
The Ramanujan Journal (2022) 58:463–489
https://doi.org/10.1007/s11139-021-00436-5

Inequalities between overpartition ranks for all moduli

Alexandru Ciolan1

Received: 20 November 2020 / Accepted: 19 March 2021 / Published online: 15 May 2021
© The Author(s) 2021

Abstract
In this paper we give a full description of the inequalities that can occur between
overpartition ranks modulo c ≥ 2. If N (a, c, n) denotes the number of overpartitions
of n with rank congruent to a modulo c,we prove that for any c ≥ 7 and 0 ≤ a < b ≤⌊ c
2

⌋
we have N (a, c, n) > N (b, c, n) for n large enough. That the sign of the rank

differences N (a, c, n) − N (b, c, n) depends on the residue class of n modulo c in the
case of small moduli, such as c = 6, is known due to the work of Ji et al. (J Number
Theory 184:235–269, 2018) and Ciolan (Int J Number Theory 16(1):121–143, 2020).
We show that the same behavior holds for c ∈ {2, 3, 4, 5}.

Keywords Asymptotics · Circle method · Dyson’s rank · Kloosterman sums ·
Overpartitions · Rank inequalities

Mathematics Subject Classification 11P72 · 11P76 · 11P82

1 Introduction and statement of results

1.1 Dyson’s rank

In his attempt to find a combinatorial interpretation of the famous congruences

p(5n + 4) ≡ 0 (mod 5),

p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11)

discovered by Ramanujan [22] for p(n), the number of partitions of n, Dyson [15]
introduced the rank of a partition, often referred to as Dyson’s rank, which is defined
to be the largest part of the partition minus the number of its parts. As shown by Atkin
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and Swinnerton-Dyer [6], the rank would indeed explain the congruences modulo 5
and 7, but not those modulo 11. To justify the latter congruences, Dyson conjectured
the existence of another partition statistic, called the crank. Some forty years later,
Andrews and Garvan [2] found the right definition of the crank and proved that it
simultaneously explains all the three congruences. Dyson [15] conjectured that the
rank is equidistributed modulo 5 and 7, i.e., that for 0 ≤ s ≤ 4 and 0 ≤ t ≤ 6 we have

N (s, 5, 5n + 4) = p(5n + 4)

5
,

N (t, 7, 7n + 5) = p(7n + 5)

7
,

where N (a, c, n)denotes the number of partitions ofn with rank congruent toa modulo
c. Atkin and Swinnerton-Dyer [6] proved this claim by computing for � ∈ {5, 7} the
generating functions associated to every rank difference N (s, �, �n+d)−N (t, �, �n+
d), with 0 ≤ d, s, t < �. While many of these turned out to be non-trivially zero,
others were shown to be infinite products or generalized Lambert series related to
Ramanujan’s third ordermock theta functions.Analogous, yetmore technical formulas
were found by Atkin and Hussain [5] for � = 11.

It is not surprising that this generated a great amount of interest in studying rank
differences and rank inequalities for other moduli. In this regard, we have the inequal-
ities

N (0, 2, 2n) < N (1, 2, 2n) if n ≥ 1,

N (0, 4, n) > N (2, 4, n) if n > 26 and n ≡ 0, 1 (mod 4),

N (0, 4, n) < N (2, 4, n) if n > 26 and n ≡ 2, 3 (mod 4),

found in [3] and [19] by Andrews and Lewis, who also conjectured that

N (0, 3, n) < N (1, 3, n) if n ≡ 0, 2 (mod 3),

N (0, 3, n) > N (1, 3, n) if n ≡ 1 (mod 3).
(1)

Bringmann [7] proved that the inequalities stated in (1) are indeed valid for all values
of n except n ∈ {3, 9, 21}, in which cases equality holds. Further, Bringmann and
Kane [8] proved that, for any odd c > 9 and for 0 ≤ a < b ≤ c−1

2 , we have

N (a, c, n) > N (b, c, n)

for n large enough. They also studied the sign of the rank differences N (a, c, n) −
N (b, c, n) for the moduli c = 5, 7 and 9, showing that this depends on the residue
class of n modulo c.
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Inequalities between overpartition ranks for all moduli 465

