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We develop a general method for computing integral points on modular curves, based on Baker’s inequality.
As an illustration, we show that for 11 < p < 101, the only integral points on the curve X (p) are the
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1. Introduction

Mazur, in his celebrated work [1978] completely described the possible rational points on the modular
curves Xo(p), where p is a prime number. In particular, he showed that the set Xo(p)(Q) consists only
of the cusps if p > 163, and of the cusps and the CM-points if 37 < p < 163.

The curve Xo(p) is associated to the Borel subgroup of GL,([F,). It is natural to ask the same question
on the modular curves associated to two other important maximal subgroups of GL,([F,), the normalizers
of a split Cartan or a nonsplit Cartan subgroup. See [Serre 1989, Appendix A.5] or [Baran 2010,
Section 2], where all the necessary definitions are given. We shall denote these curves X ;E( p) and X nt( p),
respectively.! This problem is not only interesting by itself, but is also motivated by applications; for
MSC2010: primary 11-04; secondary 11G16, 11Y40, 14GO0S5.

Keywords: modular curves, normalizers, nonsplit Cartan subgroups, integral points, Serre’s uniformity problem, economical
modular units, Baker—Davenport method, lattice point enumeration.

I [Serre 1989] the curves X SJ[) (N) and X;g(N ) are defined for arbitrary levels N, but in this article we restrict to prime
levels only.
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df? | =3 -3.22 3.3 4 4.2 -7 7.2 -8
jo| 0 293353 2153153 2633 2333113 3353 3353173 2652
dr? | —11 —19 —43 —67 —163

j _215 _21533 _2183353 _2153353113 _2183353233293

Table 1. Rational CM j-invariants together with the discriminant of the CM order.

instance, Serre’s uniformity problem about Galois representations [Bilu and Parent 2011a] would be
solved if one could show that for large p the sets X ;; (p)(Q) and X IJ{S (p)(Q) consist only of the cusps and
the CM-points (points corresponding to elliptic curves with complex multiplication). For the convenience
of the reader, we reproduce the full list of the 13 rational CM j-invariants in Table 1.

Rational points on the curves X ;; (p) were determined in [Bilu and Parent 2011b; Bilu et al. 2013] for
all p # 13; in particular, it is shown in [Bilu et al. 2013] that for p > 17 the set X;;,(p) (Q) consists only
of the cusps and the CM-points. The case p = 13 was resolved in a recent breakthrough by Balakrishnan
et al. [2019], who computed all rational points on X ;‘;)(13), using Kim’s “quadratic Chabauty”” method.

Unfortunately, the methods of [Bilu and Parent 2011b; Bilu et al. 2013] completely fail for the curve
X(p). To the best of our knowledge, the set X .(p)(Q) is not known for any prime p > 17.

More is known about integral points on the curves X ;g (p), that is, points P € XHLS (p)(Q) such that
j(P) € Z, where j is the modular invariant. It is easy to see that for p <5 this set is infinite. Kenku
[1985] determined the integral points® on the curve X (7); in fact, he found the 7-integral points, that is,
the points P € X (p)(Q) such that the denominator of j(P) is a power of 7. He used in an essential
way the fact that the curve is of genus 0.

More recently, Schoof and Tzanakis [2012] determined the integral points on X (11), using the fact
that this curve is of genus 1. They showed that the only integral points on this curve are the CM-points.
See also [Chen and Cummins 2004].

The methods of [Kenku 1985; Schoof and Tzanakis 2012] are quite ad hoc and do not extend to other
levels.

Since the curves X:;,(l?») and X;{S(B) are known to be isomorphic over QO (see [Baran 2014]), the
already mentioned result of Balakrishnan et al. [2019] computes rational points on X f{s(13) as well. The
approach of this spectacular work has some potential of extending to higher levels, but this would require
substantial new ideas.

We may also mention that integral points on the curve X (N) of certain composite levels N were
determined much earlier by Heegner [1952] and Siegel [1968] in the context of the class number 1 problem;
see [Serre 1989, Appendix A.5] for more details. More recently, composite levels were examined by
Baran [2009; 2010]. None of these methods seems to extend to higher prime levels either.

It was observed in [Bilu 1995; 2002] that heights of integral points on a modular curve with 3 or more
cusps can be effectively bounded using Baker’s method; moreover, this is also true for S-integral points
defined over an arbitrary number field.

ZKenku’s list has two typos: instead of j = —2153353113 he writes its negative; and instead of j = 21575 he writes Jj= 725,
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The modular curve X (p) has [(p — 1)/2] cusps, so the observation above applies as soon as p > 7.

Indeed, Bajolet and Sha [2014] obtained a fully explicit upper bound for the size of an integral point P
on X\ (p) for an arbitrary prime p > 7. They showed that in general,

log | j(P)| < 41993 - 137 . p>**73(log p)?, (1-1)

and this bound can be substantially refined if p — 1 is divisible by a small odd prime or by 8, see
Theorem 9.1 below. Sha [2013; 2014b] extended this result of Bajolet and Sha [2014] to S-integral points
on rather general modular curves over arbitrary number fields, giving an explicit version of the “effective
Siegel theorem for modular curves” [Bilu 2002; Bilu and Illengo 2011]. See also the recent work of Cai
[2019].

Using the numerical bound (1-1), one can in principle enumerate all integral points on X (p). However,
this bound is too huge to perform this enumeration in reasonable time.

It turns out that the huge bound can be reduced using the numerical Diophantine approximation
techniques, which go back to the work of Baker and Davenport [1969]. The idea of Baker and Davenport
was elaborated in [Bilu and Hanrot 1996; 1998; 1999; Bilu et al. 2001; Hanrot 2000; Pethd and Schulenberg
1987; Tzanakis and de Weger 1989] in the context of the Diophantine equations of Thue and of related
types, providing practical methods for solving these equations.

In the present article we adapt these techniques to modular curves and develop an algorithm for
finding integral points on the modular curve X;\(p), where p > 7 is an arbitrary prime number. Having
implemented our algorithm, we prove the following.

Theorem 1.1. Let p be a prime number, 11 < p <97, and let P € X;g(p)(@) be such that j(P) € Z.
Then P is a CM point, that is, j(P) is one of the 13 numbers displayed in the second line of Table 1.

One may conjecture that for any prime p > 11 the only integral points on X (p) are the CM-points.

It might be useful to recall the description of integral CM-points on X (p). Let D be a negative
quadratic discriminant with 2(D) = 1 (that is, one of the 13 numbers in the upper row of Table 1) and
let jp be the corresponding j-invariant. Then, for p > 3, there is a point P € X.(p)(Z) with j(P) = jp
if and only if (D/p) = —1.

As compared to the previous work, our article has two new features. The first one is using “economical”
modular units made of Siegel functions. Applying explicit modular units constructed as multiplicative
combinations of Siegel functions to Diophantine problems involving modular curves goes back to the
work of Kubert and Lang [1975; 1981, Chapter 8]. More recently, this was successfully implemented
in [Bajolet and Sha 2014; Bilu and Parent 2011a; 2011b; Sha 2014a; 2014b]. However, the units used
therein, while perfect for theoretical bounds, are no longer suitable for numerical purposes. We replace
them with “economical units”, constructed in Sections 4-6.

Another new element, as compared to [Bilu and Hanrot 1996; 1998; 1999; Bilu et al. 2001; Hanrot
2000; Pethd and Schulenberg 1987; Tzanakis and de Weger 1989], is related to the fact that, in our
case, the Baker—Davenport method alone is not sufficient to eliminate the false positives. We show that
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potential integral points correspond to lattice points on a certain analytic curve. To rule them out, we
cover this curve with ellipsoids and compute integral points in them using the algorithm of Fincke and
Pohst [1985]. See Sections 8 and 10 for more details.

Note that our method does not use Jacobian embedding, applying thereby to curves of very high genus:
for instance, the genus of X\ (97) is 353. Theoretically, our method works for any prime. We did not go
beyond p = 97 because for big p computations become too long even for modern computers. See more
on this in Section 10C.

One may wonder whether our method can be adapted to a more general set up, like computing integral
or even S-integral points over number fields on arbitrary modular curves with 3 or more cusps. Again,
theoretically this is possible, but practical implementation may require calculations which are too hard for
modern computers. A realistic task is, perhaps, computing rational points on X (p) whose denominator
is a power of p, like Kenku [1985] did for p = 7.
1A. Plan of the article. In Section 2 we recall basic definitions about modular curves. In particular, we
review the notions of the nearest cusp and the g-parameter at a given cusp, a basic tool in the calculus on
modular curves.

In Section 3 we give a general informal overview on how Baker’s method applies to modular curves,
highlighting both theoretical and numerical aspects.

In Sections 4 and 5 we revise the theory of modular units, an indispensable tool in the Diophantine
analysis of modular curves. In Section 6 we apply this general theory in the special case of the curve
X(p), constructing especially “economical” units on this curve.

In Section 7 we evaluate the unit constructed in Section 6 at an integral point P, and express the value
as a multiplicative combination of certain algebraic numbers: U (P) = ngo n?‘ ---nPr. We then express
the exponents by in terms of the Galois conjugates of U and also in terms of the g-parameter of P. These
expressions, while pretty trivial, will play a fundamental role in the remaining part of the article.

In Section 8 we outline the algorithm that finds all integral points based on these expressions of by
using that all by are integers. The remaining sections present the different parts of the algorithm in detail.

In Section 9 we recall “Baker’s bound,” a huge explicit upper bound for the j-invariants of integral
points P on X (p), obtained in [Bajolet and Sha 2014] using Baker’s method. This implies a very tiny
lower bound for the g-parameter of P, and we show how it can be drastically improved in practical
situations, using the reduction technique introduced by Baker and Davenport. This way we obtain a
more reasonable lower bound for the absolute value of the g-parameter, which is still insufficient to list
efficiently all integral points just by exhaustive search.

Therefore in Section 10 we present an algorithmic sieve that further reduces this set of possible values
for j(P) considerably. It can be seen as a much more detailed elaboration of the previous reduction
step, in which some candidates for j(P) may remain, and they may indeed come from integral points.
In Section 10B we deal with the possible values of j(P) left after the sieving. An overview of running
times is given in Section 10C.

Our source code and data is available at https://github.com/bmatschke/x-nonsplit-plus/.
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1B. Notation and conventions.
The logarithm. Unless the contrary is stated explicitly, for the complex logarithm we choose the branch
satisfying

—m <Imlogz <m (z€CX).

Note that, with this definition, we do not always have the equality log(zw) = log z + log w, but always
have the inequality

|log(zw)| < |log z| 4| log w.

Modular functions. Throughout the article, the letter j may have four different meanings, sometimes
in the same equation, like in (2-4) and (2-8): the modular invariant j(zr) on the Poincaré plane H; the
modular invariant j(E) of an elliptic curve E; the “modular invariant” rational function on a modular
curve; the sum of the familiar series j(g) = ¢~ ' + 744 4+ 196884g + - - - . It should be always clear from
the context which meaning of j is used. A similar convention applies to other modular functions as well.

The O(-) notation. We shall use the notation O;(-), which is a quantitative analogue of the familiar
O(-). Precisely, A = O;(B) means that |[A| < B.

2. Modular curves, nearest cusps and g-parameters

Let N be a positive integer. The modular curve X (N) has a geometrically irreducible model over the
cyclotomic field Q(¢y), and the Galois group gal(@(;N)(X (N))/Q )) is canonically isomorphic to the
quotient GLy(Z/NZ)/{%1}, with SL,(Z/NZ)/{£1} being the group gal(@({N)(X(N))/@(CN, j)), see
[Lang 1987, Chapter 6] or [Diamond and Shurman 2005, Sections 7.5 and 7.6]. We write the Galois
action of GL,(Z/NZ) on the field Q(¢ N)(X (N )) exponentially. In the following proposition we collect
the properties of this action.

