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Controlling Spiral Waves in Confined Geometries by Global Feedback
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The evolution of spiral waves on a circular domain and on a spherical surface is studied by numerical
integration of a reaction-diffusion system with a global feedback. It is shown that depending on
intensity, sign, and/or time delay in the feedback loop a global coupling can be effectively used
either to stabilize the rigid rotation of a spiral wave or to completely destroy spiral waves and to
suppress self-sustained activity in a confined domain of an excitable medium. An explanation of
the numerically observed effects is produced by a kinematical model of spiral wave propagation.
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Controlling the dynamics of spiral waves is importan
for many excitable media including biological system
like cardiac tissue [1] or aggregating slime-mold cells [2
and physical systems like the CO oxidation on platinum
surfaces [3]. Well developed spiral structures with a ver
long front describing many whorls can be easily observe
in chemical systems like the Belousov-Zhabotinsky (BZ
reaction [4–6]. On the other hand, very often the rotatio
of spiral waves occurs in restricted domains like chicke
retina [7] or single cardiac cells [8,9], where the length o
the spiral wave front is relatively small.

A confined geometry introduces new specific propertie
to the common features of spiral waves in unrestricte
media. Particularly, in the case of a circular domain, th
rotation frequency of a spiral wave strongly depends on
radius [10,11]. Moreover, an interaction with the nonflu
boundary imposes a new two-periodic regime [12,13],
addition to the rigid rotation which is common for an
unrestricted medium. Two similar dynamic regimes hav
been observed numerically on a sphere [14,15], which
an example of a boundaryless confined geometry.

Spiral waves can be effectively controlled by applica
tion of an external forcing [16–19]. This forcing can be
given a priori (i.e., as a periodic modulation of excitabil-
ity [17,18]) or computed on-line using the data of the mo
mentary state of the medium by closing a feedback loo
[19,20]. In many respects feedback control is preferab
to a priori given forcing, because it adjusts to the prese
state of the medium. Especially effective is a global feed
back when the intensity of external forcing is proportiona
to the integral of the activity taken over the whole medium
with a confined geometry [21,22]. Such a global couplin
is naturally observed in surface reactions where the pa
tial pressure in the gas phase is determined by the integ
of absorption and desorption rates over the whole surfa
[3]. The properties of a global feedback can be studie
experimentally by using the photosensitive BZ solutio
where the absorption of transmitted light depends on t
concentration of chemical species [20].
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In this Letter we investigate the possibility to control
the evolution of spiral waves on a disk and on a sphere by
introducing such a global feedback based on an integra
information about the distribution of the excitation within
these confined regions.

We use in our computations a general mathematica
model describing excitable media in terms of “reaction-
diffusion” equations [23],

≠u
≠t

­ Du=2u 1 Fsu, yd ,

≠y

≠t
­ Dy=2y 1 eGsu, yd ,

(1)

where variablesu and v (sometimes called activator and
inhibitor) represent the concentrations of the reagents o
the temperature, the electric potential, etc.

For the functionsFsu, yd andGsu, yd we use the form
suggested in Ref. [10], which is suitable for both numerical
and analytical studies,

Fsu, yd ­ fsud 2 y ,

fsud ­ 2k1u, u , s ,

­ kf su 2 ad, s , u , 1 2 s ,

­ k2s1 2 ud, 1 2 s , u ,
(2)

Gsu, yd ­ kgu 2 y, kgu 2 y $ 0 ,

­ keskgu 2 yd, kgu 2 y , 0 ,

with the following parameter values:kf ­ 1.7, kg ­ 2,
ke ­ 6.0, a ­ 0.1, s ­ 0.01, e ­ 0.3, Du ­ 1, and
Dy ­ 0. The parametersk1 and k2 are chosen in such
a way that the functionfsud is continuous atu ­ s and
u ­ 1 2 s.

This model has a steady state which is stable with re-
spect to a small perturbation. However, a superthreshold
perturbation, once locally applied, gives rise to a wave
propagating through the medium.
© 1997 The American Physical Society
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The system (1) was integrated for a circular doma
or a spherical surface with radiusR. Because of the
rotational symmetry of the problem it is natural to use
polar coordinate system. The Laplacian was calculated
using a quasiuniform computational grid proposed earl
[13,15] with the time stepDt ­ 0.01 and the space step
Dr ­ 0.5.

