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Controlling Spiral Waves in Confined Geometries by Global Feedback
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The evolution of spiral waves on a circular domain and on a spherical surface is studied by numerical
integration of a reaction-diffusion system with a global feedback. It is shown that depending on
intensity, sign, and/or time delay in the feedback loop a global coupling can be effectively used
either to stabilize the rigid rotation of a spiral wave or to completely destroy spiral waves and to
suppress self-sustained activity in a confined domain of an excitable medium. An explanation of
the numerically observed effects is produced by a kinematical model of spiral wave propagation.
[S0031-9007(97)03067-6]

PACS numbers: 82.20.Wt, 05.70.Ln, 47.54.+r

Controlling the dynamics of spiral waves is important In this Letter we investigate the possibility to control
for many excitable media including biological systemsthe evolution of spiral waves on a disk and on a sphere by
like cardiac tissue [1] or aggregating slime-mold cells [2]introducing such a global feedback based on an integral
and physical systems like the CO oxidation on platinuminformation about the distribution of the excitation within
surfaces [3]. Well developed spiral structures with a verythese confined regions.
long front describing many whorls can be easily observed We use in our computations a general mathematical
in chemical systems like the Belousov-Zhabotinsky (BZ)model describing excitable media in terms of “reaction-
reaction [4—6]. On the other hand, very often the rotatiordiffusion” equations [23],
of spiral waves occurs in restricted domains like chicken

retina [7] or single cardiac cells [8,9], where the length of du D,V?u + F(u,v),

the spiral wave front is relatively small. ot (1)
A confined geometry introduces new specific properties v )

to the common features of spiral waves in unrestricted ar DyVv + €Gu,v),

media. Particularly, in the case of a circular domain, the ) . .
rotation frequency of a spiral wave strongly depends on ityvhere variablesi andv (sometimes called activator and
radius [10,11]. Moreover, an interaction with the nonflux inhibitor) represent the concentrations of the reagents or
boundary imposes a new two-periodic regime [12,13], irthe temperature, the electric potential, etc.
addition to the rigid rotation which is common for an  For the functions”(«, v) andG(u, v) we use the form
unrestricted medium. Two similar dynamic regimes havesuggested in Ref. [10], which is suitable for both numerical
been observed numerically on a sphere [14,15], which i@nd analytical studies,
an example of a boundaryless confined geometry.

Spiral waves can be effectively controlled by applica- Flu,v) = flu) — v,
tion of an external forcing [16—19]. This forcing can be f(u) = —kyu, u<ao,
givena priori (i.e., as a periodic modulation of excitabil-
ity [17,18]) or computed on-line using the data of the mo- = ky(u — a), oc<u<l-uo,
mentary state of the medium by closing a feedback loop = k(1 — u), 1l -0 <u,
[19,20]. In many respects feedback control is preferable
to a priori given forcing, because it adjusts to the present Gu,v) = keu — v, kgu —v =0,
state of the medium. Especially effective is a global feed- = ke(kgu — v), keu — v <0,
back when the intensity of external forcing is proportional
to the integral of the activity taken over the whole mediumwith the following parameter values, = 1.7, k, = 2,
with a confined geometry [21,22]. Such a global couplingke = 6.0, « = 0.1, ¢ = 0.01, ¢ =03, D, = 1, and
is naturally observed in surface reactions where the pa®, = 0. The parameter,; and k, are chosen in such
tial pressure in the gas phase is determined by the integral way that the functiorf () is continuous ait = o and
of absorption and desorption rates over the whole surface = 1 — ¢.
[3]. The properties of a global feedback can be studied This model has a steady state which is stable with re-
experimentally by using the photosensitive BZ solutionspect to a small perturbation. However, a superthreshold
where the absorption of transmitted light depends on theerturbation, once locally applied, gives rise to a wave
concentration of chemical species [20]. propagating through the medium.