1.2 Overpartitions

By an overpartition of n we mean a partition in which the first occurrence of a part
may (or may not) be overlined, and by p(n) we denote the number of overpartitions
of n. To illustrate with an example, we have p(4) = 5, since the partitions of 4 are
given by

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1,

whereas p(4) = 14, since the overpartitions of 4 are

4, 4, 3 + 1, 3 + 1, 3 + 1, 3 + 1, 2 + 2, 2 + 2, 2 + 1 + 1,

2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1, 1 + 1 + 1 + 1.

The rank (also called D-rank) of an overpartition is defined in exactly the same
way as for partitions. We denote by N (m, n) the number of overpartitions of n with
rank m, and by N (a, c, n) the number of overpartitions of n with rank congruent to a
modulo c.

As opposed to Ramanujan’s congruences for the partition function, in the case of
overpartitions there are no congruences of the form p(�n+d) ≡ 0 (mod �) for primes
� ≥ 3. Therefore, the rank differences N (s, �, �n + d) − N (t, �, �n + d) provide a
measure of the extent to which the rank fails to produce such a congruence. As such,
trying to find the associated generating functions and, whenever possible, the sign of
these rank differences and the resulting inequalities, has turned into a vivid area of
recent research.

1.3 Motivation

Lovejoy and Osburn [21] found formulas for the rank differences N (s, �, �n + d) −
N (t, �, �n+d) in terms ofmodular functions and generalized Lambert series for � = 3
and � = 5, whereas Jennings-Shaffer [17] computed the rank differences for � = 7
using the result of Bringmann and Lovejoy [9] that the overpartition rank function
is the holomorphic part of a harmonic Maass form. More recently, Cui, Gu and Su
[14] computed the rank differences for � = 4 and � = 8, obtaining a few identities
and inequalities that were also independently formulated and proven in the current
paper, while Ji, Zhang and Zhao [18], and Wei and Zhang [23] computed the rank
differences for � = 6 and � = 10 by relating them to Ramanujan’s third and tenth
order mock theta functions. They also established a few inequalities and left several
others as conjectures, all of which were subsequently proven, with different methods,
by the author [10]. Some of them are simple inequalities between ranks, similar to (1),
such as

N (0, 3, n) > N (1, 3, n) if n ≡ 0, 1 (mod 3),

N (0, 3, n) < N (1, 3, n) if n ≡ 2 (mod 3),
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while others involve sums of ranks, e.g.,

N (0, 6, n) + N (1, 6, n) > N (2, 6, n) + N (3, 6, n),

N (0, 10, n) + N (1, 10, n) > N (4, 10, n) + N (5, 10, n).

1.4 Main results

To the best of our knowledge, no such inequalities have been found for moduli other
than � ∈ {6, 10} and, in some particular cases, � ∈ {4, 8}. In this paper we give a
complete characterization, for all moduli c ≥ 2, of the inequalities of the form

N (a, c, n) > N (b, c, n), (2)

with 0 ≤ a < b ≤ ⌊ c
2

⌋
. In light of the fact that N (a, c, n) = N (c −a, c, n), property

which can be easily deduced from N (m, n) = N (−m, n) (see, e.g., [20, Proposition
1.1]), it is enough to restrict our attention to the case when 0 ≤ a < b ≤ ⌊ c

2

⌋
, and

this is why we will indeed work under this assumption.
This is partly inspired by the results of Bringmann and Kane [8] on inequalities

between partition ranks, and comes to complete thework initiated in [10] by the author.
In contrast to [8] however, where only the case 2 � c was dealt with for partition ranks
N (a, c, n), here we are also able to treat the case when c is even.

As we will see in Theorem 1, the inequality (2) holds for all c ≥ 7 and n large
enough, while for 2 ≤ c ≤ 5, the only cases that were not treated by now and which
we study in Theorems 2–5, the sign of the inequality changes with the residue class
of n modulo c. In addition to the inequalities, we prove that some interesting results
hold for c ∈ {2, 4}.

