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Infrared (IR) diagnostics are used to measure plasma-facing components (PFC) surface temperature in 

fusion devices. However, the interpretation of such images is complex in all-reflective environments 

because of unknown emissivity and multiple reflections issues. In order to assess these challenges an 

iterative inversion method based on a fast photonic model, the radiosity method, has been developed. This 

method is applied to two different direct models based on different geometries, Sec-Tore and RADIOS, in 

order to estimate temperatures from experimental-like data simulated with a Monte Carlo ray-tracing code 

with diffuse reflective surfaces or specularly reflective surfaces. RADIOS allows retrieving temperature on 

colder targets (lower than 200°C) with errors of 33% and the peak temperatures with errors of 6%. 
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1. Introduction 

In fusion devices, infrared (IR) cameras are key 

diagnostics to monitor Plasma-Facing Components (PFC) 

submitted to high heat flux (10MW/m² in steady-state, up 

to 20MW/m²). Measuring accurately PFC surface 

temperature is also mandatory to ensure machine 

protection and optimize plasma operation. For example, 

the WEST device is equipped with 12 IR cameras looking 

at the First Wall (FW), the heating antennas and the 

divertor, the most critical component receiving heat flux 

up to 20 MW/m² [1]. 

Nevertheless, the use of all-metallic materials (mainly 

stainless steel, tungsten and beryllium) with low and 

variable emissivity (ε ~ 0.1-0.3 in the IR bandwidth 

considered [3µm, 5µm]) makes the surface temperature 

measurement difficult [1]. Indeed, the radiance collected 

by the IR camera includes both the thermal radiation 

emitted by the target and a parasitic radiation coming from 

the surroundings of the target. Furthermore, target 

emissivity changes with the surface temperature. This 

causes major errors on the surface temperature 

measurement that we need to address in order to achieve 

high power and safe plasma operation. 

IR synthetic diagnostic has been used to quantify 

accurately, for each camera, the impact on the surface 

temperature measurement of inaccurate emissivity, the 

reflections and camera resolution [2]-[4]. The use of this 

synthetic diagnostic has proven that this can lead to major 

errors on surface temperature measurement up to 100% 

for colder targets (temperature lower than 150°C) and 

50% for hot targets (maximum temperature around 

1300°C). 

This paper presents the results of an inverse method 

aiming to retrieve the true surface temperature of the PFC 

by solving low emissivity and additional parasitic flux 

coming from the reflections. This method relies on the 

comparison and the least squares minimization between 

the experimental IR image and a synthetic IR image 

(obtained through a direct model or forward model). Two 

reduced photonic models have been developed, tested and 

compared on WEST tokamak-like numerical prototype.  

 

2. Generating IR images 

In a first step, the inverse method proposed in this paper 

has been developed and tested from IR simulated images 

generated with a synthetic diagnostic. This synthetic 

diagnostic is based on a Monte Carlo ray-tracing (MCRT) 

code of ANSYS-SPEOS company [5] able to propagate 

rays in 3D geometry taking into account complex thermo-

radiative properties of materials and inhomogeneous 3D 

temperature fields as inputs. Geometrical camera 

parameters (focal length, detector size) are used to 

reproduce the 2D IR image and the collected radiance by 

each pixel. 

The MCRT code is currently the most sophisticated and 

reliable code to deal with complex geometrical and 

physics models and so generate realistic infrared images. 

Nevertheless, it is not so far adapted to deal with the 

forward relation between data and model parameters for 

the nonlinear inverse problem we want to address here; 

especially due to the required computing time (10 hour 

with 4 cores to generate a synthetic image with 2-3% 

precision). This leads to develop reduced direct models 

able to compute quickly the IR images under some 

assumptions and approximations described in section 3. 