()
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The system (1) was integrated for a circular domain
or a spherical surface with radiu®. Because of the
rotational symmetry of the problem it is natural to use a
polar coordinate system. The Laplacian was calculated by
using a quasiuniform computational grid proposed earlier
[13,15] with the time ste@\r = 0.01 and the space step
Ar = 0.5.

To introduce a global coupling the first equation in (2)
was modified [14],

F(u,v,t) = f(u) — v + kpp[B(t — 7) — Bol, (3)

where

B(t)=—fsvds. 4

Thus, the intensity of the feedback signal is controlledFIG. 1. Trajectories of a spiral wave tip on a circular domain
by the coefficientks, and is proportional to the integral of radius R = 26 comput_ed for different intensities of the
value B of the second variable over the simulated domairf€9ative global feedback: (&}, = —0.02, (b) kg, = —0.04,

. - (€) ke, = —0.06, and (d)kg, = —0.1. Time delayr = 0. The
S. The constanB, is the value of this integral for the initial position of the spiral wave tip and the time instance

case of a stationary rotation. Hence, the application 0Opf feedback application are indicated by the symbdl¥ ‘and
such a feedback does not change the parameters of the,” correspondingly.

stationary rotation, since the feedback signal vanishes for
this case. A positive value of the coefficignt provides
a “positive feedback”; that is, an increase®leads to a

higher excitability of the medium due to a decrease of th o o A .
excitation threshold. In turn, this change in excitability started from the same initial conditions resulting in a drift

results in a further increase of the integral activity along the boundary. The global feedback was switched on

The dynamics of spiral waves in a disk and on a spher&t the moment indicated by a cross. _
is studied below under different signs and absolute values A relatively low intensity of the global coupling de-
of the coefficient,. We will also use the time delayas creases the drift velocity [Fig. 1(a)]. Moreover the drift

another control parameter in the feedback loop that usuaggan be completely stopped if the intensity of the feed-
exists in real systems or can be introduced artificially tg®@ck becomes sufficiently strong [Fig. 1(b)]. A further
achieve a desired dynamic behavior. increase of the intensity results in a stabilization of the tip

motion near the center of the disk. At first the tip de-

To create a spiral wave on a disk a special initial condi- """ ) . .
tion is chosen. In our computations we start from a nonuniSC'ibes a cycloidal trajectory around the center [Fig. 1(c)]

form distribution of the variables [15]. A superthreshold Which indicates that some oscillations in the angular ve-
valueu = 1 is given within a narrow sector of the disk locity take place. But these oscillations are suppressed

to induce a propagating wave. The second variatife with growing intensity until complete synchronization is
creases in clockwise direction within this sector from=  eached [Fig. 1(d)]. Thus a negative global feedback of
v (heredu/dt > 0) up tov = v, (heredu/dr < 0). As sufficiently high intensity results in a stabilization of the

a result the boundary of the sector consists of two part§9id rotation of a spiral wave in the center of the disk. -
which are the front (withiu/ds > 0) and the back (with A quite different scenario of splral_ wave evolution is
du/dr < 0) of a wave circulating in counterclockwise di- Ot’,serVEd for opposite (posmv.e). sign in th? feedba}ck |_°°p
rection. The tip of the evolving spiral wave corresponds(Fi9- 2)- Here we start from initial conditions which, in
to the point at whichdu/dt = 0. The initial location of

the tip with respect to the center of the disk depends on the
internal radius of the sectay.

If the tip is initially located near the center of the disk a
centrosymmetrical rotation of a spiral wave can be created.
A two-periodic regime corresponding, in fact, to a drift
of a spiral wave core along the nonflux boundary can be
induced, if the tip is initially placed near the boundary of

the disk. FIG. 2. Trajectories of a spiral wave tip on a circular domain

In the first S,e”‘?s of our computations a transformatiorbf radiusR = 26 computed for two different intensities of the
of the two-periodic regime due to a global feedback wagsitive global feedback: (@, = 0.1, (b) ky = 0.15. Time

studied as illustrated in Fig. 1. Four trajectories of thedelayr = 0. Symbols ©O” and “+” as in Fig. 1.