If one might perhaps expect that the higher moduli are influenced by their smallest
prime divisors, which would then determine the sign of the rank difference, we will
show that this is not the case and we will explain the reason for which the inequalities
are not affected by the residue class modulo c for c ≥ 7 and n large enough. More
precisely, we prove the following.

Theorem 1 If c ≥ 7, there exists na,b,c depending on a, b, c such that

N (a, c, n) > N (b, c, n)

for 0 ≤ a < b ≤ ⌊ c
2

⌋
and for any n > na,b,c.

For the only moduli left to study, namely c ∈ {2, 3, 4, 5}, we prove that the following
results hold. The reader interested in the inequalities and identities proven for c = 6
can consult [10] and [18].

Theorem 2 For n ≥ 41 we have

N (0, 5, n) > N (1, 5, n) if n ≡ 0, 1, 3 (mod 5),

N (0, 5, n) < N (1, 5, n) if n ≡ 2, 4 (mod 5),
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Inequalities between overpartition ranks for all moduli 467

N (1, 5, n) > N (2, 5, n) if n ≡ 0, 2, 4 (mod 5),

N (1, 5, n) < N (2, 5, n) if n ≡ 1, 3 (mod 5),

N (0, 5, n) > N (2, 5, n) if n ≡ 0, 1, 3 (mod 5),

N (0, 5, n) < N (2, 5, n) if n ≡ 4 (mod 5),

N (0, 5, n) = N (2, 5, n) if n ≡ 2 (mod 5).

The values n ≤ 40 for which the inequalities stated in Theorem 2 do not hold are
given in the following table, accompanied by the corresponding exceptions.

Table 1 Exceptions for c = 5 n Exceptions

5, 35 N (0, 5, n) < N (1, 5, n)

8, 20, 25, 40 N (0, 5, n) = N (1, 5, n)

2 N (1, 5, n) > N (2, 5, n)

1, 10, 11, 15, 30 N (1, 5, n) = N (2, 5, n)

4, 5, 8, 9, 24 N (0, 5, n) = N (2, 5, n)

Theorem 3 For n ≥ 1 we have

N (0, 2, n) > N (1, 2, n) if n is odd,

N (0, 2, n) < N (1, 2, n) if n is even.

Theorem 4 For n ≥ 1 we have

N (0, 3, n) > N (1, 3, n) if n ≡ 0, 1 (mod 3),

N (0, 3, n) < N (1, 3, n) if n ≡ 2 (mod 3).

By computing rank differences for � = 4 and � = 8, Cui, Gu and Su [14] established
very recently1 a few identities and inequalities, see Theorems 1.2–1.5 in [14], most of
which also follow from Theorem 1 and the next result. However, while Theorem 1.5
in [14] gives several inequalities that hold modulo 8 for n in certain residue classes, it
does not capture the full behavior of the inequalities. This is answered by Theorem 1
of the current paper, applied to the case c = 8.

Theorem 5 For n ≥ 1 we have

N (0, 4, n) > N (1, 4, n) if n is odd,

N (0, 4, n) < N (1, 4, n) if n is even,

N (1, 4, n) < N (2, 4, n) if n is odd,

1 The author only became aware of [14] after the completion of the present paper, and shortly before its
submission. Any overlapping results are therefore to be seen as independent of one another.
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N (1, 4, n) > N (2, 4, n) if n is even,

and

N (0, 4, n) − N (2, 4, n) =
{
0 if n is not a square,

2 if n is a square.

Remark 1 The number na,b,c depends only on a, b, c and can be found after a finite
computation. We will make this precise in Sect. 4.