Proposition 2.1. (1) Foru € Q(¢ny)(X(N)) and o € SLy(Z/NZ) we have

u’ =uoo,

where on the right we view u as a I'(N)-automorphic function on the extended Poincaré plane H,
and & is a lifting of o to I'(1) = SL(Z). Clearly, the result is independent of the choice of the lifting.
(2) Foro € GLo(Z/NZ) we have

(g = ciee @-1)

(3) Recall that u € Q(¢N)(X (N)) has a “q-expansion”

=y aq™" e Q@)
k=ko
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Then for o = ((1) 2) the q-expansion of u® is

o0
u® = Z a,‘:qk/ N
k=ko

Proof. For item (1) see [Diamond and Shurman 2005, bottom of page 280]. Item (2) is [Diamond and
Shurman 2005, Lemma 7.6.1]; see also [Lang 1987, Theorem 3 on page 66].

Item (3) is enough to verify for the functions f; , as defined in [Lang 1987, Section 6.2], because they,
together with j, generate the field Q(¢y)(X (N)). As explained in [Lang 1987, bottom of page 66], the
g-expansion of f; , is of the form

o
> ar g, (2-2)
k=ko
where ay () € (QQ[¢] are polynomials depending on k and r, but not on s.
Foro = ((1) 2) we have f7 = f, ;4. Hence the g-expansion of f7 is like (2-2), but with ¢y, replaced

by ¢3. Using item (2) we find

ar () = ar () = ar. ()7,

as wanted. O

Let G be a subgroup of GL,(Z/NZ) containing —I. We denote by X the associated modular curve.
It corresponds to the G-invariant subfield of the field Q(¢{y) (X (N)). The constant subfield of this field is
Q(¢n)% ¢, where det : GLy(Z/NZ) — (Z/NZ)* is the determinant, and we identify (Z/NZ)* with the
Galois group gal(Q(¢y)/Q). In particular, if det G = (Z/NZ)* then the constant subfield is @ and the
corresponding modular curve X is defined (that is, has a geometrically irreducible model) over Q).

For a subgroup H of (Z/NZ)* put

Ggp={geG:detge H}. (2-3)

In particular, Gz/n7)x = G and G| = GNSL,(Z/NZ). If H is contained in det G, then the subfield of
Q(¢N) (X (N)) stabilized by Gy is K(Xg), where K = Q(¢y) .

Remark 2.2. Let My be the subset of the abelian group (Z/NZ)? consisting of the elements of exact
order N. Then the set of cusps of the modular curve X is in natural one-to-one correspondence with the
set G\ My of orbits of the natural left action of G| on My [Bilu and Illengo 2011, Lemma 2.3].

The cusps are defined over the cyclotomic field Q(¢y). Identifying the groups gal(Q@(¢y)/Q) and
(Z/NZ)*, the natural left action of (Z/NZ)* on the set G|\ My coincides with the Galois action on the
cusps. Hence, if H is a subgroup of (Z/NZ)* then the set of H-orbits of cusps stands in a one-to-one
correspondence with left Gg-orbits on My .

2A. The nearest cusp. Let I' be the subgroup of I'(1) = SL,(Z) obtained by lifting G;. Then the set
of complex points X (C) is analytically isomorphic to I'\'H, where H = # U QU {ioco} is the extended
Poincaré plane. Similarly, Y (C) is analytically isomorphic to I'\'H.
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We denote by F the familiar fundamental domain of the modular group I'(1) = SL,(Z): the open
hyperbolic triangle with vertices e/™/3, %7/3 joo, together with the geodesics [i, ¢/"/3] and [¢/"/3, ic0).
There is a natural bijection Y (1)(C) <> F, and the image of P € Y (1)(C) under this bijection will be
denoted 7 (P). More generally, the image of P € Y5 (C) under the map Y5 (C) — Y (1)(C) — F will also

be denoted t(P). Alternatively, we can define t(P) as the single T € F with the property
J(P) = j(1), (2-4)

where we use the convention for j from Section 1B.
We also consider the slightly smaller set

J’%z{ze]-":lz|>1}.

In other words, ]-o' is F with the geodesic [i, ¢'™/3] removed.
For every o € I'(1) we define the set (o) C Y (C) as the image of o F in Y5 (C) = I'\H; similarly,
ﬁ (o) is the image of a]-o' . Clearly

F(o)={P e F():|t(P)| > 1}.

The sets F (o) and ]?' (o) depend only on the coset I'o; in particular, there are exactly [I"(1) : I'] distinct
sets F (o). They are pairwise disjoint and cover Y (C):

UF@)=Y:©). Flo)nF)=2 To#Td),
o

the union being over the cosets I'\I"(1).
Next, for every cusp ¢ we define 2, € X (C) and SOZC C Q. by

Q= |J Foul S= | Fo)Uld=(PeQe:|t(P)> 1), (2-5)
o(ioo)=c o (ioo)=c

the union being over all o € I' such that o (i00) represents the cusp c.
This can be made more explicit as follows. Let e = e, be the ramification index of the branch cover
Xc — X (1) at c. Fix some o € I" such that o (ico) represents the cusp ¢, and define, for k € Z,

1
o =00 (0 ’;) (2-6)
Then
e—1 o e—1 R
Q= JFeufel, Q=]JF@ufc 2-7)
k=0 k=0

The sets €2, are pairwise disjoint and cover X (C):

Qe =x6(©), QNQ =0 (c#c).
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If P € X5(C) belongs to 2., we call ¢ the nearest cusp to P. Note that the set SOZC is open in the complex
topology, and is the maximal open subset of €2..
In practical calculations, we select a full set X of representatives of cosets ['\I'(1). Then we have

X6(©) = ] F(o).
oceX

We develop methods for finding integral points on each F (o). Our methods do not work for the points P
with |T(P)| =1, but these can be found just by checking all integral values of j from 0 to 1728, see
Proposition 2.3 below.

We build X as follows: first, for every cusp ¢ we pick o, € I'(1) such that o, (io0) represents c. After
this is done, we define X as the set of all o,y with 0 <k < e, — 1 for every ¢, where o,y =0, 0 ((1) ’1‘)
See Section 6A for a concrete example.

2B. The q-parameter at a cusp. For P € Q. we define the g-parameter g.(P) by g.(P) = e*™'*P) with
the convention t(c) =ioo and g.(c) = 0. This ¢, is a holomorphic function on SQZC. We have

J(P) = j(qc(P)) (2-8)
(see the same convention on j as above). Since Im 7(P) > V3 /2 we have

lge(P)] < e ™3 <0.0044 (P € Q). (2-9)

As in Section 2A denote by e = e, the ramification index at ¢ of Xg — X (1). Then qcl/ “ can be

viewed as a “local analytic parameter” at ¢. This means the following: if u € C(X¢) is a C-rational
function on X, then in a neighborhood of ¢ we have

Ord,
log [u(P)| = =% log|g(P)| + O (1).
.
This can also be expressed in terms of Taylor expansions. Loosely speaking, it means that for P € SQZC

and for a suitable choice of the e-th root ¢.(P)!/¢ we have
U(P) = eqe(P)%" %"/ + 0(1gc(P)| O 1+ 1/e), (2-10)

where ¢, (which is well-defined up to multiplication by an e-th root of unity) and the implied constant
depend only on u, but not on P. We make this more precise as follows.

Fix o € I'(1) such that o (ico) represents the cusp ¢, and define o} as in (2-6). There exists a nonzero
complex number ¢, = ¢, such that the following holds. For P € 8020 define qC(P)l/ ¢ = g27it(P)/¢ Then

u(P) = (27172 (PY/) ™ 1 0(1g.(P)| O utD/e) (P e F(op), k€ ). (2-11)

Due to decomposition (2-5), this gives an exact version of the “Taylor expansion” (2-10) on S%C.
Note that ¢, = ¢, does depend on the choice of o; if we change o then ¢, would be multiplied be an
e-th root of unity.
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2C. More on j. The following property will be routinely used.

Proposition 2.3. For a noncusp point P € X (C) the following two conditions are equivalent.
(1) j(P)eR

(2) Re(r(P)) € {0, 1} or [t (P)| = 1.

More precisely:
J(P) e[1728, +00) & Re(r(P)) =0 < g.(P) >0,
j(P)€(=00,0] & Re(z(P)) =3 ¢ q.(P)<0,
j(P) €0, 1728] & |t(P)| =1,

where c is the nearest cusp to P.

Proof. It suffices to show that for T € 7 we have

j(t) € [1728, +00) < Re(r) =0, (2-12)
j(t) € (—00,0] & Re(r)=1, (2-13)
j(r)€[0,1728]  ©lr|=1. (2-14)

Since the coefficients in the g-expansion of j are real, we have j(iy) € R for y > 0. Using
Jj@=1728,  lim j(iy) = o0,
y—>+00

this proves (2-12), because j takes on F every complex value exactly once. In a similar fashion one
proves (2-13): we have j( +iy) € Rand

. i3 . .1 .
je"?) =0, yl}ffool(z‘ﬂy):—oo-

Finally, using again that the coefficients in the g-expansion of j are real, we deduce that, for t € H,
we have j(—7) = j(_‘L') Together with j(—1/t) = j(7) this implies that j(r) € R when |t| = 1. Since
j(€™/3) =0 and j(i) = 1728, this proves (2-14). O

We shall also need an approximate formula for the j-invariant. Write the g-expansion as’

j(q):C—lq_l+C0+C1q+c2q2+... ,

with c_1 =1, co =744, c; = 196884, etc. For a nonnegative integer N write

N-1

V@ =Y cug".
n=-—1

In particular, jo(g) =q~'.

3The coefficients ¢, cannot be confused with the cusps.
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Lemma 2.4. For P € Q. we have
J(PY=jn(ge(P) + Ry, [Ry| < je7™) = jy(e™?) (2-15)
for any nonnegative integer N. In particular, for N = 0 we have
|7(P) = qe(P)~"| <2079 (2-16)

Proof. Since j is I'(1)-invariant, we may assume that c is the cusp at infinity and g.(P) = g(P). Since
the coefficients ¢, are known to be positive and |g(P)| <e™ V3 , we have

[J(P) = jn(ae(PD| = 3 calg(PI" < 3 eale ™" = je ™) — jiv (e ™),
n=N n=N

proving (2-15). In particular, for N = 0 we obtain
|j(P) —qe(P)™Y] < jle ™) — ™3 < 2309.6 —230.7 < 2079. O

Note that the exact value of j(e™" ‘/g) is available: j(e™" ‘/g) = 40500(35010 — 20213\/5).

3. Integral points and Baker’s method on modular curves

In this section we give a general overview of Baker’s method applied to modular curves. For more details,
see [Bajolet and Sha 2014; Bilu 2002] and Sha’s thesis [2013].

Let N and G be as in Section 2, let K be a number field containing Q(¢y)%'¢ and Ok the ring of
integers of K. We define the set of integral points

Xc(Ok) ={P € Xg(K): j(P) € Ok}.
Recall that the height of o« € Ok is defined by

h(e) = [K : Q]! Z log™ |a?], log" = max{log, 0}.
0:K—C
the sum being over the complex embeddings of K.
We want to bound the height h(j(P)) for P € X(Ok). We show how to do this under the assumption

Voo (G) = 3, (3-1)

where V0 (G) denotes the number of cusps of X.

A modular unit is a rational function (defined over K) on X with no zeros and no poles outside
the cusps. Equivalently, u € K (X¢) is a modular unit if both « and u~! are integral over the ring Q[ ].
Principal divisors of modular units form a subgroup in the group of degree 0 divisors supported on the
cusps. The latter is a free abelian group of rank v (G) — 1, so the group of principal divisors of modular
units must be of rank not exceeding v, (G) — 1. It is of fundamental importance for us that it is of the
maximal possible rank; this is sometimes called the Manin—Drinfeld theorem.
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Theorem 3.1. The principal divisors of modular units form a free abelian group of rank v (G) — 1.
See [Lang 1995, Chapter 4, Theorem 2.1]. Here is an immediate consequence.