In this paper the MCRT is used for generating 

experimental-like synthetic data as replacement of the 

experimental data in order to test the developed inverse 

method and its range of validity. 
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Figure 1 describes the thermal scene used as benchmark 

to test the proposed method aiming to retrieve the surface 

temperature by filtering reflections. In this first step, a 

simplified geometry of the vessel is considered without 

including specific components such as the heating 

antennas, the bumpers and so on. In the same way, a 

uniform temperature (fixed at 90°C) is considered for the 

first wall, the upper divertor and the baffle. The emissivity 

value is also assumed uniform and fixed for each 

component. Even though these considerations do not 

accurately reflect the reality, this first step is mandatory to 

demonstrate the method validity and performance. A 

temperature profile is applied on the lower divertor that 

roughly reproduces the heat loads in a tokamak with two 

strike points and a toroidal modulation of a 20° period to 

reproduce the ripple effect.  The considered materials are 

Tungsten for the lower divertor, the baffle and the upper 

divertor with an emissivity of 0.1 and Stainless Steel for 

the first wall with an emissivity of 0.3 fitting roughly with 

the literature [6]. The camera model reproduces the view 

of WEST standard divertor view [1] with a spectral IR 

range of =4.3 µm – 4.4 µm. The precision of simulated 

IR map will depend on the number of rays launched in the 

MCRT code. The simulated experimental images are 

characterized by a statistic noise around 2% of the 

collected radiance for colder targets. 

 

  
Figure 1 – Geometry used as input of the MCRT simulation 

(left) and the resulting simulated IR image (right) 

 

3. Inverse method 

3.1 Approach description 

 
Figure 2 – Illustration of the iterative inversion method 

developed to retrieve temperature or emissivity 

 

The inverse method relies on iterative loop as described 

in Figure 2 which consists in retrieving the model’s 

parameters (here temperature) by minimizing the 

difference between experimental and simulated data. The 

simulated data comes from a direct photonic model. In 

this paper, two direct models are tested and compared: a 

simplified model so-called Sec-tore (section 3.2.2) and a 

reduced model so-called RADIOS (section 3.3.3). In [7], 

the inversion method is tested in an inverse crime situation 

meaning that the synthetic data used to replace the 

experimental data come from the same forward model 

used for inversion, with an additive Gaussian white noise. 

In this paper, the experimental-like data are simulated 

with an independent and more sophisticated code 

described in section 2. We are interested in retrieving the 

surface temperature by solving the reflections but 

assuming that emissivity is known. Solving the emissivity 

is also mandatory in a fully reflective environment and is 

possible with such a method and a first feasibility study is 

proven in [4]. This assumes known and quite uniform 

temperatures on the components which can be achieved 

during specific operations (such as baking and machine 

conditioning). 

 

3.2 Forward Model 

A forward model includes the modeling of tokamak 

geometry, the thermal scene (3d temperature field), the 

optical and thermal-radiative properties of materials and 

the camera. The 3D geometry and the camera model are 

fixed whereas the 3D distribution of temperature and the 

optical properties of materials can change. The two 

developed forward models are based on the same radiosity 

method (section 3.2.1) to compute the collected flux by 

camera pixel. 

 

3.2.1 Radiosity Method 

The radiosity method is a common method for computing 

the inter-reflections of light assuming all diffuse 

reflecting surfaces or Lambertian reflection, meaning that 

the part of reflected flux is the same in all the directions 

of observation [8]-[10]. Considering a scene composed of 

N individual surfaces (patches), the method consists in 

computing the radiosity J vector [N] that contains the total 

radiation leaving each patch of the scene in all directions 

per unit area. This energy includes both the emitted 

energy and the reflected one coming from all the other 

patches in the enclosure as described in equation (1).  
1( ( ) ) ( )−= − 0

J I R ε F ε L T  (1) 

With, I is the identity matrix [N×N], R(ε) the diagonal 

reflectivity matrix [N×N] where each reflectivity is given 

by j=1-εj (j=1 to N), F = (FAj→Ak) the view factors matrix 

[N×N] and πεL0(T) the emissive power vector [N]  which 

is then called the “source term”. L0(T) is the black-body 

radiance at temperature T given by Planck function 

integrated in the spectral range of the IR camera. The view 

factor in the above equation is defined as the fraction 

(between 0 and 1) of flux leaving the surface Aj and 

reaching the surface Ak: 
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With υjk is the obstruction factor between patches j and k¸ 

θj the angle between the normal of the surface j and the 

closest distance between the surfaces j and k and θk the 

angle same angle for surface k, Aj is the area of the surface 

j[8]. For a given geometry, the view factors matrix is 

computed only once (12 hours with parallel computing). 