Remark 2 The inequalities from Theorems 1, 2 and 4 also shed light on the signs of
the coefficients of the rank differences found for � ∈ {3, 4, 5, 7, 8} in [14], [17] and
[21]. A study of rank inequalities based on q-series expansions was done in [18] for
� ∈ {6, 10}, but this was only possible in the case of some fairly simple expressions
for which it is not difficult to conclude, say, that the coefficients are all positive (see,
e.g., the proof of [18, Theorem 1.4]). However, this is also the reason for which other
inequalities cannot be proven with that approach. For � ∈ {3, 4, 5, 7, 8}, the rank
differences are written as sums of various quotients of infinite products, and the sign
of the coefficients of these rather complicated q-series expansions (see Theorems 1.3–
1.4 of [14], Theorem 1.1 of [17], or Theorems 1.1–1.2 in [21]) can generally not be
guessed a priori.

Remark 3 The identity N (0, 5, n) = N (2, 5, n) for n ≡ 2 (mod 5) does not follow
from our theorem, but it was already proven by Lovejoy and Osburn, see eq. (12) from
[21, Theorem 1.2]. Nevertheless, we include it here for completeness.

Remark 4 There is no way to deduce any of the inequalities listed in Theorem 2 simply
by adding, say, the inequalities between ranks modulo 10 obtained in [10, Theorem
2]. In fact, this is impossible, in general, precisely because of (2) and the fact that
N (a, c, n) = N (c − a, c, n).

Remark 5 Theorem 3 shows that the sign of the rank difference N (0, 2, n)−N (1, 2, n)

alternateswith the parity ofn.Asimilar result holds (see [11] and [12]) for pr (0, 2, n)−
pr (1, 2, n), where pr (a, m, n) denotes the number of partitions of n into r -th powers
that have a number of parts congruent to a modulo m.

1.5 Overview

Our work relies heavily on the results established in [10], and the general approach
that we follow is, to some extent, similar to what was done in the case of partition ranks
by Bringmann and Kane [8]. Therefore, although the current paper is self-contained
and may be read independently, the reader is warmly invited to consult these two
references.

The paper is structured as follows. In Sect. 3 we describe the main ideas of the
proof of Theorem 1, which we give in Sect. 4, together with the proofs of Theorems
2–5. In order to explain the general strategy, we need to introduce some notation and
recall the results of [10], and this we do in Sect. 2.
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Inequalities between overpartition ranks for all moduli 469

2 Preliminaries

2.1 Rank generating functions

Before being able to fully explain our approach, we need a few preparatory steps. We
begin by recalling that, if q = e2π i z, with z ∈ C and Im(z) > 0, the overpartition
generating function (see, e.g., [13]) is given by

P(q) :=
∑

n≥0

p(n)qn = η(2z)

η2(z)
=

∞∏

n=1

1 + qn

1 − qn
= 1 + 2q + 4q2 + 8q3 + 14q4 + · · · ,

where

η(z) := q
1
24

∞∏

n=1

(1 − qn)

stands, as usual, for the Dedekind eta function. Further, we know from [20] that

O(u; q) :=
∞∑

n=0

∞∑

m=−∞
N (m, n)umqn = 1 +

∞∑

n=1

(−1)nq
1
2 n(n+1)

(uq, q/u)n

= (−q)∞
(q)∞

⎛

⎝1 + 2
∑

n≥1

(1 − u)(1 − u−1)(−1)nqn2+n

(1 − uqn)(1 − u−1qn)

⎞

⎠ ,

where for a, b ∈ C and n ∈ N ∪ {∞} we use the q-Pochhammer symbols

(a)n :=
n−1∏

r=0

(1 − aqr ),

(a, b)n :=
n−1∏

r=0

(1 − aqr )(1 − bqr ).

For 0 < a < c coprime positive integers and ζn = e
2π i

n the standard primitive n-th
root of unity, let

O
(a

c
; q
)

:= O (
ζ a

c ; q
) =

∞∑

n=0

A
(a

c
; n
)

qn .

The letters h and k will denote coprime positive integers throughout, with 0 ≤ h <

k. If k = 1, we set h = 0, this being the only instance when h = 0 is allowed. Let
k̃ = 0 if k is even, and k̃ = 1 if k is odd, and put k1 = k

(c,k)
, c1 = c

(c,k)
. Further, let

0 ≤ � < c1 and h′ ∈ Z be given by the congruences � ≡ ak1 (mod c1), respectively
hh′ ≡ −1 (mod k).
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470 A. Ciolan

Remark 6 From the fact that N (m, n) = N (−m, n) it easily follows that the coeffi-
cients A

( a
c ; q

)
are real.