Corollary 3.2. Assume that voo(G) > 3. Then for any cusp c there exists a nonconstant modular unit u
such that u(c) = 1.

If j(P) € Ok then h(j(P)) =[K : Q! Y o KesC log™ | j(P)?]|, the sum being over the complex em-
beddings of K. For some embedding ¢ we have h(j(P)) <log|j(P)°|. We fix this embedding from
now on and view K as a subfield of C. Thus, we have to bound |j(P)| from above.

The point P belongs to one of the sets 2., defined in (2-5), and the corresponding c is the “nearest
cusp” to P. Now, since v, (G) > 3, we may use Corollary 3.2 and find a nonconstant modular unit u
with u(c) = 1. The rational function u is defined over the number field K (¢{y).

If u(P) =1 then it is easy to bound P as one of the zeros of the rational function # — 1. From now on
we assume that u(P) # 1. Since u(c) = 1, we have

u(P) =1+ 0(|g.(P)|"/%).

(Here and below in this section, the constant implied by the O(-)-notation, as well as by the Vinogradov
notation “<«<”” and “>>,” may depend on N and K, but not on P.) Thus, u(P) is a complex algebraic
number, distinct from 1 but “close” to 1 if g.(P) is small.

Since both u and u~! are integral over Q[ ], there exist nonzero A, A, € Z, which can be easily
determined explicitly, such that Aju and Aou~! are integral over Z[j]. Since j(P) € Ok, both Aju(P)
and A,u(P)~! belong to O K (cy)- 1t follows that there are only finitely many possibilities for the principal
ideal (u(P)) (viewed as a fractional ideal in the field K (¢y)).

Fixing a system ny, ..., n, of fundamental units of K ({x), we obtain u(P) = 17077}1” e nf’, where 7g
belongs to a finite subset of K (that can be explicitly determined), and b1, ..., b, are rational integers
depending on P. We obtain the inequality

Inon" -+ nbr — 1] < ge(P)VVe. (3-2)

Let B = max(|by|, ..., |bs|). It is easy to show that B < h(7), see [Bilu 2002, bottom of page 77]. It
follows that B << h(u(P)) + 1. On the other hand, the general property of quasiequivalence of heights on
an algebraic curve implies that h(u(P)) < h(j(P)) + 1. It follows that

B <h(j(P)) <log|j(P)| =loglgc(P)~'|+ O(1). (3-3)

On the other hand, one can bound the left-hand side of (3-2) from below using the so-called Baker’s
inequality, which implies that either the left-hand side of (3-2) is O (in which case u(P) =1 and h(j(P))
is bounded), or it is bounded from below by exp(—« log max(B, 3)), where « is a positive effective
constant depending on 7g, 11, .. ., 1 but independent of B. Combining this with (3-2), we obtain the
estimate log |qC(P)_1| « log max(B, 3). Together with (3-3) this bounds |g.(P)| away from zero, which
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implies a bound for | j(P)| from above. See [Bajolet and Sha 2014], where this approach is used to bound
explicitly integral points on X (p) for p > 7.

In a similar fashion one can study S-integral points on X¢: the new ingredients to be added are the
p-adic version of Baker’s inequality, due to Yu [2007], and the p-adic analogue of the notion of the
“nearest cusp,” see [Bilu and Parent 2011a, Section 3]. We do not go into this in the present article.

To make the argument above explicit, one needs to construct modular units explicitly. The standard tool
for this is Siegel functions, see Section 4 below. One also needs explicit version for various statements
above like the quasiequivalence of heights, etc. All this can be found in the Ph.D. thesis of Sha [2013;
2014b].

In the present work, we are interested in a somewhat different task: not just to bound the heights of
integral points, but to determine them completely. We restrict ourselves to the case K = Q and N = p
a prime number. In this case the most interesting class of modular curves for which integral points are

unknown is X

(p), when the group G is the normalizer of a nonsplit Cartan subgroup of GL([F,).

The principal point here is that bounding the height of integral points, even explicitly in all parameters,
is not sufficient for the actual calculation of the points. The problem is that the bounds obtained by
Baker’s method are excessively huge and not suitable for direct enumeration.

Fortunately, one can reduce Baker’s bound using the technique of numerical Diophantine approximation
introduced by Baker and Davenport [1969]. This reduction is described in detail in [Bilu and Hanrot 1996;
1999; Hanrot 2000] in the context of the Diophantine equation of Thue. Recall that this is the equation of
the form f(x, y) = A, where the f(x, y) € Z[x, y] is a Q-irreducible form of degree n > 3, and A is a
nonzero integer. In [Bilu and Hanrot 1998] the method was extended to the superelliptic Diophantine
equations. Here we adapt this reduction method to modular curves.

Several observations are to be made.

(1) Usually, to perform the computations, one should know explicitly the algebraic data of the number
field(s) involved (in the case of Thue equation, this is the field generated over Q by a root of f(1, y)). By
the algebraic data we mean here the unit group (with explicit generators), the class group (again, for every
class one should have an explicit ideal representing this class), and so on. Fortunately, in the special case
of the curve X[ (p) these tasks are radically simplified.

First, the field we are going to deal with is the real cyclotomic field Q(¢, + 3 p) (or a subfield, see
below) for which the unit group (or at least a full-rank subgroup of the latter, which is sufficient, see
below) is given explicitly by the circular units. To be precise, the index of the group of circular units in
the full unit group of Q(¢, + ¢ ») 1s equal to the real class number h;;; see, for instance, [Washington
1982, Theorem 8.2].

In the range p < 100 that we are working, we have h[f = 1, see the recent article of Miller [2015], who
extended the earlier work of Masley [1978]. Hence in this range circular units form the full unit group.

Second, the only ideal we are going to deal with is the one above p, which is principal and has an obvious
explicit generator (£, — Zp)z. This was already used in [Bilu et al. 2001] for solving Thue equations
®,(x, y) = p, where @, (1, y) is the n-th real cyclotomic polynomial, and p is a prime divisor of n.
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(2) To make the calculations more efficient, it is in some cases useful to replace the field Q(¢, + g:p) by
a smaller subfield, if possible. This was suggested in [Bilu and Hanrot 1999] and was very efficiently
exploited in [Bilu et al. 2001].

In the setting of the present paper, with this trick we reduced the running for p = 97 by a factor of 4.5
using the subfield of degree 16. We also tried to use the degree 12 subfield, however then the sieves
become too imprecise so that it becomes more expensive to exclude potential lattice points on the curve y
(cf. Section 10), and we ended up with a running time improvement by only a factor of 1.5.

(3) In principle, it is not necessary to have the full unit group; a full-rank subgroup would suffice, as
explained in [Hanrot 2000]. In particular, since circular units form a full rank subgroup for all p, our
method must work for all primes, not only for those where the circular units form the full unit group.
Note that this was used already in [Bilu et al. 2001] (in a different context).

In the present work we use only full unit groups as they were always computable for our parameters,
either due to the above-mentioned result of Miller [2015], or using the [PARI/GP 2017] package. However,
one should keep this opportunity in mind for further applications.

(4) Adapting numerical methods developed for Thue equations to modular curves is not straightforward.
In the Thue case one has formulas with very strong error estimates, typically O (]x|™"), where n is the
degree of the equation; see, for instance [Bilu and Hanrot 1996, Proposition 2.4.1]. This is quite good
even for small solutions x.

However, for modular curves of level p we have, typically, errors O(|j(P)|~'/?). Larger errors mean
that we have to check more false candidates to find all solutions. Therefore in Section 10 we considerably
improve the involved sieves. If the error bounds are too weak, one can use higher order asymptotic
expansions for the modular functions involved, see the Appendix. At the point where this becomes
computationally too expensive, we stop the sieve and start an extra search, which checks all j with small
modulus separately.

4. Siegel functions

In this section we recall the principal facts about Klein forms and Siegel functions. For more details the
reader can consult [Kubert and Lang 1981, Section 2.1; Koo and Shin 2010]. We call a positive integer N
a denominator of a € Q if Na € Z. For instance, 2020 is a denominator of %

4A. Klein forms and Siegel functions. Let a = (dy, ;) € Q> be such that @ ¢ Z>. We denote by £;(7)
the Klein form associated to a, which is a holomorphic function on the Poincaré plane 7. We collect
some properties of Klein forms in the proposition below.

Proposition 4.1. (1) The Klein forms do not vanish on H.
(2) The Klein forms behave well under the action of I'(1): for o = (f Z) e I'(1) we have

Lo (1) = (ct +d) ez, (2),
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where o (1) = w. In particular, with o = —1 this gives
ct+d

bz =—t;. (4-1)
(3) Fora = (a,,a) € @*\ 7% and b= (b, by) € 7% we have
b, =@, byes. (@ b)= (_1)1;|1;2+1;1-H;zeni([ngz—(}zl;]).
Notice that ¢(a, I;)ZN =1, where N is a denominator of a (a common denominator of a; and a,).
(4) Let N be a denominator of a. Then t; is “nearly” I'(N)-automorphic of weight —1. Precisely, for
o= (g Z) e I'(N) we have
tzoo(r)=¢'@ o)ct+d) 't(r), €@ o) =1

The following result is a consequence of the properties above.

Proposition 4.2. Let N be a denominator of a. Then EI%N depends only on the residue class of @ modulo 72,
and it is I (N)-automorphic of weight —2N.

Further, for @ = (@, a») € Q*\ Z? we define the Siegel function gz(t) by

ga(t) =ta(t)n(r)?,
where 7(7) is the Dedekind n-function.

)24 —

Since n(t A(7) is I'(1)-automorphic of weight 12, Proposition 4.2 implies the following.

Theorem 4.3. In the set-up of Proposition 4.2, the function g;ZN depends only on the residue class of a
modulo 7%, and is T (N)-automorphic of weight 0.

It follows, in particular, that Siegel functions g; are algebraic over the field C(j) (because so are
["(N)-automorphic functions). In addition to this, gz is holomorphic and does not vanish on the Poincaré
plane H (because so are the Klein forms and the Dedekind 7). It follows that both g; and gd_1 must be
integral over the ring C[j]. Actually, a stronger assertion holds (see, for instance, Proposition 2.2 from
[Bilu and Parent 2011b]).

Proposition 4.4. Let N be the smallest denominator of a and {n a primitive N-th root of unity. Then
both gz and (1 — {1\/)gé_1 are integral over Z[ j].

4B. An approximate formula. As usual, write ¢ = ¢(t) = ¢*™'*. For a rational number a we define
q“ = e>™1%7_Then the Siegel function gz has the following infinite product presentation [Kubert and Lang
1981, page 29]:

o0
gﬁ(t) — _qu(ﬁl)/Zeﬂiéz(ﬁl—l) 1_[(1 _ qﬂ-‘f-&leZﬂiﬁz)(] _ qi’l—}-l—ﬁle—ZTIiﬁz)7 (4_2)
n=0
where By(T) =T>—T + % is the second Bernoulli polynomial. Together with Proposition 4.1(3), this
implies that
Ord, ga = {a == Ba(ar — lai])/2. (4-3)



Computing integral points on X (p) 583

Here the g-order Ord, is defined by lim, ¢ g 8aigs(q) # 0, 0o.
In fact, we have the following quantitative statement.

Proposition 4.5. Put

_eﬂiﬁz(ﬁlfl), aj £0,
Qa = {_em‘ﬁz(thl)(l _ eZm’ﬁz)’ al =0. (4_4)
Then, for a nonzero a = (a,, ay) € Q2N1J0, 1) and T € H we have
1 ( lg|® lg|' > ~

) —+ — ), a1 >0,
'log ga(re? < | 1=lalM=lgl® - 1=lqlo (4-5)

Oaq™* 2|q] i1 =0

5 a; =0.