When all the radiosities Jj of the N patches are computed, 

the 3D to 2D projection is achieved with an OpenGL 

routine to provide the observable quantity, that is the 2D 

IR image (made of 640 x 256 pixels) for the given view 

of the simulated IR camera. 

 

3.2.2 Sec-Tore 

Sec-Tore is a simplified model based on a 20° toroidal 

sector of a numerical prototype of the WEST tokamak 

closed by two black-body surfaces at the environment 

temperature. This geometry has been designed in order to 

prevent any obstruction between two patches of the 3D 

scene to compute simple view factors (through an integral 

contour [11]). Sec-Tore is made of N=11.787 patches that 

lead to a computation of over 69 million view factors. 

Figure 3 shows the geometry of Sec-Tore and the 

corresponding modeled image (67.122 pixels) used in the 

inversion method. 

 

 
Figure 3 – Illustration of the 3D model of Sec-Tore with a 

thermal field applied to the mesh (right) and the resulting 

modeled image after the OpenGL projection (right) 

 

The emissivities of the environment and the lower 

divertor are assumed known (see Figure 1) as well as the 

temperature of the environment and the black body 

surfaces. The 8.796 patches of the lower divertor are 

regrouped in 1.560 bigger patches. The parameters to be 

estimated are the 1.560 temperatures of the lower divertor. 

 

3.2.3 RADIOS 

RADIOS is a reduced model based on a hierarchical 

adaptive method [12] allowing to compute only the most 

important view factors of the scene at the last level of 

resolution. This criterion of importance is related to the 

Region of Interest (RoI) of the 3D scene on which are 

located the parameters to be estimated. The idea is that 

some initially coarse patches in the whole tokamak are 

refined (and the corresponding shape factor are 

computed) only if their contribution to the radiosity of the 

ROI patches is important (at a given precision level). Such 

a  method allows considering the whole torus (contrary to 

the Sec-Tore considering only 20° of the tokamak) as well 

as the obstructions between patches enabling to add more 

components to the model such as the baffle. Typically, the 

geometry used in the MCRT code is made of meshes 

constituted of 2 million elementary surfaces. Without the 

classical method used in Sec-Tore, 2.1012 view factors 

should be computed, whereas 7.8 million view factors are 

computed with the hierarchical adaptive method. 

Figure 4 shows the mapping of a temperature field on the 

last level of resolution of the meshes with the ROI 

identified. The RoI is composed of 1.391 patches, which 

corresponds to the number of parameters to be estimated 

in  the 3D scene. 

 
Figure 4 – Illustration of the last level of resolution for a 

numerical prototype of WEST with the corresponding mapping 

of temperature 

 

The reduced method RADIOS uses also Gebhart factors 

as an additional criterion of refinement of the meshes as 

presented in [13]. As Figure 5 shows, Gebhart factors are 

a “generalized” version of the view factors taking into 

account the radiative properties of the patches [14]-[15]. 

The Gebhart factors between Sj and Sk, also called 

absorption factors, represent the fraction of the energy 

initially emitted by Sj that is absorbed finally by Sk, taking 

into account all the possible reflecting paths in the scene.  

 
Figure 5 – Usual view factors compared to Gebhart factors 

taking into account all radiative paths (direct and indirect) 

 

To complete the direct model package the same projection 

based on OpenGL used for Sec-Tore is applied to 

RADIOS to produce the final synthetic IR image of the 

scene. 

 

3.3 Parameters Estimation Problem 

The parameters estimation is based on Ordinary Least 

Squares (OLS) method [17]. The minimization will occur 

on a RoI of IR images of m pixels. This RoI can be a 
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profile, an area of image, a list of some particular pixels, 

etc.   

The OLS minimization uses a Gauss-Newton algorithm to 

update the parameters at each iteration. That is based on 

the inversion of the STS information matrix [p×p] with p 

the numbers of parameters to be estimated: 

( ) ( ) ( )
( )

( )( )11ˆ ˆ ˆ
−+

= + −
kk k T T

OLS OLS mes OLSmo
x x S S S y y x  (3) 

where ˆ
OLSx  is the vector of the p parameters to be 

estimated (temperature here), ymes the vector of m data, ymo 

the vector of the m outputs of the direct model and k the 

iteration number. 