2.2 Kloosterman sums

Recall that if

((x)) :=
{

x − 	x
 − 1
2 if x ∈ R \ Z,

0 if x ∈ Z,

and

Sh,k :=
k−1∑

μ=0

((μ

k

))((hμ

k

))

is the so-called Dedekind sum, then

ωh,k := exp(π i Sh,k)

is the multiplier that appears in the transformation of the partition function; see, e.g.,
[1, Chapter 5].

In what follows, we will make use of several Kloosterman-type sums, which we
define below. Here and throughout, by

∑′
h we always indicate summation over the

integers 0 ≤ h < k that are coprime to k.

If c | k, let

Aa,c,k(n, m) := (−1)k1+1 tan
(πa

c

) ∑′

h

ω2
h,k

ωh,k/2
· cot

(
πah′

c

)

·e− 2π ih′a2k1
c · e

2π i
k (nh+mh′),

and

Ba,c,k(n, m) := − 1√
2
tan

(πa

c

) ∑′

h

ω2
h,k

ω2h,k
· 1

sin
(

πah′
c

) · e− 2π ih′a2k1
c · e

2π i
k (nh+mh′).

If c � k and 0 < �
c1

≤ 1
4 , let

Da,c,k(n, m) := 1√
2
tan

(πa

c

) ∑′

h

ω2
h,k

ω2h,k
· e

2π i
k (nh+mh′),
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Inequalities between overpartition ranks for all moduli 471

and if c � k and 3
4 < �

c1
< 1, let

Da,c,k(n, m) := − 1√
2
tan

(πa

c

) ∑′

h

ω2
h,k

ω2h,k
· e

2π i
k (nh+mh′).

Finally, if c � k, set

δc,k,r :=

⎧
⎪⎪⎨

⎪⎪⎩

1
16 − �

2c1
+ �2

c21
− r �

c1
if 0 < �

c1
≤ 1

4 ,

0 if 1
4 < �

c1
≤ 3

4 ,

1
16 − 3�

2c1
+ �2

c21
+ 1

2 − r
(
1 − �

c1

)
if 3

4 < �
c1

< 1,

and

ma,c,k,r :=

⎧
⎪⎪⎨

⎪⎪⎩

− 1
2c21

(2(ak1 − �)2 + c1(ak1 − �) + 2rc1(ak1 − �)) if 0 < �
c1

≤ 1
4 ,

0 if 1
4 < �

c1
≤ 3

4 ,

− 1
2c21

(2(ak1 − �)2 + 3c1(ak1 − �) − 2rc1(ak1 − �) − c21(2r − 1)) if 3
4 < �

c1
< 1.

2.3 Modular transformations

If b
c ∈ (0, 1) \ { 12

}
, define

s(b, c) :=

⎧
⎪⎨

⎪⎩

0 if 0 < b
c ≤ 1

4 ,

1 if 1
4 < b

c ≤ 3
4 ,

2 if 3
4 < b

c < 1,

and t(b, c) :=
{
1 if 0 < b

c < 1
2 ,

3 if 1
2 < b

c < 1.

For reasons of space, we will write s = s(b, c) and t = t(b, c). If 0 < a < c are
coprime with c > 2, let

U
(a

c
; q
)

= U
(a

c
; z
)

:= η
( z
2

)

η2(z)
sin

(πa

c

)∑

n∈Z

(1 + qn)qn2+ n
2

1 − 2 cos
( 2πa

c

)
qn + q2n

,

U(a, b, c; q) = U(a, b, c; z) := η
( z
2

)

η2(z)
e

π ia
c

(
4b
c −1−2s

)

q
sb
c + b

2c − b2

c2
∑

m∈Z

q
m
2 (2m+1)+ms

1 − e− 2π ia
c qm+ b

c

,

V (a, b, c; q) = V(a, b, c; z) := η
( z
2

)