(I—1gD

Proof. For |z] < 1 we have |10g(1 +z)| <|z|/(1 —|z]). Hence, when a; > 0, we can bound the terms of
the product expansion (4-2) as
ntay 2mia jg |+ n+l—a, —2nia
|10g(1—q 'e 2)‘ Srqlal, ’log(l—q ‘e 2)’ SW-
Adding this up for all n > 0, we obtain
00 nta nt1—d a 1-a
521Khmﬁﬁﬁmw)=lim@?bw+rﬂw%0’

n=0

|q|n+1—ﬁ1

ga(7)
0aqe

'log

which proves (4-5) in the case a; > 0.
In the case a; = 0 we rewrite (4-2) as

o
ga(t) = Q&q&; l_[(l _ qneZm'az)(l _ qne—Zm‘az).

n=1
We bound ;
|10g(1 _qneZni&2)|’ log(1 _qn672ﬂi&2)| < 1|q—||| (n>1).
—1q
Adding this up for n > 1, we prove (4-5) in the case a; = 0 as well. 0

Corollary 4.6. In the set-up of Proposition 4.5 assume that T € F. Let N be a denominator of a,, and
assume that N > 5. Then

b%%%ﬂsmwm. (4-6)
Qaq™*

Proof. Assume first that a; > 0, in which case a;, 1 —a; > 1/N. The function

X lglx"!

X >
l—x 1—|glx~!

is increasing on the interval [|g| 172.1). Hence

lg|® g™ lg"V N g | 1/N
I—lgl@ ~ 1—|g"=% = 1—|q|V/N = 1—|gq|'=VN




584 Aurélien Bajolet, Yuri Bilu and Benjamin Matschke

Since T € F, we have |g| > e \/g' Using the assumption N > 5, we obtain
lq|'/N g™ e™V3IN

= - 1/N<en\/§/5 N 1/N

1_|Q|1/N - l—g—ﬂ\/g/N en\/g/N_1|CI| — n\/gk” ,
g™ 1aPP n PP gy N eBT5
T 7w T L B N AR

It follows that

‘1 2a (1) 1 (enﬁ/s N e—37V3/5
(0]
g@aq"ﬁ T l—e B3\ 73 5(1—e41V3/5)

which proves (4-6), in a stronger form, in the case a; > 0.

>N|q|1/N <0.56N|q|'/V,

The case a; = 0 is much simpler:

s 2 —41/3/5
log S22 < 2T g < 0,031
0aq'a| = (1—=1gD* = (1—e=7V3)2
which is much better than (4-6). O

More refined approximate formulas can be found in the Appendix, see Proposition A.1 therein.

4C. Simplest modular units. Now let us fix a positive integer N. We have the natural group isomorphism
(N~'7)7)? = (Z/NZ7)?, and, with some abuse of speech, we identify the two groups. In particular, for
a € (Z/NZ7)* we have the corresponding element in (N~!Z/7)?, and for this latter we may fix a lifting
a € N~'7?, which will be called a lifting of @ to N~'Z2.

By Theorem 4.3, for a € N~'7?\ Z? the function

. 12N
Ug = g;

does not depend on a particular choice of the lifting @ and defines a C-rational function on the modular
curve X (N). Identity (4-1) implies that u, = u_,.

The infinite product (4-2) implies that the g-expansion of u, has coefficients in the cyclotomic field
Q(¢y). By [Shimura 1971, Proposition 6.9(1)], it follows that u, € @Q(¢y)(X (N)). Moreover, the Galois
action of the group GL,(Z/NZ) on the field Q(¢y)(X (N)) (see Section 2) coincides with the action
induced by the natural right action of GL,(Z/NZ) on the set (Z/N 7)?* in the following sense: for a
nonzero a € (Z/NZ)? and o € GL,(Z/NZ) we have

Uge = Uy 4-7)

See [Bilu and Parent 2011a, Section 4.2] for more details.

The functions u, give the simplest explicit examples of the modular units, already mentioned in
Section 3: they have no zeros and no poles outside the cusps. It follows that their principal divisors
generate a free abelian subgroup of rank at most voo(N) — 1, where voo (V) is the number of cusps
of X(N). It turns out that this rank is the maximal possible, which provides an explicit form of the
Manin—Drinfeld theorem (Theorem 3.1):
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Theorem 4.7. The principal divisors (ug) generate a free abelian group of rank voo(N) — 1.

For the proof see Theorem 3.1 in [Kubert and Lang 1981, Chapter 2].

In fact, one can show that already the principal divisors (u,), where a runs through the set My,
consisting of the elements of (Z/NZ)? of exact order N, generate a free abelian group of rank v (N) — 1.
The number of such a is 2v,(N). It follows that, besides the relations u, = u_,, there can exist exactly
one relation between the principal divisors (1,) with @ € M. This relation is

Y (wa)=0.

acMy

In fact, we have a more precise statement.

Lemma 4.8. In the above set-up we have

[] ta=08D"™, (4-8)

acsMy

where ® y (1) is the N-th cyclotomic polynomial. In particular, if N = p is a prime number, we have

[] wa=%p"". (4-9)

aeM,

This will be used in the proof of the principal relation (Section 7) that our algorithm is based upon.

Proof. Since the set My is stable with respect to GL,(Z/NZ), the left-hand side of (4-8) is stable with
respect to the Galois action over the field Q(X (1)). Hence it is a unit on the curve X (1), defined over Q.
Since X (1) has only one cusp, it has no nonconstant units. Hence the left-hand side of (4-8) is a constant
belonging to Q.

To determine the value of this constant, we evaluate it at the cusp at infinity. For each @ € (Z/NZ) we
choose the lifting @ = (a;, ax) € @2 such that 0 < a;, ap < 1. The left-hand side of (4-8) is a product of
a root of unity and the terms of the type (1 — >/ +@)12N and of the type (1 — e27i—92g"+1=a1)12N
where n runs through nonnegative integers, and (a1, a») runs through the liftings of the elements of the
set M. When we set ¢ = 0, all these terms become 1 except the terms (1 — 7% +41)12N with p =0

and a; = 0. Hence, up to a root of unity, the left-hand side of (4-8) is

1_[ (1 _eZJTiaz)lzN — l_[ (1 _627Tik/N)12N — qDN(l)lZN

a,eN~'7/7 0<k<N
ay is of order N (k,N)=1
Since the only roots of unity in @ are %1, this proves (4-8) and the lemma. U

5. General modular units

In this section we review and complement some of the results of Kubert and Lang [1981]. Our purpose is
to construct “economical” modular units on the curve Xg.
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The “naive” approach is as follows. Let G be a subgroup of GL,(Z/NZ) and H a subgroup of det G,
which itself is a subgroup in (Z/N Z)*, viewed as the Galois group of the cyclotomic field Q(¢y). Then H
left-acts naturally on the set of the cusps of X . Denote by v (G) the number of cusps and by v (G, H)
the number of H-orbits of cusps.

On the other hand, the group Gg, defined in (2-3), right-acts on the set (Z/N )2 fOCZ /N 7)?* is
a nonzero orbit of this action, then

[ 4a (5-1)

acO

is a rational function on the curve X defined over the field Q(¢y)”.
It is not difficult to deduce from Theorem 4.7 that the principal divisors defined by products (5-1),
where O runs the nonzero Gy-orbits, generate a free abelian group whose rank is v (G, H) — 1.
Product (5-1) can be written as
[]s". (5-2)
acO
where @ € N~!7? is a lifting of @ € (Z/NZ)?, as defined in Section 4C. The principal goal of this section
is constructing rational functions on X¢ of the form

m
[1s
acO

where m is much smaller than 12N, which is crucial for numerical purposes.

5A. Quadratic relations. Let N be a positive integer. As in Section 4C, we identify the groups (N~'Z/7)?
and (Z/NZ)?, which allows us to lift every a € (Z/NZ)? to some @ € N~'Z>. By a lifting of a set
A C (Z/NZ)?> we mean a mapping A — N ~'Z? such that for every a € A its image @a € N~'Z” is a
lifting of a in the sense defined above.

Our principal tool will be the following result:

Theorem 5.1 (see [Kubert and Lang 1981, Theorem 5.2 in Chapter 3]). To every nonzero a = (a, ay) €
(Z/NZ)?* we associate an integer m(a). Fix a lifting a — a of the set of nonzero elements of (Z)NZ)>.
Put

A= > m). (5-3)
ac(Z/NZ)?
a#0
(1) Assume that N is odd. Then
m(a)
[T & (5-4)
ac(Z/NZ)*
a#0
is I'(N)-automorphic (of weight —A) if and only if
Yo m@ai= Y m@ag= Y m@aa=0. (5-5)
ac(Z/NZ)? ac(Z/NZ)? ac(Z/NZ)?

a#0 a#0 a#0
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(2) Assume that gcd(N, 6) = 1. Then the function

[T & (5-6)

ac(Z/N7)?
a#0

is I'(N)-automorphic (of weight 0) if and only if (5-5) holds and 12| A.
Remark 5.2. (1) Kubert and Lang call (5-5) “quadratic relations” (modulo N).

(2) One may note that

ac(Z/NZ)? ac(Z/NZ)?
a#0 a0

where A = p?*.

(3) The assumption gcd(N, 6) = 1 is purely technical: in a slightly modified form the statement holds
true when N is divisible by 2 and/or by 3. However, assuming that gcd(N, 6) = 1 will not hurt us, since
we shall apply Theorem 5.1 only when N is prime and N > 7.

(4) Theorem 5.1 implies that product (5-6) defines a function u € C(X(N)). By considering the g-
expansion, as in Section 4C, we conclude that in fact u € Q(¢n) (X (N)).

Contrary to product (5-2), product (5-6) may depend on the choice of the lifting a— a. Proposition 4.1(3)
implies that if we choose a different lifting a + a’ then (5-4) and (5-6) will be multiplied by a 2N-th
root of unity. Though this is pretty trivial, we state this as a proposition for further reference.

Proposition 5.3. For every nonzero a € (Z/NZ)?* pick an integer m(a) and fix two liftings a — a and
a — a’ of the set of nonzero elements of (Z/NZ)?. Then there exists a 2N -th root of unity € such that

[T &“=¢ [] &“ (5-8)

ac(Z/NZ)? ac(Z/N7)?
a#0 a#0

If additionally 12| A, with A defined in (5-3), then

[T «“=s ] & (5-9)

ac(Z/NZ)? ac(Z/N7)?
a#0 a#0

If2|m(a) for every a then
eV =1. (5-10)

Proof. Statements (5-8) and (5-10) follow from Proposition 4.1(3), and (5-9) follows from (5-8) and (5-7).
O
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5B. Galois action. As we mentioned in Section 4C, the Galois action by the group GL,(Z/NZ) on the
12N
a

obtain a similar result for “general” modular units (5-6).

“simplest” modular units u, = g-“" is very easy to describe: it is given by relation (4-7). We want to

Proposition 5.4. Assume the set-up of Theorem 5.1(2), so that

U= l_[ gljl(a)
a

ac(Z/NZ)?
a#0

defines a function in Q(¢n)(Xg) (see Remark 5.2(4)).
(1) Assume that 0 € SLy(Z/NZ) and let 6 be a lifting of o to I'(1). Then
=[] s (5-11)

ac(Z/NZ)?
a#0

(2) Assume that o € GLy(Z/NZ). Then it has a lifting 6 € My(Z) such that (5-11) holds.

Proof. The first part is a consequence of Propositions 2.1(1) and 4.1(2) and Equation (5-7). Indeed, write
& = (%), and recall that A = n** is I'(1)-automorphic of weight 12. We obtain

u’(t)=uodo ()

= [ Cos@)"@-(ao5@n™™

ac(Z/NZ)*
a#0
=(ct+d)™ ] @@ (cr+d*a@™"?
ac(Z/NZ)?
a#0
= [ gw@"®,
ac(Z/NZ)?
a#0

as wanted.