To introduce a global coupling the first equation in (2
was modified [14],

Fsu, y, td ­ fsud 2 y 1 kfbfBst 2 td 2 B0g , (3)

where

Bstd ­
1
S

Z
S

y ds . (4)

Thus, the intensity of the feedback signal is controlle
by the coefficientkfb and is proportional to the integral
valueB of the second variable over the simulated doma
S. The constantB0 is the value of this integral for the
case of a stationary rotation. Hence, the application
such a feedback does not change the parameters of
stationary rotation, since the feedback signal vanishes
this case. A positive value of the coefficientkfb provides
a “positive feedback”; that is, an increase ofB leads to a
higher excitability of the medium due to a decrease of t
excitation threshold. In turn, this change in excitabilit
results in a further increase of the integral activityB.

The dynamics of spiral waves in a disk and on a sphe
is studied below under different signs and absolute valu
of the coefficientkfb. We will also use the time delayt as
another control parameter in the feedback loop that usua
exists in real systems or can be introduced artificially
achieve a desired dynamic behavior.

To create a spiral wave on a disk a special initial cond
tion is chosen. In our computations we start from a nonu
form distribution of the variables [15]. A superthreshol
value u ­ 1 is given within a narrow sector of the disk
to induce a propagating wave. The second variablev in-
creases in clockwise direction within this sector fromy ­
yf (hereduydt . 0) up toy ­ yb (hereduydt , 0). As
a result the boundary of the sector consists of two pa
which are the front (withduydt . 0) and the back (with
duydt , 0) of a wave circulating in counterclockwise di-
rection. The tip of the evolving spiral wave correspond
to the point at whichduydt ­ 0. The initial location of
the tip with respect to the center of the disk depends on
internal radius of the sectorr0.

If the tip is initially located near the center of the disk
centrosymmetrical rotation of a spiral wave can be creat
A two-periodic regime corresponding, in fact, to a drif
of a spiral wave core along the nonflux boundary can
induced, if the tip is initially placed near the boundary o
the disk.

In the first series of our computations a transformatio
of the two-periodic regime due to a global feedback w
studied as illustrated in Fig. 1. Four trajectories of th
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FIG. 1. Trajectories of a spiral wave tip on a circular domain
of radius R ­ 26 computed for different intensities of the
negative global feedback: (a)kfb ­ 20.02, (b) kfb ­ 20.04,
(c) kfb ­ 20.06, and (d)kfb ­ 20.1. Time delayt ­ 0. The
initial position of the spiral wave tip and the time instance
of feedback application are indicated by the symbols “s” and
“1,” correspondingly.

spiral wave tip are shown as computed for different value
of the intensitykfb in the feedback loop. All computations
started from the same initial conditions resulting in a drif
along the boundary. The global feedback was switched o
at the moment indicated by a cross.

A relatively low intensity of the global coupling de-
creases the drift velocity [Fig. 1(a)]. Moreover the drift
can be completely stopped if the intensity of the feed
back becomes sufficiently strong [Fig. 1(b)]. A further
increase of the intensity results in a stabilization of the ti
motion near the center of the disk. At first the tip de
scribes a cycloidal trajectory around the center [Fig. 1(c
which indicates that some oscillations in the angular ve
locity take place. But these oscillations are suppresse
with growing intensity until complete synchronization is
reached [Fig. 1(d)]. Thus a negative global feedback o
sufficiently high intensity results in a stabilization of the
rigid rotation of a spiral wave in the center of the disk.

A quite different scenario of spiral wave evolution is
observed for opposite (positive) sign in the feedback loo
(Fig. 2). Here we start from initial conditions which, in

FIG. 2. Trajectories of a spiral wave tip on a circular domain
of radiusR ­ 26 computed for two different intensities of the
positive global feedback: (a)kfb ­ 0.1, (b) kfb ­ 0.15. Time
delayt ­ 0. Symbols “s” and “1” as in Fig. 1.
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the absence of the feedback, result in a regime of c
trosymmetrical rotation. Switching on the feedback des
bilizes the rigid rotation: the tip trajectory approaches t
boundary and then drifts along it [Fig. 2(a)]. In som
respects the finally observed two-periodic process lo
similar to the drift without feedback [cf. Fig. 1(a)]. How
ever, the shape of a single loop of the trajectory is stron
deformed as compared to the unperturbed one. A furt
increase of the intensity speeds up the process of de
bilization. When the intensity of the positive feedba
exceeds a certain value, the spiral wave dies after co
sion with the boundary [Fig. 2(b)].

This scenario can be changed by introducing a ti
delay into the feedback loop. For a time delay sh
with respect to the rotation periodT ­ 50 its effect is
negligible, and switching on the feedback leads to
annihilation of the spiral wave on the boundary. In t
example shown in Fig. 3(a) the feedback is applied a
a two-periodic regime has been established. In this c
the spiral waves died very quickly after switching on th
feedback. A larger delay leads to a special drift behav
along the boundary [Fig. 3(b)]. Note that the directio
of this drift is counterclockwise and thus opposite to t
drift direction in the absence of the feedback. With a tim
delay of about one-half ofT the tip trajectory is stabilized
around the center of the disk [Fig. 3(c)]. Further increa
leads again to a destabilization of the centrosymmetr
tip motion up to annihilation of the spiral wave due to i
collision with the boundary [Fig. 3(d)].