The specificity of this method is that the estimation is 

performed on the 3D world (i.e. the parameters are the 

temperatures of the patches of the divertor) and not on the 

cameras pixels (2D observable). As a result, the number 

of parameters p (related to the patches) is not necessarily 

equal to the number of measurements m (pixels) as it 

depends on the resolution of the camera. Furthermore, 

some patches that share the same optical/emission 

properties (in reality or by assumption for modeling) can 

be gathered into macro patches covered by several pixels, 

hence different pixels bear the same information 

regarding one parameter of the model. 

Each column j of the sensitivity (or Jacobian) matrix S 

[m×p] contains the sensitivity coefficient of the model to 

the parameter xj (j=1 to p) computed along pixels of 

interest si (i=1 to m) given by equation (4) [16]-[17]: 

( , )
( ) , 1 , 1

k

mo i

j i

j x for k j

y s
S s j to p i to m

x



= = =



x
 (4) 

Nevertheless, as proven in [7], the temperature estimation 

becomes a linear problem by considering the radiance 

parameters L0(T) (related to the temperature T via the 

Planck function) in equation (3). Then, the radiance 

parameters can be directly computed with equation (5):  

( ) ( )
1

0ˆ
−

= −T T

OLS

0

r r r mes c c
L S S S y S L  (5) 

with, L0 the black body radiance of target from which the 

temperature will be deduced, Sr the sensitivity matrix for 

the estimated parameters, (Sr
TSr)-1Sr

T the inversion 

operator, ScL0
c the reduced sensitivities of the forward 

model with respect to the known parameters (that is 

L0(Tenv) where Tenv is the temperature of all components in 

the tokamak except the lower divertor). The vector yshift= 

ymes- ScL0
c is called the shifted data. As a result, the 

solution is quickly computed without any iterations since 

the problem is linear (four seconds with 16 G0 RAM and 

3.5 GHz CPU). 

The solution takes also into account the standard deviation 

i of noise measurement. The noise measurement is 

considered additive with zero mean and a Gaussian 

distribution. The standard deviation of the noise is 

assessed as a constant fraction (typically 2% as indicated 

in section 2 such as the values obtained from the MCRT 

simulations) of the radiance collected by each pixel. The 

noise covariance matrix  is given by (6)(7): 
2 2 2

1 2
 =  L mdiag   Ψ  (6) 

The solution of the Maximum Likelihood (ML) 

estimation [16] is given by equation (7): 

0 1 1 1ˆ ( ) ( )− − −= −T T

ML

0

r r r mes c c
L S Ψ S S Ψ y S L  (7) 

The covariance matrix of ML estimator is given by: 
0 1 1ˆcov( ) ( )− −= = T

ML r rC L S Ψ S  (8) 

The 95% confidence intervals associated to the ith 

estimated parameters (j=1 to p) are computed from the 

diagonal components of this covariance matrix:
0 1/2

,
ˆ 1.96 ( ) ML j jjL C . 

Table 1 summarizes the main figures for the temperature 

estimation for Sec-Tore and RADIOS models. The 

temperature estimation is carried out on a sector of 20° 

(67.122 pixels for Sec-tore, 49.527 pixels for RADIOS). 

The estimation with Sec-Tore aims to retrieve the 

temperature of 1.560 “macro-patches” located on the 

lower divertor whereas the estimation with RADIOS aims 

to estimate 1.391 parameters of the patches of 3D ROI of 

the hierarchical method. RADIOS allows identifying less 

parameters because some parameters on the outer side of 

the lower divertor are not monitored by the camera due to 

the baffle obstruction. The temperature of these patches is 

assumed equal to the last patches monitored next to the 

baffle’s edge. 