In the proof of the second part, we may assume that o is of the form ( (1) 2 ), because any o € GL,(Z/NZ)
can be presented as 010, with o € SLy(Z/NZ) and o, of this form. We lifto = (} ) as ¢ = ((1) 2) and
the result follows immediately from Proposition 2.1(3) and the infinite product (4-2). O

SC. Economical modular units on X . In this section to avoid technicalities we restrict to prime level.
Thus, let p > 5 be a prime number, G a subgroup in GL;([,) and H a subgroup in det G. The group Gy,
defined in (2-3), right-acts on the set M, = [F[% \ {0} (as in the previous section, we tacitly identify the
sets [Fg and (p~'72/7)%). Let O C M,, be an orbit of this action, or, more generally, a Gy -invariant subset
of M,,. We fix a lifting @ — a of the set M), (as defined in the beginning of Section 5A) and we want to
find an exponent m such that

u=]eyr (5-12)

acO



Computing integral points on X (p) 589

defines a function in K (X¢), where K = @(Q,)H . Clearly, m = 12p would do. It turns out that in some
cases one can do much better, sometimes introducing a root of unity factor. We fix a p-th primitive root
of unity and denote it by ¢,.

Theorem 5.5. Let p > 5 be a prime number and G > —1I a subgroup of GL,([F,) such that |G| is not
divisible by p. Let H be a subgroup of det G and O C M,, a Gy-invariant subset of M, satisfying

dai=> aay=) aj=0. (5-13)

acO acO acO
Let m be an integer such that

2lm, 12|m|0O]|. (5-14)

Fix a lifting a +— a of the set O and define u as in (5-12). Then u defines a function in Q(¢,)(Xg) (denoted
by u as well). Further, there exists k € Z (which is unique mod p when H # 1) such that ;‘gu e K(Xg),
where K = @(Q)H.

The proof requires a lemma, which is the simplest special case of the Kummer theory (see any textbook
in algebra).

Lemma 5.6. Let p be a prime number and F a field of characteristic distinct from p. Let a be an element
in the algebraic closure F, and ¢ » € F a primitive p-th root of unity. Assume that a? € F. Then either
[F(a) : F] = p or there exists k € Z (which is unique mod p when ¢, & F) such that g“[]joz e F. In
particular, if ¢, € F then either [F(a) : Fl=pora € F.

Proof of Theorem 5.5. Theorem 5.1 together with Remark 5.2(4) imply that u defines a function in
Q(¢p)(X(p)). We want to study the Galois action of Gy on u. Thus, fix 0 € Gg. Proposition 5.4(2)
implies that there exists a lifting 6 € M3(Z) such that

u” =[] g5 (5-15)

acO

Since O is Gy-invariant, we have Oo~! = . Consider a different lifting @ — @’ of © defined by
~) T~

a’ =ao~'o, where ao—!is the lifting of ao~!. Then (5-15) can be rewritten as

u”:l_[ggf.

acO

Now Proposition 5.3 implies that # /u is a p-th root of unity. We have proved that u” is invariant under
the Galois action by Gy, which implies that u” € K (X¢), the Gy-invariant subfield of Q(Z,)(X (p)).
Since the degree [Q(£,)(X (p)) : K(Xg)] = |Gy is not divisible by p (because |G| is not divisible by p
by the assumption), Lemma 5.6 completes the proof. U

There is an important special case when u itself belongs to K (X ), without multiplication by a root of

unity. Assume that Gy contains ((1) 91 ) In this case @ = (a1, az) belongs to a Ggy-orbit O if and only if

its “complex conjugate” @ = (a;, —ay) does. We say that a lifting @ — a respects complex conjugation



590 Aurélien Bajolet, Yuri Bilu and Benjamin Matschke

if the following holds: if @ = (a1, @) € O is lifted to @ = (ay, az), then the lifting of a is (a;, —as). This
can be expressed briefly as a=a.

Corollary 5.7. In the set-up of Theorem 5.5 assume that ((1) 91 ) € Gy and that the lifting respects complex
conjugation. Then u € K(Xg).

Proof. The assumption ((1) _01) € Gy implies that K € Q(¢, + 3 »). Further, since the lifting respects

complex conjugation, we have u' = u, where ¢ = ({ ;). The subfield of Q(¢,)(X) stabilized by ¢ is
Q(p +¢p)(XG). Thus, u € Q(¢, +£,)(Xg) and ¢ju € K(Xg) with K € Q(Zp +¢p). Tt follows that
¢y lies in Q(Z, + ¢,) which is only possible if ¢§ = 1. O

5D. An approximate formula. Using Proposition 4.5 and Corollary 4.6, we may obtain approximate
expressions for the modular units constructed in Section 5C. Let p, G, H and O be as in Section 5C. In
particular, as in Theorem 5.5, we will assume that

|G| is not divisible by p.

Let ¢ be a cusp of Xs. We define the sets €2, SOZC and the g-parameter g. as in Sections 2A and 2B,
that is, g.(P) = 2™t (P) for P € Q.. We also fix o € ['(1) such that o (ic0) represents the cusp ¢ and
define oy as in (2-6).

Since the ramification of X (p) — X (1) at all cusps is p, the ramification of X5 — X (1) at ¢ is either 1
or p. Moreover, since |G| is not divisible by p, the ramification is p at all cusps.

As in the previous section, we fix a lifting @ > a of the set M),.

For a subset A € M), define the quantities

EAZZE&, 04 = l_[Qa, (5-16)
acA acA
where £; is defined in (4-3) and g5 is defined in (4-4). Note that £4 is independent of the fixed lifting,

but o4 depends on it and is well-defined only up to multiplication by a p-th root of unity. However, we
will mainly deal with the absolute value |04, which is independent of the lifting.

Proposition 5.8. Assume that G is a semisimple subgroup of GL,(F,) and that O and m satisfy the
hypothesis of Theorem 5.5. Define u as in (5-12), and define s, = ., as in Section 2B. Then
Ord, u
4
Furthermore, for P € F(oy) we have

=mlos, Sec=0p, - (a p-th root of unity). (5-17)

log |u(P)| = mlos log|q.(P)| +mlog|oos| + O1(pm|Ollg.(P)|'/?). (5-18)

Proof. Replacing G by 0 "' Go and O by Oc, we may assume that ¢ is represented by ico. We may further
assume, without loss of generality, that o = /. In this special case Proposition 5.8 follows immediately
from Proposition 4.5 and Corollary 4.6 applied with N = p to every a lifting some a € O; recall that
p > 5 by the assumption. O
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In the sieving algorithm of Section 10 we use more refined approximate formulas from the Appendix.

SE. An example. We conclude this section with an example. It will not be used in the sequel, but it
gives a good illustration of how Theorem 5.5 can be used.
We take as G the diagonal subgroup of GL,(F,) and set H = {1, —1}, so that

G ={(39) :ad = 1)

and K = Q(¢, + Ep).

The right Gy-action on M, has (p — 1)/2 distinct orbits. They are of the form {a : aja; = £c} with
c=1,...,(p—1)/2. The quadratic relations (5-13) are clearly satisfied, and to have (5-14) it suffices to
take

_ 2, p=1mod3,
B {6, p=—1mod3.

Selecting a lifting respecting the complex conjugation, we obtain (p — 1)/2 modular units in the
field K (X¢).

6. Cusp points and units on X (p)

From now on we restrict to the case when N = p is a prime number and G is the normalizer of a nonsplit
Cartan subgroup of GL,(Z/pZ). A very detailed account of various properties of this curve (even for an
arbitrary ) can be found in Sections 3 and 6 of Baran’s article [2010].

We may and will assume that

6= !(Z EO{ﬂ)’ (flﬁ ?g) ca, Bel,, (a,B) # (0, 0)}, (6-1)

where E is a quadratic nonresidue modulo p, which will be fixed from now on. In particular, one can
take 2 = —1if p =3 mod 4.

We fix until the end of the article a lifting a — a of the set M), to p~'7?, which respects complex
conjugation (as defined before Corollary 5.7) and which has in addition to this the following property:

If a = (a1, ay) is a lifting of a € M,,, then 0 < a; < 1. (6-2)

6A. Cusps. The curve Xg = X[ (p) has (p — 1)/2 cusps, defined over the real cyclotomic fields
Qp + Ep), and the Galois group gal(@({ »+ 3 »)/ @) = F*/{£1} acts transitively on the cusps.
According to Remark 2.2, the cusps stay in one-to-one correspondence with the orbits of the left
G1-action on the set M,, = [Fz% \ {(0, 0)}. These orbits are the sets defined by x> — By? = 4, where ¢
runs through representatives of cosets F*/{£1}, the cusp at infinity corresponding to ¢ = 1.
For every ¢ € | /{£1} fix (a, b) € [F[% such that a> — 8b> = ¢! and let o, be a lifting of the matrix
(¢4 b2) to I'(1). For ¢ = 1 we take (a, b) = (1,0) and 1 = I. Then the set {o.(io0) : c € [pr/{j:l}} is a

cb a
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full system of representatives of cusps on 7, and the set

1k .
Ez{aco<0 1):ce[Fp/{j:1}, k=0,...,p—1)

is a complete system of representatives of cosets of I'L\I'(1). This is a special case of the construction
explained in Section 2A.
In the sequel we fix a subgroup H of F* containing —1 and put d = [ : H]. In particular,

d=[K:Q],

where K = @(;“p)H . The group H acts on the set of cusps by Galois conjugation, and this action has
exactly d orbits, each of them being defined over K as a set. The Galois group gal(K/Q) =F}/H acts
on the set of H-orbits transitively. These H-orbits of cusps are in one-to-one correspondence with the
sets defined by x> — Ey? € cH, with ¢H running through the cosets FyY/H.

6B. Units. Besides the left action, the group Gy acts on the set M), from the right. There are again d
orbits of this action, and they are defined by x> — y> € cH. These orbits will be used to define modular
units in K (X ). Recall that we fixed a lifting @ — a of M), to p~ 172, respecting the complex conjugation.

Theorem 6.1. Let O be a right Gy-orbit on M,,. Pick a lifting a — a of O to p~\7%. Put

2, i DH|H
N PRV .
6, otherwise.
Then the product
uo=[1 ez (6-4)

acO
is well-defined (it depends only on the orbit O but not on the particular lifting) and it defines a function
in K(Xg).

We deduce this theorem from Theorem 5.5 (more precisely from Corollary 5.7) using some elementary
lemmas about finite fields. We thank Ioulia Baoulina for useful explanations and for the proof of
Lemma 6.3 below.

Lemma 6.2. Let P(xy,...,x,) € F[xy,...,x,] be a polynomial over a finite field F = [, of degree
bounded by deg P < n(q —1). Then ), g P(b) =0.

Proof. This is Lemma 6.4 in [Lidl and Niederreiter 1997]. O

Lemma 6.3. Let [ be a finite field of odd characteristic and having more than 3 elements. Further, let
f(x,y), g(x,y) € Flx, y] be quadratic forms over F. Then for ¢ € F* we have

Y. fla,b)=0,

a,belf
g(a,b)y==xc

where the sum is over the pairs (a, b) € F* such that g(a, b) = +c.
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Proof. Write g = |F|, so that F = [,. Then

Y. flab) =) fab2-(gab) )" —(ga b +o!").

a,belF a,belF
gla,b)==%c

We have

FO, 2= (g&, ) =) —(g(x, y)+0)? ) ==2f(x, y)g(x, y)?" ' +[terms of degree < 2(g — )],

and Lemma 6.2 implies that the sum from the assertion is equal to —2 Za,bE[F f(x, y)g(x, y)?~!. The
latter sum is Za’ be, g(a.by20 J (@, D), which again by Lemma 6.2 and by the assumption g > 3 is equal
to — ) a,beF, g(a,b)=0 f(a, b). If the quadratic form g(x, y) is anisotropic over [ then the latter sum
consists only of the term f (0, 0) and there is nothing to prove. And if it is isotropic then after a change
of variables we may assume that g(x, y) =xy. Writing f(x,y) = ax?>+ Bxy + yy?, the latter sum
becomes (o +¥) D ,cr a’. Lemma 6.2 implies that ) ack a®> = 0 when [ has more than 3 elements. This
completes the proof. O

Proof of Theorem 6.1. Recall that the orbit O consists of (x, y) € [F[% satisfying Ex? — y? € cH with
some ¢ € F. Since H > —1, Lemma 6.3 implies that the quadratic relations (5-13) hold true. Further,
for each ¢ € [} there is exactly p + 1 elements of [,> of norm ¢, which implies that our orbit O has
exactly (p + 1)|H| elements, and with our choice of m the divisibility conditions (5-14) hold true as well.
Corollary 5.7 now implies that u € K (X¢).

