈ sUy ∩ Uz, then also

dS(ty, tz) 6 dS(ty, s−1tx) + dS(s−1tx, tx) + dS(tx, tz) 6 3,

which proves that the map G(t) → tY is a bi-Lipschitz embedding with
constant 4 · 3 = 12.

For the “moreover” part, observe that the number of edges of type (1)
emanating from y ∈ Z is bounded by the quotient µ(B(y,4/t))

infz µ(B(z,1/(2t))) 6 8mC
(for constants C,m from Definition 4.5) because the disjoint union of Uz
(each of measure at least µ

(
B(z, 1/(2t))

)
) over d(y, z) 6 3/t is contained

in the ball B(y, 4/t). Similarly, for s ∈ S and y ∈ Z the number of edges
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y ∼s z is bounded by
µ
(
B(sUy, 2/t)

)
infz µ(Uz)

6
supz µ

(
B(z, (2L+ 2)/t)

)
infz µ

(
B(z, 1/(2t))

) 6 (4L+ 4)mC,

for L being the Lipschitz constant for the action of generators. �

4.3. Poincaré inequalities

After this preparation we are ready to prove the implications relat-
ing (2.1) with (3.4), that is, the implications relating Poincaré inequalities
for maps G(t) → X with those for maps Y → X. This, together with the
results of the previous section, completes the proof of Theorem 4.2.
Expansion =⇒ spectral gap. — Assume that OSY is quasi-isometric to

an expander with respect to X. Since by Lemma 4.6 the family (tY )t>0 =
OSY is quasi-isometric to graphs (G(t)) having bounded degrees, and by
Lemma 4.4 being an expander is a quasi-isometry invariant among bounded
degree graphs, we know that the family (G(t)) is an expander.
It suffices to check the spectral gap condition on the dense subset

C(Y ;X) ⊆ L2(Y, µ;X) of continuous functions. Pick f ∈ C(Y ;X) and
assume 0 < F 2 ..=

∫∫
Y 2 ‖f(u)− f(v)‖2 dudv (if F = 0, then f is constant

and the inequality is trivially satisfied). For t > 0 and the respective Z
and {Uz}z∈Z used to define G(t) in Section 4.2, we define g ∈ L2(Y ;X)
to be constant on every Uz with the value given by f(z). One can require
ε1 = ε1(t) = ‖f − g‖∞ to be at most F/2 for sufficiently large t. We have:

(F − 2ε1)2 6
∫∫

Y 2
‖g(u)− g(v)‖2 dudv

=
∑
y,z∈Z

∫∫
Uy×Uz

‖g(u)− g(v)‖2 dudv

.K2

∑
y,z∈Z

1
Z2 ‖g(y)− g(z)‖2

(where a .c b means that a 6 cb), which, by expansion, is bounded (up to
the multiplicative constant η from Definition 2.2) by the following:

1
Z

∑
y∼z
‖g(y)− g(z)‖2

6
1
Z

∑
z

(∑
y∼1z

‖f(y)− f(z)‖2 +
∑
y∼2z

‖f(y)− f(z)‖2
)
.
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Note that by the uniform continuity of f we know that the value of

sup
y∼1z

‖f(y)− f(z)‖ 6 sup
d(y,y′)63/t

‖f(y)− f(y′)‖ =.. ε2(t)

goes to zero when t goes to infinity, and, as the value of the first sum is
bounded by Dε2

2, we can focus on the second sum.
We obtain:

(F − 2ε1)2η

K2 −Dε2
2 6

1
Z

∑
z

∑
s∈S

∑
y∼sz

‖f(y)− f(z)‖2(4.3)

.K
∑
s∈S

∑
z

∑
y∼sz

∫
Uz

‖f(y)− f(z)‖2 du.(4.4)

Fix s ∈ S for a moment. Consider the open 1/t-neighbourhood Bs of the
boundary ∂ im s ⊆ Y . Since Y is a geodesic space, the complement of Bs
splits into the “1/t-interior” Is of im s and the “1/t-complement” Cs of
im s:

Is = {z ∈ Y : B(z, 1/t) ⊆ im s},
Cs = {z ∈ Y : B(z, 1/t) ⊆ Y \ im s}.