 
Table 1. Main figures for the temperature estimation for Sec-

Tore and RADIOS models 

Model 
Torus 

part 

View 

factors 

m 

Pixels 

used 

p 

Parameters 

estimated 

Sec-Tore 20° 69M 67.122 1.560 

RADIOS 360° 7.8M 49.527 1.391 

 

4. Results 

4.1. Diffuse Case 

The first temperature estimation is performed considering 

a diffuse surface.  The synthetic data are generated from 

the MCRT code, considering purely diffuse reflective 

materials (or Lambertian reflectance for which the 

apparent temperature is the same for any observer’s angle 

of view). Two simulated images are generated: one 

without the baffle for the estimation conducted with Sec-

Tore and one with a baffle for the estimation with 

RADIOS. The emissivities of the components are fixed to 

their value of the literature (0.1 for the lower divertor, the 

upper divertor and the baffle, 0.3 for the first wall as stated 

in section 2 and further to [6]). The temperature of the 

environment (all surfaces but lower divertor) is assumed 

known and fixed to its value of 90°C.  

 

Figure 6(a) shows the radiance profiles along the divertor 

simulated with MCRT considering or not baffle emission: 

the difference is not significant which allows comparing 

the results of Sec Tore and RADIOS without bias. This 

figure also shows the good convergence of the modeled 

radiance with the Sec-Tore model towards the simulated 

ones with the MCRT code. Figure 6(b) shows the 

estimated temperature profiles with both Sec-Tore and 

RADIOS compared to the true surface temperature used 

as input of the MCRT simulation.
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Figure 6 – (a): Synthetic noisy measurements (radiance profiles) built with the MCRT code in the case of diffuse reflective surfaces 

without baffle (red) and with baffle (green). Comparison with the optimal radiance profile obtained with the temperature estimated 

by the inverse method Sec Tore (blue). (b): 3D temperature profile estimated with Sec-Tore (blue) with the associated levels of 

confidence and with RADIOS (green) in the case of synthetic measurements with diffuse reflective surfaces. Profiles correspond to 

the green lines drawn on the 3D view of Figure 7, the origin being on the inner side. 

 

Sec-Tore enables to estimate the peak temperatures with 

an error lower than 1% for the maximum temperatures 

(around 800°C). However, the temperature of the colder 

part is estimated with an error higher than 166%. This is 

due to the black-body vertical closing surfaces at Tenv (see 

Figure 3) that appear to be a wrong boundary condition to 

model radiation exchange between the lower divertor and 

the complete tore (Sec-Tore is limited to a toroidal section 

of 20°). As expected, RADIOS (modeling the complete 

360° tore with hierarchical radiative method) enables to 

estimate the lower targets temperature with a much lower 

mean error of 32%. Nevertheless, RADIOS estimation of 

the peak temperatures is not as good as the Sec-Tore 

estimation: it is mainly due to the high sensitivity of 

RADIOS to the noise measurements (synthetized by the 

MCRT code here). To a slightly lesser extent, these errors 

can be due to approximations in the forward modeling 

(approximations of camera viewing and geometry) 

compared to the real world (here synthetic diagnostic). 

One should pay peculiar attention when real experimental 

data will be processed. 

 

Figure 7 shows the mapping of the estimated temperatures 

for RADIOS and Sec-Tore on the 3D surface compared to 

the true temperature used as input of the MCRT code. 

 
Figure 7 –3D mapping of the estimated temperatures with 

RADIOS (left) and with Sec-Tore (right) compared to the true 

temperature used as input of the MCRT code (middle) 

 

The black patches on RADIOS side are parameters that 

could not be estimated because the model is too sensitive 

to the noise contained in the simulated data. 110 

parameters over 1.391 parameters are not estimated. 

 

4.2. Specular case 

The second temperature estimation considers high 

specular reflectance surface. The synthetic data are 

generated considering a Bidirectional Reflectance 

Distribution Function (BRDF) which is a combination of 

2% Lambertian reflectance and 98% of specular reflection 

with a Gaussian distribution of 8° width around the 

specular direction. Figure 8 compares the simulated 

images with the MCRT code in case of diffuse and 

specular surfaces and considering the presence of the 

baffle. 

 

 
Figure 8 – Synthetics measured radiance maps provided by the 

MCRT code in the case of fully diffuse reflective surfaces (left) 

and mainly specular reflective surfaces (right) with logarithmic 

color bars 

 

Figure 8 shows that the specular reflective materials cause 

two patterns (halos) of reflections on both side of the 

strike points: on the inner side of the lower divertor and 

close to the baffle. These patterns are due to reflections of 

the environment (vessel wall) at 90°C. 