Finally, u» does not depend on the lifting. Indeed, if we choose two different liftings respecting complex
conjugation and obtain the products, say, u and u’, then u/u’ is a p-th root of unity by Proposition 5.3.
On the other hand, u, u’ € K(X¢), which implies that u/u’ € K, a totally real field. Hence u = u’. The
theorem is proved. O

6C. Galois action on the units. Consider first the case of general algebraic curves. The proof of the
following proposition is a standard exercise in Galois theory.

Proposition 6.4. Let K / k be a finite Galois extension of fields of characteristic 0, and let X be a projective
curve defined (that is, having a geometrically irreducible model) over k. Then the extension K (X)/k(X)

is Galois and the restriction map
gal(K (X)/k(X)) — gal(K/k), o+ olk

defines isomorphism of Galois groups. Further, for P € X (k) and u € K(X) we have u(P) € K, and
given o € gal(K(X)/k(X)) = gal(K/k) we have u® (P) = u(P)°.

In our case the group

gal(K (X6)/Q(Xg)) = gal(K/Q) = G/Gy =F) /H
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acts transitively and faithfully on the right Gy-orbits, and this action agrees with the Galois action:
for o € gal(K/Q) = [FpX/H we have ug, = up,. Fixing an orbit O and putting U = up, we obtain the
following.

Proposition 6.5. For P € X5 (Q) we have U(P) € K and U° (P) = U(P)? for o € gal(K/Q).

Since distinct orbits are disjoint, Theorem 4.7 and the discussion thereafter have the following conse-
quence (recall that d = [K : Q] = [[FpX C H)).

Proposition 6.6. The d principal divisors (U?), o € gal(K /Q), generate an abelian group of rank d — 1,
the only relation being ) " _(U?) =0. In particular, ifd >3 and o # 1 then U and U° are multiplicatively

independent modulo the constants.
Finally, Equation (4-9) implies that
[[ vo==+p" (6-5)
oegal(K/Q)

Indeed, arguing as in the proof of Lemma 4.8, we show that the left-hand side of (6-5) is a rational
constant. It also follows from our definitions that the left-hand side of (6-5) is equal to

[T s

acMp

Razing this to (12p/m)-th power, we obtain the left-hand side of (4-9). This proves (6-5).

7. The principal relation

We retain the set-up of Section 6 and in particular that of Section 6C:
e p >5isaprime number, {, is a primitive p-th root of unity.
e a > ais alifting of the set M, = [FI% \ {(0, 0)} which respects complex conjugation and satisfies (6-2).
G is the normalizer of a nonsplit Cartan subgroup of GL, ([, ), realized as in (6-1).
* H is a subgroup of [, H > —1.
e m =2 or 6 according to (6-3).
« K=0Q(,)" andd =[K : Q] =[F) : H].

e O s a fixed right Gy-orbit in M, and U = ue as defined in Theorem 6.1. It might be worth pointing

out that
p—1 p*—1
Hl="——. [0|=(p+DIH|= . (7-1)
We fix a system 5y, ..., ng—1 of fundamental units of the totally real field K. We also put
no = Na,)/k (1 =¢p). (7-2)

Clearly, no generates the prime ideal p of K above p; recall that p¢ = (p).
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Recall that we call a point P € X (Q) integral if j(P) € Z. Proposition 4.4 implies that for an integral
point P on X, the principal ideal (U (P)) is an integral ideal of the field K, and moreover it is a power
of p. Since p? = p for ¢ € gal(K /Q), relation (6-5) implies that (U (P)) = p™. Thus, we have

UP) =m0yt (7-3)
where bg = m and by, ..., by_ are some rational integers depending on P.

The purpose of this section is to express the exponents by in terms of the point P; more precisely, in
terms of g.(P), where c is the nearest cusp to P (Section 2A). This can be viewed as an analogue of
Equation (20) on page 378 of [Bilu and Hanrot 1996].

For ¢ € gal(K/Q) we have*

U (P) =) ) - ()P

Fix an ordering on the elements of the Galois group: gal(K/Q) = {¢o = id, ¢1, ..., $ps—1}. Since
the real algebraic numbers ng, 1y, ..., n4—1 are multiplicatively independent, the d x d real matrix
(log |nfk|)0§k,g5d_1 is nonsingular. Let (ctk¢)o<k,e<q—1 be the inverse matrix. Then
d—1
bk=Zakglog|U¢"(P)| (k=0,1,...,d—1). (7-4)
¢=0
We will call (7-4) the principal relation: It will play crucial role in our reduction and enumeration
algorithms.
Combining (7-4) with Proposition 5.8, we may express by in terms of g.(P). Let us introduce some
notation. Let ¢ be a cusp of X. Define the following quantities:

d—1 d—1
Sek=—mY arlogo.  Vex=m Y arlogloogs| (k=0,1,....d—1),
=0 =0
o (7-5)
K:m]flxglakgl, G):Kmp(pz—l)d_l,

where ¢4 and p4 are defined in (5-16), and o is an element in I"(1) such that o (ioco) represents c. It
follows from (5-17) that 6. ; and ¥, ; are independent of the choice of o.

Remark 7.1. It is easy to see that 5.0 = 0 and at least one of the numbers &, 1, 8¢ 2, . . ., 8¢.4—1 iS nonzero.
Indeed, we have
Ord, U% 8c.0
Ord, U 4 Se1
: = (log 7" Do<k,e<d—1 : . (7-6)
Ord, U %41 8c.d—1

“In the sequel we use the letter ¢ rather than o to denote elements of gal(K /().



596 Aurélien Bajolet, Yuri Bilu and Benjamin Matschke

Multiplying both sides by the row vector (1, ..., 1) on the left, we obtain §. o = 0. Further, since the
column vector on the left of (7-6) is nonzero, so is the column vector on the right.

Proposition 7.2. Let P be an integral point on X and c its nearest cusp (that is, P € Q.). Then for
k=0,...,d—1we have

b = 8¢k 1og g (P)| ™ + Ok + 01 (Blge(P)[V/P). (7-7)
In particular,
|bi| < I8¢ k1 10g |qe(P)| ™ + [9ck| + ©. (7-8)

Proof. Using (5-18) and (7-1), we obtain
log |U(P)| = mlo, log gc(P)| +mlog |oos | + O1(mp(p* — d ™' ge(P)|'/?),

and the same holds true when U is replaced by U? and O by O¢ for any ¢ € gal(K /Q). Now the result
follows by (7-4) and (7-5). Il

8. Outline of the algorithm

In order to compute the integral points on X IJ{S( p), we need to consider them on each F (o) (see Section 2A),
o € X, where X is the full system of representatives of cosets I'\I"(1) as given in Section 6A. Let us
fix one such o until the end of Section 10, and we denote by c the cusp represented by o (i00), so that
F(o) C L.

The principal relation (7-4) can be written as

b=A-x, (8-1)

where b = (b)o<k<d—1. A = (@re)o<k.e<d—1, and A = (og |U? (P)|)o<¢<d—1-
For integral points P with j(P) & {1, 2, ..., 1727} with closest cusp c, the associated g.-parameter is
real and nonzero, and more precisely

qe(P) € Iy :=[—e ™3 2]\ {0},

Suppose further that P lies in F (o), where we use the notation from Section 2A. The points in F (o) with
real g.-parameter are in bijective correspondence with Iy via the map ¢g.. Restricting A to those points of
interest within F (o), we obtain a curve in R? parametrized over Iy, and we denote it A, (g.) : Ip — R4
with “variable” g, € Iy.

Furthermore let us define a curve y, := A - A, in RY, which is equally parametrized by g. over the
same domain /o, and which depends as well on the chosen o € X. Recall that the matrix A depends only
on the choice of the fundamental units ny, ..., ng—1. As b € 74, Equation (8-1) tells us that each integral
point P in F (o) gives rise to an intersection of y, with the lattice Z¢. Thus our algorithm will essentially
(up to numerical issues) do the following.
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(1) For each o € X, compute all g, € [—e‘”‘/g, e~27]\ {0} for which y, (¢.) € Z¢, and compute the
corresponding j-invariants.

(2) For each such j and additionally all j € {1,2,...,1727}: if j € Z, compute the image type of an
associated mod-p Galois representation.

(3) If furthermore the image of the representation is contained in the normalizer of a nonsplit Cartan
subgroup, then output ;.

An explicit bound for |q.| and first reductions. In Section 9 we bound |g.| away from zero, and explain
how this bound can be considerably improved using a classical reduction procedure going back to Baker
and Davenport [1969].

Sieving for lattice points in the remaining parts of y,. After having applied the first reductions, we are
left with considering two compact real intervals I, C R.o and I_ C R of g.-parameters. In Section 10
we will cover y, (I U I_) with ellipsoids of small volume and then use the Fincke—Pohst algorithm in
order to obtain only a few remaining candidates for j(P), which then can be checked in the extra search.

Extra search. A small set of values j(P) € Z can be checked separately by simply computing the image
type of the corresponding mod-p Galois representation, see Section 10B. We call this the extra search.

Computing the initial bound for |g.| is very fast. Starting from this bound, in principle we could use
the sieve from Section 10 immediately without the first reductions from Section 9. However the latter
makes simpler estimates that require much less precision and are thus considerably faster. When the
first reduction method cannot continue further, the sieve using ellipsoids sieves away many candidates
for j(P). Only at the end, for large |gq.|, the sieve eventually stops sieving away a lot of false candidates.
At this point it becomes beneficial to simply use the extra search, as only a few values for j € Z remain
that correspond to those g.

Remark 8.1 (taking care of numerical issues). Our algorithm needs to deal with real numbers. A curious
and trivial fact is that all real numbers in this paper (although R is uncountable) are exactly representable
in a computer; however only symbolically, not as floating point numbers or more generally as rational
numbers. To do efficient computations we need to work with rational approximations instead. Thus
dealing with error estimates is unavoidable. To solve all arising numerical problems elegantly, we used
throughout interval arithmetic, where a real number x is replaced by an interval [a, b] with a, b € Q,
containing x. This has the advantage that at each step of the algorithm we have exact rational bounds for
the computed real numbers. If at some point during runtime it turns out that these bounds are too weak,
we simply rerun the relevant parts of the program with larger and larger precision, that is, we represent
the initial real numbers x by shorter and shorter intervals [a, b]. This will certainly increase the running
time as the heights of a, b will increase. But once the precision of the result is sufficient, we are certain
that the obtained bounds are correct.
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Note also that whenever we found a lattice point on y,;, we need to know which g.-parameter it comes
from in order to determine the possible values of j(P). Solving this equation to a high precision can be
very costly timewise, which is why the first reductions and the subsequent sieving steps are so important.

9. Baker’s bound and its reduction

In this section we bound ¢.(P), using the bound for |j(P)| obtained in [Bajolet and Sha 2014] with
Baker’s method. Afterwards, we show how it can be improved using the method of Baker and Davenport
[1969].

Theorem 9.1. Assume that p > 1. Let § be the smallest divisor of (p — 1)/2 satisfying § > 3. Set
O = 30545572+ 6545 (1o0 )2 15y = log(e” 4 2079)
Then for any integral point P on X.(p) with nearest cusp ¢ we have
log|j(P)| <U and loglgc(P)™"| < Uo.