For z ∈ Cs there is no edge y ∼s z, and for z ∈ Bs∩Z the set Uz is contained
in the open 2/t-neighbourhood of ∂ im s = ∂ dom s−1, which has measure
ε3,s(t) converging to zero by the assumption that µ(∂ dom s−1) = 0.
Hence we can focus on vertices z from Is. In this case Uz ⊆ im s and s−1

is defined on the whole of Uz, so — for ε3 ..= D‖2f‖2∞
∑
s ε3,s — we have:

(F − 2ε1)2η

K3 − Dε2
2

K
− ε3

6
∑
s∈S

∑
z∈Is

∑
y∼sz

∫
Uz

‖f(y)− f(z)‖2 du

6
∑
s∈S

∑
z∈Is

∑
y∼sz

∫
Uz

(
ε4 + ‖f(s−1u)− f(u)‖+ ε1

)2 du

.2D
∑
s∈S

∑
z∈Is

∫
Uz

‖f(s−1u)− f(u)‖2 + (ε1 + ε4)2 du,

where ε4(t) is defined as

ε4(t) ..= sup
d(y,y′)6 2L+1

t

‖f(y)− f(y′)‖

and goes to 0 as t→∞.
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We have just obtained:

(F − 2ε1)2η

2K3D
− ε2

2
2K −

ε3

2D − S(ε1 + ε4)2

6
∑
s∈S

∫
sY

‖f(s−1u)− f(u)‖2 du,

which, after passing to infinity with t, yields the spectral gap:

η

2K3D

∫∫
Y 2
‖f(u)− f(v)‖2 dudv 6

∑
s∈S

∫
sY

‖f(s−1u)− f(u)‖2 du. �

Spectral gap =⇒ expansion. — Assume that S has a spectral gap in
L2(Y, µ;X). In Lemma 4.6 we proved that, under the assumptions of The-
orem 4.2, the warped cone OSY is quasi-isometric to a family of graphs
(G(t)) with uniformly bounded vertex degrees (and also unbounded cardi-
nalities because of unboundedness of diameters). Hence, in order to com-
plete the proof of Theorem 4.2, it suffices to prove that these graphs satisfy
the Poincaré inequality (2.1) from Definition 2.2.
Fix t > 0 and the respective Z, {Uz}z∈Z , and G as in Section 4.2. For

any f ∈ L2(G;X) we can bound from below:

S
∑
y∼z
‖f(y)− f(z)‖2 >

∑
s∈S

∑
z

∑
y∼sz

‖f(y)− f(z)‖2(4.5)

>
∑
s∈S

∑
z

∑
y∼sz

µ(sUy ∩ Uz)
µ(Uz)

‖f(y)− f(z)‖2.

If one extends f to a function constant on every Uz, the last expression
equals:

∑
s∈S

∑
z

1
µ(Uz)

∑
y∼sz

∫
sUy∩Uz

‖f(s−1u)− f(u)‖2 du(4.6)

>
∑
s∈S

∑
z

Z

K

∑
y∼sz

∫
sUy∩Uz

‖f(s−1u)− f(u)‖2 du

= Z

K

∑
s∈S

∫
sY ∩Y

‖f(s−1u)− f(u)‖2 du,
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and this, by the spectral gap property, can be bounded below as follows:
Z

K

∑
s∈S

∫
sY

‖f(s−1u)− f(u)‖2 du

>
κ Z

K

∫∫
Y 2
‖f(u)− f(v)‖2 dudv

= κ Z

K

∑
y,z∈Z

∫∫
Uy×Uz

‖f(u)− f(v)‖2 dudv

>
κ Z

K

∑
y,z∈Z

(
1

K Z

)2
‖f(y)− f(z)‖2.