spiral wave tip are shown as computed for different values
Hf the intensityky,, in the feedback loop. All computations
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the absence of the feedback, result in a regime of cerspiral (a wave with two spiral tips) fulfills this requirement
trosymmetrical rotation. Switching on the feedback destaand is the simplest wave object on a sphere.

bilizes the rigid rotation: the tip trajectory approaches the Such a double spiral can be created if the initial value
boundary and then drifts along it [Fig. 2(a)]. In someof u is taken equal to 1 within a thin stripe located along
respects the finally observed two-periodic process looka meridian, with two edges located near the north and the
similar to the drift without feedback [cf. Fig. 1(a)]. How- south poles. The second variabléncreases in the east
ever, the shape of a single loop of the trajectory is stronglylirection fromv, to a critical valuev,, which prevents
deformed as compared to the unperturbed one. A furthehe propagation towards the east. Consequently, the wave
increase of the intensity speeds up the process of destatarts to curl around its open north and south ends. This
bilization. When the intensity of the positive feedbackprocess creates two spiral waves that rotate in the northern
exceeds a certain value, the spiral wave dies after colliand southern hemispheres and collide with each other on
sion with the boundary [Fig. 2(b)]. the equator [14,15].

This scenario can be changed by introducing a time Inthe presence of a negative feedback a stationary shape
delay into the feedback loop. For a time delay shortof the wave is established rather quickly and the double
with respect to the rotation periofl = 50 its effect is spiral rotates as a rigid body around the vertical axis
negligible, and switching on the feedback leads to aras shown in Fig. 4(a). Introducing a positive feedback
annihilation of the spiral wave on the boundary. In thechanges this regime drastically. The open ends are not
example shown in Fig. 3(a) the feedback is applied afteattracted any more by the poles, and their trajectories
a two-periodic regime has been established. In this cas@semble a cycloid placed on the sphere [Fig. 4(b)]. This
the spiral waves died very quickly after switching on theis typical for a two-periodic regime where the open end
feedback. A larger delay leads to a special drift behavior
along the boundary [Fig. 3(b)]. Note that the direction
of this drift is counterclockwise and thus opposite to the
drift direction in the absence of the feedback. With a time
delay of about one-half df the tip trajectory is stabilized
around the center of the disk [Fig. 3(c)]. Further increase
leads again to a destabilization of the centrosymmetrical
tip motion up to annihilation of the spiral wave due to its
collision with the boundary [Fig. 3(d)].

On a boundary-less surface like that of a sphere the ~
contour curve of a wave is always closed. For one part of

e~~~

)
this contourdu/dt > 0 (this is the front of the wave); for | ‘;
the other onelu/dr < 0 (the back of the wave). Thus, on N W
a wave contour at least two points should exist at which G V=
the front coincides with the back of the wave. A double plc—— =g (a)

lon

d FIG. 4. Trajectories of a spiral wave tip on a sphere of radius
R = 25 computed (a) for negative global feedback with =

FIG. 3. Trajectories of a spiral wave tip on a circular domain—0.05 and (b) for positive feedback witlks, = 0.1. Time

of radiuskR = 26 computed forks, = 0.15 and different values delayr = 0. Initial position of the spiral wave tip is indicated

of the time delay in a feedback loop (&)= 5, (b) 7 = 15, by the symbol ©”. Dark shaded area in (a) corresponds to the

(c) 7 =25, and (d) 7 = 40. Symbols ‘O” and “+” as in location of the excited region at the end of the computational

Fig. 1. interval.
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rotates around some core, and the core moves with this particular model case but also in different excitable
constant speed along a specific latitude [14,15]. Whemedia with confined geometries.
the positive feedback has a sufficiently large intensity, two Financial support from the Volkswagen-Stiftung, Han-
arms of the double spiral mutually annihilate each other [asiover, is gratefully acknowledged.
in Fig. 4(b)]. As a consequence, self-sustained activity on
the sphere is completely suppressed.
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