Proof. The first statement is a version of Theorem 1.1 of [Bajolet and Sha 2014]. The second statement
follows from the first one using (2-16). Il

Remark 9.2. Modular units used in [Bajolet and Sha 2014] are not “economical” (in the sens of this
article). Using instead economical units would yield a slightly sharper bound than Uy. However, the
quality of this bound is not of significant importance for the subsequent reduction process. Therefore we
prefer to use the “prét a porter” result from [Bajolet and Sha 2014] rather than repeat the (rather technical)
argument from that paper replacing the “naive” units used therein by economical ones.

We call Uy Baker’s bound. It is usually numerically huge (around 10'® for small p and even about
101000 for p =97), and so are the implied bounds for the exponents by, ..., b;_1, that can be obtained
using (7-8); therefore they are not suitable for direct enumeration of all possible vectors b = (by, . .., bg_1).
Moreover, checking whether such a candidate vector » comes from an integral point P is nontrivial and
computationally expensive.

However, in practical situations the bound Uy can be drastically reduced, using the numerical Diophan-
tine approximations technique introduced by Baker and Davenport [1969] and developed in [Bilu and
Hanrot 1996; Tzanakis and de Weger 1989] in the context of the Diophantine equation of Thue.

As in the previous section we fix a cusp ¢ and consider integral points P € Q.. We shall usually omit
the index c, writing 8. x = 8 and ¥ y = ¥ for the quantities defined in (7-5).

As we have seen in Remark 7.1, at least one of the numbers 8, ..., 84— is nonzero. To simplify
notation we will assume that §; # 0. We denote

By =161|6o + || + O,
so that |b| < By by (7-8).
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Pt 8 820 — 810
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81 31
Relation (7-7) implies that
by — by + A < (1+18))Olgc(P)|'/?, ©-1)

which gives us up to A a good rational approximation of §. The idea is to find by continued fraction
expansion of § an integer r such that ré is close to an integer but rA is not, which then gives us a
better upper bound for log |¢.(P)~!|. For this, we proceed as follows. We fix a real number T > 2 (in
our computations we initially take 7" = 10). Next, using continued fractions we find a “good” rational
approximation of §; precisely, we find a nonnegative integer r < T By such that

78|l < (T Bo)~"

where || - || is the distance to the nearest integer. Thus, 7" controls the precision of this rational approximation
on top of By. Now, if rX is not “very close” to the nearest integer (in practice if [|[rA| > 271 then we
can bound |g.(P)~!|. Indeed, multiply both sides of (9-1) by r. The right-hand side of the resulting
inequality will be bounded from above by (1 + [§])©T By|q.(P)|"/?, and the left-hand side would be

rby —rdby +ri| = |ral = Bollrsll = llra| = T,

since |b;| < By. This gives the following upper bound for |g.(P)~'|:

(1+18DOTBy

log |g.(P)" ! < pl =: 0. 9-2
0glg.(P) | = plog A =TT 1 (9-2)

In the case when ||ri| < 27! we increase T (in our computations we replace it by 107") and restart, until
|7A]l > 27 ~!. In practice only very few such iterations are needed: Heuristically, |7 | can be thought of
a random number in [0, 1] (with respect to the Lebesgue measure), and thus a particular 7 works with
“probability” 1 — 2771 As log(T By) is almost log(By), the precise value of T is not that important.

Since U; depends logarithmically on Uy, it is expected to be much smaller than Uy, and in practice
it is.

We then repeat the same procedure, but this time with U; instead of Uy, obtaining for log |g.(P)™'| a
new reduced bound U,, and so on. We stop this reduction process once it does not improve the previous
bound on log |¢.(P)~!| by more than 1%. In practice, three to four iterations of this procedure suffice for
that. We call U the obtained reduced bound for log |g.(P)~'|. In practice O is around 200 for small p
and about 2200 for p =97.

Remark 9.3 (geometry intuition behind the reduction process). Recall from Section 8 that we are
interested in the real g.-parameters ¢, € Iy at which y, (g.) is a lattice point b € Z¢. For |g.| — 0 the
£>-norm of y, tends to infinity, and the asymptotic direction of y, is given by the vector (8, ..., d4-1),
compare with Remark 7.1. Moreover, the Baker bound U for log |¢!| together with (7-8) restricts our
search to a certain hypercube in R?. In informal, more geometric terms, the reduction procedure can be
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described as follows. We project y,, to its first two coordinates, and we try to find a large part of the
domain of  where this projection does not intersect the lattice points Z> C R2. For this we approximate
the slope of the projected y, by a rational number; in other words we make a change of coordinates via a
matrix in GL,(Z), sending Z? to Z?, such that the projected y, becomes asymptotically almost horizontal.
That is, the vertical coordinate changes asymptotically very slowly, which means that it stays over a large
part of the domain between two integers. Then using the error bounds of (7-7) we deduce a new upper

bound U; for log |qc_1 l.

10. Sieving lattice points on y,

10A. Ellipsoid sieve. We continue with the set-up of Section 8. For notational simplicity, we don’t keep
o € X and c in the notation. That is, we write A for A, y for y,, and g for g.. Suppose that we want to
find all ¢ in a certain interval within the domain of y at which y(¢) € Z¢.

One serious numerical problem is, that we can compute the modular units U, and thus y, only up to an
arbitrary finite precision, but never exactly. Moreover, a better precision (i.e., a better error bound) requires
longer running time and more memory consumption. Thus we are looking for ways to algorithmically
bound y in such a way that only very few candidates j remain. For this we use two different methods:

(1) We will cover (the image of) y with exactly computed ellipsoids, such that each of the ellipsoids
intersects Z¢ in very few points, which can be determined using an enhanced version of the algorithm of
Fincke and Pohst [1985].

(2) If a subinterval I of the domain of y has the property, that the restriction y |; has a coordinate with
provably positive or negative derivative, we can use the bisection method or Brent’s method [1971] to
compute all g for which this coordinate is integral.

By default we try to use the first of the two methods, because it is considerably faster in most situations.
Only at places where y intersects Z¢ or is very close to doing so, the second method becomes preferable.
Next we discuss both these two methods in detail.

Covering y (I) with one ellipsoid. Let I =[q1, g2] C R\ {0} be an interval in the domain of y. Recall
that U = up is a product of Siegel functions g, (Theorem 6.1), whose leading terms come from the
factors in front of the infinite products in (4-2). Therefore the leading term of log |U| is affine linear in 7.

The remainder of log |U| is an infinite sum, which can be estimated by a finite sum plus an error term,
see Corollary A.4 in the Appendix. We use real and complex interval arithmetic, using that g lies in the
given interval I, and obtain constant lower and upper bounds for the remainder of log |U| that hold for
all 7 in the interval given by g € I.

As the coordinates of A are sums of terms log |U|, it follows that the image of A|; lies in the Minkowski
sum of a line segment (coming from the leading terms of the terms log |U|) and an axis-parallel cube
(coming from the remaining terms of the summands log |U|). Let us call the line segment S, and the
cube C. Thus, A(I) € S+ C, where “+” denotes the Minkowski sum. We look for an ellipsoid E of
small volume that contains S + C 2 A([). For this we need some preparation.
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Let Q be a symmetric positive definite d x d matrix, which gives rise to a quadratic form on R?. In
the following we write Eg := {x € R? | x' Qx < 1} for its unit ball, which is a euclidean ellipsoid.

Lemma 10.1 (product of ellipsoids). Let Q1, Q> be positive definite matrices giving rise to quadratic
forms on R and R%, respectively. Then the ellipsoid E o of smallest volume containing Q1 x Q> is given
by the block-diagonal matrix Q with the two blocks (dy/(dy + d)) Q1 and (dr/(dy + d>)) O».

Lemma 10.2 (projecting ellipsoids). Let Q be a positive definite d x d matrix. Let P be a d’ x d matrix
of rank d’ representing a linear surjection RY — R?'". The image of Eg under P is given by P(Eg) = E¢o
with Q' = (PQ~'PH~L.
Proposition 10.3 (convex hulls of ellipsoids). Let Q be a positive definite d x d matrix, and let a € R? be
a vector. Define E o' as the ellipsoid given by Q" = (1/(d + 1))(% 0! +a’a)_l. Then E o is an ellipsoid
that contains both translates Eg +a and Eg —a of Eg.
Proof. Let P be the d x (d + 1) matrix (idy|a), i.e., a d x d identity matrix with an augmented column
given by vector a. The convex hull of Eg +a and Eg — a can be written as P(Eg x [—1, +1]). Note
that [—1, +1] = Ejq,, where id; is the 1 x 1 identity matrix. Using Lemma 10.1 we find an ellipsoid EQ
containing E o x [—1, +1], namely the one given by a block matrix Q with ad xd block (d/(d+1))Q and
a 1 x 1 block with entry 1/(d+1). Define Q' as in Lemma 10.2 such that P (E @) = E . Then one quickly
checks that Q' is given as in the assertion of the proposition, i.e., Q' = (1/(d +1))(; Q™! —|—a‘a)_1, and
we have

EgpxaCconv(Eg —a,Eg+a)=P(Egx[-1,+1]) € P(Eg) = Eg. O

Now let us return to the problem of finding an ellipsoid E containing S 4 C 2 A([). It is easy to write
down the ellipsoid E¢ of smallest volume that contains C; one can obtain it by iterating Lemma 10.1,
using that C is a product of 1-dimensional ellipsoids. By translating the coordinate system, we may
assume that the segment S is centered at the origin, its endpoints being +a. Then Proposition 10.3 yields
an ellipsoid that contains both E¢ + a, and thus S + C, and thus also A(7).

Asy(I)=A-A(l) isjust an affine image of A(/), with Lemma 10.2 we obtain immediately an ellipsoid
containing y (I). Let us call this ellipsoid E;.

Computing lattice points on y (I). We are interested in the g-parameters such that y (¢) € Z¢.

For this, in the previous section we computed an ellipsoid E; 2 y (I). With the Fincke—Pohst algorithm,
one can compute all lattice points in an ellipsoid £;. We note that one needs to adjust the original
Fincke—Pohst algorithm in two ways.

(1) As the dimensions d become relatively high (say larger than 8), it is in practice necessary to first
LLL-reduce the basis of the lattice with respect to the quadratic form that defines the ellipsoid. Otherwise
the Fincke—Pohst algorithm can become too slow.

(2) Our ellipsoid E; is in general not centered at a lattice point; whereas the original Fincke—Pohst
algorithm is for ellipsoids centered at the origin. This generalization is indeed not difficult to implement
(see for example our source code for our precise implementation).
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Note that everywhere in the code we use interval arithmetic. That is, our computations do not compute
the exact real numbers, but instead exact intervals in which the correct results of the computations lie;
compare with Remark 8.1. In the Fincke—Pohst algorithm this ensures that we get indeed all lattice points
in E;, and possibly a few more “false candidates.” The higher the underlying precision is that we are
using, the fewer false candidates there will be.

Examining lattice points on y (I'). Having computed the lattice points E; N Z¢ (plus possibly some false
candidates), there are basically two possibilities:

(1) It may happen that Fincke—Pohst returns no lattice point. Then we have a proof that E; NZ¢ is empty,
and hence y (1) N Z¢ is empty. Thus X (p) contains no integral point within the hyperbolic triangle
F (o) with g-parameter in /.

(2) It may happen that Fincke—Pohst returns at least one lattice point.

(a) One way to continue is to split / into two smaller intervals / = I} N I and continue with I, and I,
recursively. The intuition is that the corresponding ellipsoids Ej, and Ej, should be of much smaller
volume and should thus contain fewer lattice points. In the current implementation we do exactly this
when Fincke—Pohst returns at least two lattice points, and we split / into two equal pieces I} and I in
the logarithmic scale (which is a good splitting point in practice; it corresponds to bisecting the interval
in t-coordinates).