So for η = κ
K3 S we have just proved that∑

y∼z
‖f(y)− f(z)‖2 > η

Z

∑
y,z∈Z

‖f(y)− f(z)‖2. �

We will now deduce Corollary 1.2.
Proof of Corollary 1.2. — Let (Y, d, µ) be a geodesic Ahlfors regular met-

ric measure space with an ergodic action by Lipschitz homeomorphisms of
a finitely generated group Γ with V. Lafforgue’s Banach property (T) as
in [21, 22]. Let (G(t))t>0 be a family of graphs with uniformly bounded ver-
tex degrees and quasi-isometric to OΓY , for instance the family from Sec-
tion 4.2. For any Banach spaceX of non-trivial type, also the Bochner space
L2(Y, µ;X) has non-trivial type, equal to the type of X (see e.g. [10, Theo-
rem 11.12]). Consequently, the action has a spectral gap in L2(Y, µ;X).
Now, by Theorem 1.1 (formally: together with Lemma 4.4) the family
(G(t))t>0 is an expander with respect to X. �

4.4. Remarks

Let us finish with some remarks on the proof and a corollary.
(1) In the proof that the spectral gap for an action implies the expan-

sion of the graphs G(t), the Lipschitz condition was only used in
Lemma 4.6 to obtain a bound on the degrees of the graphs G(t),
but not in the proof of the Poincaré inequality (2.1). Hence, even
without this assumption one still gets a “weak expander”, that is,
an expander with potentially unbounded degree of vertices, cf. [41].

(2) However, the boundedness of the degree of vertices in the defini-
tion of an expander was used crucially for the opposite implication,
namely that expansion implies spectral gap.
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Indeed, even for z ∈ Is one cannot bound 1
Z ‖f(y) − f(z)‖2

in line (4.3) from above by the integral
∫
sUy∩Uz

‖f(y) − f(z)‖2 du
(like we did for the opposite bound in lines (4.5) to (4.6)) because
µ(sUy ∩Uz) can be arbitrarily small. Consequently, in line (4.4) for
every y (such that y ∼s z) we integrate over the whole of Uz, so
we later need boundedness of D in order to control the number of
these integrals.
Formally, we also used the Lipschitz continuity of s ∈ S to show

the vanishing of ε4, but uniform continuity would suffice.
(3) In the proof that the expansion of G(t) implies a spectral gap for

the action, it suffices to assume that (G(t))t∈T is an expander for
some unbounded subset T ⊆ (0,∞).

(4) We also did not rely essentially on the exponent p = 2, that is,
the equivalence of the Lp-analogues of (2.1) and (3.4) holds under
the assumptions of Theorem 4.2 for any exponent p ∈ [1,∞). (For
p = ∞ the analogues of (2.1) and (3.4) never hold unless X has
dimension zero.)
Being an expander with respect to X does not depend on p by

the result of Cheng [9], generalising partial results of Mimura [29],
so we reach the following conclusion.

Corollary 4.7. — Under the hypotheses of Theorem 4.2, the
spectral gap condition in Lp(Y, µ;X) does not depend on p ∈ [1,∞).

(5) In Definition 4.1 we require Y to be geodesic in order to guarantee
that the family (Y, td)t>0 and hence also the family (tY, dS)t>0 are
quasi-geodesic. Since Theorem 4.2 compares the family (tY, dS)t>0
to graphs and being quasi-isometric to a graph is equivalent to being
quasi-geodesic, the assumption is rather unavoidable. See [36] for
warped cones (over spectral gap actions on non-geodesic spaces)
being coarsely non-equivalent to any family of graphs.

(6) Nonetheless, the equivalence of the spectral gap for the action and
the expansion for graphs G(t) still holds, irrespective of whether Y
is geodesic (the same remark applies to Corollary 4.7). It is also
true for graphs G′(t) obtained by allowing only edges of type (2)
of graphs G(t). Similar graphs were introduced in [40] under the
name of approximating graphs for the action, and the respective
equivalence was obtained in the classical setting.
In particular, even without the geodesic assumption, expansion

with respect to Banach spaces of non-trivial type holds for graphs
G(t) and G′(t) and actions as in Corollary 1.2.
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