The estimation assumptions are the same as for the diffuse 

case (environment temperature and emissivities known). 

Figure 9(a) shows the simulated radiance profile with the 

MCRT code considering or not the baffle obstruction and 

(a) (b) 
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emission. The radiance profiles are quite similar except 

for the extreme pixels (number 160 and more) impacted 

by the presence of baffle. There is less signal near the 

baffle as well as more statistic noise. Concerning the 

noise, the specular simulations show that the statistic 

noise represents around 25% of the signal on the colder 

targets compared to the diffuse relative noise of 2%. 

Figure 9 also shows the convergence of the radiance 

optimal parameters profile (left) and the corresponding 

results of the estimated 3D temperatures (right). 

 

 
Figure 9 – (a): Synthetic noisy measurements (radiance profiles) built with the MCRT code in the case of specular reflective surfaces 

without baffle (red) and with baffle (green). Comparison with the optimal radiance profile obtained with the temperature estimated 

by the inverse method Sec-Tore (blue). (b): 3D temperature profile estimated with Sec-Tore (blue) with the associated levels of 

confidence and with RADIOS (green) in the case of synthetic measurements with specular reflective surfaces.  

Profiles correspond to the green lines drawn on the 3D view of Figure 7, the origin being on the inner side. 

.  

On one hand, Sec-Tore enables to retrieve all parameters 

to be estimated. The radiance profiles on Figure 9(a) show 

the halo of reflection on the inner side in the form of the 

bump on the left of the profiles (pixels 0 to 70). The 

convergence of the model regarding the radiances is still 

good however, the temperature estimation is not so good 

especially for the halo of reflection. Indeed, the bump on 

the radiance profile is interpreted by the model as an 

increased emission of the component in this area and not 

as a specular pattern of reflection. As a result, the 

estimated temperature is higher in the matching area (up 

to 300°C instead of 90°C). The estimated temperature on 

the colder targets (less prone to reflections) is around 

200°C, which represents an error of 120% compared to 

the previous errors of around 166%. Last, the increase of 

relative statistic noise on the measurement degrades the 

confidence levels associated to the temperature 

estimations (error bars larger than in diffuse case about 

2% of the value for Sec-Tore and 4% for RADIOS in 

diffuse case versus 12% for Sec-Tore and 10-50% for 

RADIOS in specular case). 

On the other hand, RADIOS enables to retrieve only 891 

parameters out of the 1.391 estimated parameters (around 

60% estimated parameters). This is due to an increase of 

statistic noise in the simulated experimental-like data 

when considering specular reflective surfaces. 

Nevertheless, the estimation of the peak is as good as the 

estimation considering diffuse reflective surfaces with 

errors from 1% to 8%. It is worth noting that retrieved 

parameters out of the peak are the ones located in the area 

prone to reflections where the halo of reflection is 

considered by the algorithm as a much hotter zone than it 

really is. 

 

Figure 10 shows the relative errors on the estimated 

surface temperature ((estimated-true)/true in %) with Sec-

Tore and RADIOS for diffuse reflective surfaces as well 

as specular reflective surfaces. The true temperature 

profile used as input of the MCRT code is also plotted to 

locate the position of the peaks. 

(a) (b) 
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Figure 10 – (a): Relative errors on the estimated temperatures with Sec-Tore for diffuse reflective surfaces (blue) and RADIOS 

(green) superimposed with the true temperature profile (black). (b): Relative errors on the estimated temperatures with Sec-Tore for 

specular reflective surfaces (blue) and RADIOS (green) superimposed with the true temperature profile (black).  

Profiles corresponds to the green lines drawn on the 3D view of Figure 7, the origin being on the inner side. 

 

RADIOS allows estimating less parameters than Sec-Tore 

because of the presence of the baffle and because some 

parameters cannot be estimated due to the statistic noise 

of the simulated data.  