(b) When Fincke—Pohst returns exactly one lattice point v, it may happen that it lies actually on y (/) and
which we will not get rid of by splitting / into smaller pieces. Thus we try to compute which j-invariant(s)
it corresponds to. This is nontrivial for numerical reasons. Our implementation does the following. We
compute the derivative of y|; in interval arithmetic. If in this way we cannot prove that at least one
coordinate of y|; has everywhere positive or everywhere negative derivative, we continue as in (a) by
splitting I into two pieces and go deeper into the recursion. Otherwise we know that one coordinate, say
the k-th one, is strictly monotone. In particular, y|; may go through the obtained lattice point v at most
once. Then we use the bisection method (as always in interval arithmetic) to find the g-parameter (well,
only an interval I, that contains this g-parameter) such that the k-th coordinates satisfy yx(q) = vi. It
may happen that y; is larger (or smaller) than vy at both endpoints of 7, in which case we also proved that
y(I)NZ¢ is empty. Having found I,, we compute in interval artihmetic y (1), which is a vector whose
coordinates are all real intervals, i.e., y (/;) is a cube. We check whether it contains the obtained lattice
point v. If not, again we know that y (1) N Z% is empty. Otherwise, we compute the set of all integral
values for j that correspond to g-parameters in /. If there are no such integral values for j, we are of
course again finished. If there is only one such value for j, we test it in the extra search, see Section 10B.
However if there are more than one such value, we increase the precision of our computations, and rerun
the bisection method that computes the real interval /,, until at some point /, is small enough.

Remark 10.4. In an earlier version of this paper (see the first preprint version on the arXiv) we did not
cover y by ellipsoids. Instead, in the language of this section, we concentrated on one of the coordinates
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y; of y and solved y;(q) = k for all integral values of k within the range that is left after the first reductions
of Section 9. The ellipsoid method has two advantages: Firstly, for g close to zero it is faster, as a single
ellipsoid can cover many choices for k. In principle one could even replace the first reductions from
Section 9 by suitable ellipsoids,” however the above reduction is much faster as it requires little precision.
Secondly, solving y;(q) = k for ¢ runs into considerable numerical issues, especially for larger |g| due to
slow convergence. This being said, if done right, a coordinatewise method might be a way to improve on
our algorithm in the future, in particular as a middle step between the ellipsoid approach and the extra
search, where the largest running time improvements are possible.

10B. Extra search. Assume that it only remains to verify for a few values for j(P) € Z, whether they
come from an integral point P. In practice, these values will contain the numbers 1, 2, ..., 1727, which
come from potential integral points with nonreal g.-parameter. Moreover it will contain the values of j
that could not be excluded during the sieve of Section 10, as well as all j € Z with |j| < jo for some jy
such as jo = 2!6 (or even larger for big p), as for small ; the sieve is slower than the direct extra search
described below. Also, the sieve has to be performed for each o € X, and the set ¥ is of cardinality
p(p —1)/2, quite a big number for big p.
Recall that to an elliptic curve E /(D and a prime number p we associate a Galois representation

PE,p - galg — GL(E[p]) = GLa(F,),

which is defined by the natural action of the absolute Galois group Gg on the torsion group E[p]. Points
in Xps(p)(Q) correspond to the elliptic curves E/Q such that the image of pg , is contained in the
normalizer of a nonsplit Cartan subgroup of GL,([F,).

It is known that, if this latter property holds for some elliptic curve E/Q with j(E) # 0, 1728, then it
holds for any quadratic twist of E, that is, for any other elliptic curve E’ with j(E’) = j(E). Indeed, E’ is
isomorphic to E over some field K of degree at most 2. Denote by xx the character of Gg corresponding
to K. Then pg' , = pg p,xx. Hence if the image of pg , is contained in the normalizer of a nonsplit
Cartan subgroup, then so is the image of pg' .

Hence, if we fix j € Q, distinct from 0 and 1728, then, to verify whether X ;2 (p) has a rational point P
with j(P) = j, it suffices to verify for at least one curve E/Q with j(E) = j whether the image of pg , is
contained in the normalizer of a nonsplit Cartan subgroup. This can be readily accomplished within [Sage-
Math 2017] using the functions E = EllipticCurve_from_j(j) and E.galois_representation().image_type(p).

10C. Running time of the algorithm. In order to obtain Theorem 1.1, we let our algorithm run for all
primes 7 < p <97 in parallel on the PlaFRIM computer cluster. For any such p, let r denote the running time
in seconds multiplied by the number of CPUs that were in use; see Table 2. Thus, ¢ is an upper bound for the
time in seconds that our algorithm would take for a prime p on a single CPU. The computation for p =79
had the highest running time of almost 3.5 CPU years. The total running time was almost 16 CPU years.

SThis is analogous to the situation for S-unit and Mordell equations, where one can replace the classical first reduction of the
initial height bound by ellipsoids [von Kénel and Matschke 2016].
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p 1 t/p* p t t/p* p t t/p* p t t/p*
7 67-103 276 29 24-105 0.34 53 4.3-10° 0.55 79 1.2-10% 2.83
11 68-10°0 047 31 83-105 0.90 59 1.3-107 1.03 83 6.1-107 1.8
13 29.10° 1.01 37 1.8-10° 0.94 61 1.8-107 1.24 89 1.0-10% 1.59
17 28-10° 0.33 41 12106 041 67 3.0-107 147 97 62-107 0.70
19 1.2-10° 0.89 43 27-10° 0.77 71 2.6-107 1.01

23 9.0-10° 0.33 47 2.0-10° 0.40 7369107 2.42

Table 2. Running times ¢ in CPU seconds for computing X (p)(Z).

For each p # 97 the computation was based on the field K = Q(¢, + ¢ »). For p =97 we took for K
instead the subfield of degree 16, as during a test-run on a single hyperbolic triangle F (o) this choice
improved the running time by a factor of 4.5. The running time for p < 100 in our computations seems
to grow slightly faster than p*, but as for the asymptotic complexity for our algorithm this is a strict
underestimate. A p? factor already comes from the number of hyperbolic triangles F (o) that cover
X(C) over which the algorithm iterates. For each F (o), the bottleneck (at least in the current range) is
the computation of integral points in the ellipsoids. For each such ellipsoid, the Fincke—Pohst algorithm
needs to be applied to an LLL-reduced quadratic form (otherwise it becomes impractical for moderately
large d), and it also needs O (d?) time to compute the Fincke—Pohst form of the ellipsoid. Moreover the
number of covering ellipsoids and their required numerical precision is hard to estimate a priori, which
makes even an upper bound for the running time of our algorithm currently out of reach.

Note that we did not prove that the algorithm actually terminates. Something very special would need
to happen for it not to terminate, such as the existence of an integral point out of the reach of the extra
search at which the derivative of y vanishes. In any case, if the algorithm will not terminate for some
larger p in the future, presumably there will be a quick fix of the program.

If the algorithm terminates then the output is proved to be correct, i.e., the obtained set of integral
points on X (p) is provably complete.

Appendix: Approximate formulas for Siegel functions, modular units and their derivatives

In this appendix we collect formulas we were using in the computation of Section 10 to numerically
approximate modular units and their derivatives.
We start by approximating Siegel functions. We use notation of Section 4A.

Proposition A.1. Let ng be a positive integer. Then for a nonzero a = (ay, az) € @* N[0, 1)? and v € H
we have

no—1 no—1

log |g4(T)| =Lqloglg|+logloal+ Y log|l—g" e[+ " log|l—g" ! e i
n=0

gl 4 g o=
(0] . (A-1
" 1( 1=1q)) (A1)

n=0
(n,a1)#(0,0)
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Remark A.2. The term log |o,| vanishes unless a; = 0. In this latter case it might have been included
into the first sum by omitting the condition (n, a;) = (0, 0). However, we prefer to write (A-1) as we do,
because we want to separate the constant and the nonconstant terms.

Proof. The proof is similar to that of Proposition 4.5. Using the inequality |log(1 + z)| < |z|/(1 — |z|) for
|z] < 1, we estimate, for n > 1, the terms of the product expansion (4-2) as

. B |q|n+&1 - » |q|n+1—&1
{log(l _qn—i-a]eZJTlaz)‘ < -, ‘log(l _qn+1—ule—2nla2)‘ < —.
1 —1ql 1 —Iql
Adding this up for all n > ngy, we bound the error term in (A-1) as
S |q|n+511 +|q|n+1—ﬁ1 |q|no+&1 + |q|no+1—ﬁ1
_ = P
= 1l (1—1qD
This proves the proposition. O

The absolute value |g;(7)] is 1-periodic as a function of 7. Hence it can be viewed as a function of
g = €>™'. We need an estimate for the logarithmic ¢-derivative % log |gal.

Proposition A.3. Let a, t and ngy be as in Proposition A.1. Assume that T € ]?" . Then

no—1 ~ n—14a; ,2mwia ~ n—a, —2mids
= —n a e —n 1—a e
(a’ 10g|gﬁ|)(f)—Z&Re}I+ E Re( (n+ai)q (n+ g )
n=0

dq 1— ql’l+¢~l|62n’i(12 1 — ql’H—]—ﬁ]e—Zni&z

nalal™=1 — (na — 1)1g | 1 1
4 o, (Mol (o2 4| _ 4 — ). -2
(I —=lqD L —|g|rotar = 1 —|g|roti-a

Proof. For any smooth function f : R — C*, we have dix log | f(x)|=Re(f’(x)/f (x)). Using the product
expansion (4-2), this already explains the main term in (A-2). For the O;-term we bound

R _(n +&1)qn—l+&1 eZnidz - _(n +C~ll)qn—l+&1 eZm’éz
© 1 — qn-'rﬁ]eZﬂi&z - 1— qn-'rﬁ]eZﬂl'&z

_ 1+ aypgptta
—lql+@

For the denominator, we simply bound 1 — |g|"*% > 1 — |¢|""% for n > ny. We want to bound the
numerator for n > ng as

(n+aplg"""T4 <njg" "

This follows from the fact that the function x — x|g|*~! is decreasing for x > 1 whenever |g| < e /X,

which is true because T € F, and then plugging into this function the two arguments x =n and x =n+a;.
Thus, for n > ng, we obtain

o & -1 n

. 4 1 nolg|"™ ™" —(nog— Dgq|™

(n+aplgl"" < Y njg" ' = :
Z Z (1_|q|)2

n=no n=ng

This explains the first half of the O;-term. The other half for exponent n + 1 — a; instead of n 4 a; is
treated in the same way. O
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Now it is easy to obtain a similar result for modular units.

Corollary A.4. Let ng be a positive integer. Then in the set-up of Proposition 5.8, for every P € F (o) we
have

Ord
log|u(P)] = = = log |q.(P)| +log |s.|

no—1

+m Z ( Z log‘l — qC(P)n+&162ﬂiﬁz| + Z 10g’1 _ qC(P)n+l—&|e—2ﬂi&2|)

acOo

lge (P14 + g (Pt~
o (m 2 A= 1q.(P))? )

n=0

acOo
(n,a1)#(0,0)

In addition to this, ac0o

( di tog ul)(P)

— OI’dC u Re 1 +m ,10221 Z Re —(n+ &l)qC(P)n71+&162m'ﬁz —(n+1-— &l)qc(P)nfﬁlefbri&z
= » q.(P) 1 _qc(P)n-i-&leZni&z 1 _qC(P)n-‘rl—[z.e—Zni&z

n=0 acOc

nolge(P)I"~" — (ng — Dlgc(P)|" ( i | ))
+ 0 . _ '
1<m (1= lge(P)D? 2 (= lge(PY[motan) 1= |go(Pyro+i=an

acQOo

Proof. As in the proof of Proposition 5.8 we may assume that o = I and c is the cusp represented by i co.
In this case the result is an immediate consequence of Propositions A.1 and A.3. O

In the program, we use the above estimate for log|u(P)| first with ng = 2, and then with larger and
larger ng when the overall precision needs to be increased. As for the estimate for ((d/dq.) log|u|)(P),
we use it only with ng = 1, which turns out to be sufficient whenever we used it. For larger p one may

want to take a slightly better approximation, for instance, with ng = 2.
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