On a boundary-less surface like that of a sphere
contour curve of a wave is always closed. For one par
this contourduydt . 0 (this is the front of the wave); for
the other oneduydt , 0 (the back of the wave). Thus, o
a wave contour at least two points should exist at wh
the front coincides with the back of the wave. A doub

FIG. 3. Trajectories of a spiral wave tip on a circular doma
of radiusR ­ 26 computed forkfb ­ 0.15 and different values
of the time delay in a feedback loop (a)t ­ 5, (b) t ­ 15,
(c) t ­ 25, and (d) t ­ 40. Symbols “s” and “1” as in
Fig. 1.
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spiral (a wave with two spiral tips) fulfills this requiremen
and is the simplest wave object on a sphere.

Such a double spiral can be created if the initial val
of u is taken equal to 1 within a thin stripe located alon
a meridian, with two edges located near the north and
south poles. The second variablev increases in the eas
direction fromyf to a critical valueyb , which prevents
the propagation towards the east. Consequently, the w
starts to curl around its open north and south ends. T
process creates two spiral waves that rotate in the north
and southern hemispheres and collide with each other
the equator [14,15].

In the presence of a negative feedback a stationary sh
of the wave is established rather quickly and the doub
spiral rotates as a rigid body around the vertical ax
as shown in Fig. 4(a). Introducing a positive feedba
changes this regime drastically. The open ends are
attracted any more by the poles, and their trajector
resemble a cycloid placed on the sphere [Fig. 4(b)]. Th
is typical for a two-periodic regime where the open en

FIG. 4. Trajectories of a spiral wave tip on a sphere of radi
R ­ 25 computed (a) for negative global feedback withkfb ­
20.05 and (b) for positive feedback withkfb ­ 0.1. Time
delayt ­ 0. Initial position of the spiral wave tip is indicated
by the symbol “s”. Dark shaded area in (a) corresponds to th
location of the excited region at the end of the computation
interval.
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rotates around some core, and the core moves with
constant speed along a specific latitude [14,15]. Whe
the positive feedback has a sufficiently large intensity, tw
arms of the double spiral mutually annihilate each other [a
in Fig. 4(b)]. As a consequence, self-sustained activity o
the sphere is completely suppressed.

There is a close similarity between controlling spira
waves on a disk and on a sphere. For both cases a nega
global feedback results in the stabilization of a rigid rota
tion, whereas a positive feedback leads to the annihilatio
of spiral waves and suppression of self-sustained activit
This similarity is not surprising because, if a wave on
sphere is symmetric with respect to the equator plane,
flux exists between the northern and the southern hem
spheres. Topologically a hemisphere with the equator
a nonflux boundary is very similar to a disk.

The open question is why a global coupling is so ex
tremely efficient to control spiral wave motion in a con-
fined geometry. A qualitative answer to this question ca
be given within the frameworks of a kinematical descrip
tion of a propagating wave [10,23,24]. Let us consider th
case of a weakly excitable medium for which a propagatin
wave looks like a thin curve moving across a surface.
was shown that in this limit and in a medium without feed
back the angular velocity of a spiral wave decreases wi
the arclengthL of the wave rotating on a disk [12]. This
dependency predetermines the instability of a centrosym
metrical rotation on a disk and any perturbation results in
transition to a two-periodic regime. In a weakly excitable
medium the integral of the second variablev and, hence,
the intensity of the feedback computed in accordance wi
(4) should be proportional toL.

In the case of a positive value of the coefficientkfb the
decrease of the rotation velocity with the arclengthL is
stronger. Because of this the instability of the centrosym
metrical rotation becomes more pronounced than in the a
sence of the feedback. It means that the spiral wave
pushed towards the boundary more intensively until, for
sufficiently large intensity of the feedback, complete ann
hilation occurs. The global feedback with a negative valu
of kfb results in an increase of the angular velocity with
arclengthL. Thus it works against the destabilizing ef-
fects typical for a medium without feedback and tends t
suppress any oscillations of the front length. Naturally
such a feedback stabilizes a centrosymmetrical rigid rot
tion. On the other hand, it can destabilize a two-period
regime and induce a transition to rigid rotation.

Our computational results demonstrate a very hig
efficiency of controlling spiral wave by application of a
global feedback. Corresponding qualitative kinematica
considerations corroborate that this powerful tool can b
used either to stabilize or destroy spiral waves not only
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this particular model case but also in different excitab
media with confined geometries.
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