Figure 10 shows the mean error of the temperature 

estimation. As expected the temperature peak at 800°C, 

which is less affected by parasitic reflections, is retrieved 

with a good accuracy (better than 1% both for diffuse and 

specular surfaces). The advantage of the RADIOS model 

(considering the whole torus) is quite proven for colder 

targets (temperature around 90°C) in the diffuse case 

since it allows reducing the surface temperature error to 

33% from 166% with the Sec-Tore model. The specular 

case is more complicated to analyze. Indeed, the 

additional parasitic light coming from specular reflection 

is not uniform along the target due to angular dependence 

of reflectivity. As a result, a kind of bump is observed 

along the luminance profile (Figure 10b). As the model 

used for the inversion assumes Lambertian reflections, the 

bump is interpreted as an increase of emittance and so the 

algorithm finds a solution with a higher temperature than 

expected. This leads to larger temperature errors using 

both models Sec-Tore and RADIOS up to more than 

200%.This illustrates and quantify the limits of the 

radiosity method considering diffuse reflecting surfaces to 

retrieve temperatures of specular reflecting surfaces. The 

next step should be to enhance the direct model taking into 

account the specular behavior of the reflectance model 

based on previous studies as described in [19]. 

 

Table 2 summarizes the results of the temperature 

estimation with both Sec-Tore and RADIOS for diffuse 

reflective surfaces and specularly reflective surfaces. 

RADIOS gives results of temperature estimation with a 

mean error of 32% on the colder targets and 1 to 8% error 

for the peak temperature. As mentioned in section 4.1 this 

degradation of the peak temperature estimation is due to 

approximations in the modeling of RADIOS and noise 

statistic. 

 

 

Table 2. Comparison of the results estimation with Sec-Tore and 

RADIOS. 

Reflection 

model 

Temperature 

location 
Sec-Tore RADIOS 

Diffuse 
Hot Peak 1% 6% 

Cold targets 166% 33% 

Specular 

Hot Peak < 1% / 

Cold targets 106%-

223% 
/ 

 

 

5. Conclusion 

This paper presents the results of an inverse method 

aiming to retrieve the true surface temperature from IR 

measurements solving low emissivity and the additional 

parasitic flux coming from the reflections. In the inverse 

method presented here, the temperature estimation is 

carried out with two different forward radiative models, 

both using radiosity calculations but based on two 

different geometries: Sec-Tore and RADIOS. On one 

hand, Sec-Tore only considers a toroidal 20° sector of a 

tokamak closed by two black-body surfaces with very 

simple components and no obstructions between 

elementary patches. On the other hand, RADIOS 

considers a whole torus and can deal with obstructions 

between patches and then can include more realistic 

components such as the baffle into the model. To test the 

method, the IR measurements are replaced by synthetic 

experimental-like data simulated with a MCRT code 

considering diffuse or highly specular reflective surfaces. 

In the case of diffuse reflective surfaces, Sec-Tore gives 

good results for the peak temperature estimation with 

error of 1%. However, due to the boundary condition of 

black body surfaces closing the 20° sector, the error on 

colder targets temperature estimation reaches 166%. 

RADIOS gives better results for the colder targets 

temperature estimation with a mean of error of 32% but 

the peak temperature estimation is degraded by 

approximations in the modeling, with respect to the 

MCRT code that generated the synthetic data (geometry 

sometimes simplified to limit the number of total 

(a) (b) 
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patches). The temperature estimations with RADIOS is 

also currently limited by the sensitivity of the inversion 

process to the noise existing on the synthetic 

measurements. This leads to the impossibility to estimate 

some parameters. These issues should be reduced by 

improving the conditioning of the model by using 

regularization methods (such as Tikhonov regularization 

[19]), optimization under constraints or with a priori 

values of some parameters. 

In the case of specular reflective surfaces, the temperature 

estimation with Sec-Tore and RADIOS still gives good 

results for the peak temperature, but the temperature 

estimation of colder targets, prone to reflections, is more 

chaotic with great errors. This result was expected as the 

radiosity method assumes diffuse surfaces and cannot 

interpret specular patterns of reflection. The next 

challenge will be to take into account specular surfaces in 

RADIOS. 

Nevertheless, the developed inverse method has proved 

very promising for retrieving the true temperature by 

filtering reflections. Furthermore, as the temperature 

estimation problem is linear and relies only on a matrix 

product based on the pre-computed and stored Jacobian 

(eq. (7)), this inverse method could be compatible with 

real-time application. 
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