η2(z)
e

π ia
c

(
4b
c −1−2s

)

q
sb
c + b

2c − b2

c2

×
∑

m∈Z

q
m(2m+1)

2 +ms
(
1 + e− 2π ia

c qm+ b
c
)

1 − e− 2π ia
c qm+ b

c

,

O (a, b, c; q) = O(a, b, c; z)
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472 A. Ciolan

:= η(2z)

η2(z)
e

π ia
c

(
4b
c −1−t

)

q
tb
2c + b

2c − b2

c2
∑

m∈Z

(−1)m q
m
2 (2m+1)+ mt

2

1 − e− 2π ia
c qm+ b

c

,

V
(a

c
; q
)

= V
(a

c
; z
)

:= η(2z)

η2(z)
q

1
4
∑

m∈Z

qm2+m
(
1 + e− 2π ia

c qm+ 1
2
)

1 − e− 2π ia
c qm+ 1

2

,

and consider the Mordell-type integral

Ia,c,k,ν :=
∫

R

e− 2π zx2
k Ha,c

(
2π iν

k
− 2π zx

k
− k̃π i

2k

)
dx,

where ν ∈ Z, k ∈ N and k̃ are as defined in Sect. 2.1, and

Ha,c(x) := ex

1 − 2 cos
( 2πa

c

)
ex + e2x

.

Using Poisson summation, Bringmann and Lovejoy [9] proved the following trans-
formation laws.

Theorem 6 [9] Assume the previously introduced notation and let q = e
2π i

k (h+i z) and

q1 = e
2π i

k

(
h′+ i

z

)

, with z ∈ C and Re(z) > 0.

(1) If c | k and 2 | k, then

O
(a

c
; q
)

= (−1)k1+1i · e− 2πa2h′k1
c · tan

(πa

c

)

· cot
(

πah′

c

)
ω2

h,k

ωh,k/2
z− 1

2 · O
(

ah′

c
; q1

)

+4 sin2
(

πa
c

) · ω2
h,k

ωh,k/2 · k
z− 1

2

k−1∑

ν=0

(−1)νe− 2π ih′ν2
k · Ia,c,k,ν(z).

(2) If c | k and 2 � k, then

O
(a

c
; q
)

= −√
2i · e

π ih′
8k − 2π ia2h′k1

c · tan
(πa

c

) ω2
h,k

ω2h,k
z− 1

2 · U
(

ah′

c
; q1

)

+4
√
2 sin2

(
πa
c

) · ω2
h,k

ω2h,k · k
z− 1

2

k−1∑

ν=0

e− π ih′
k (2ν2−ν) · Ia,c,k,ν(z).

(3) If c � k, 2 | k and c1 �= 2, then

O
(a

c
; q
)

= 2e
− 2π ia2h′k1

c1c · tan
(πa

c

) ω2
h,k

ωh,k/2
z− 1

2
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×(−1)c1(�+k1) · O
(

ah′, �c

c1
, c; q1

)

+4 sin2
(

πa
c

) · ω2
h,k

ωh,k/2 · k
z
1
2

k−1∑

ν=0

(−1)νe− 2π ih′ν2
k · Ia,c,k,ν(z).

(4) If c � k, 2 | k and c1 = 2, then

O
(a

c
; q
)

= e− π ia2h′k1
c · tan

(πa

c

) ω2
h,k

ωh,k/2 · k
z− 1

2 · V
(

ah′

c
; q1

)

+4 sin2
(

πa
c

) · ω2
h,k

ωh,k/2 · k
z
1
2

k−1∑

ν=0

(−1)νe− 2π ih′ν2
k · Ia,c,k,ν(z).

(5) If c � k, 2 � k and c1 �= 4, then

O
(a

c
; q
)

= √
2e

π ih′
8k − 2π ia2h′k1

c1c · tan
(πa

c

) ω2
h,k

ω2h,k
z− 1

2 · U
(

ah′, �c

c1
, c; q1

)

+4
√
2 sin2

(
πa
c

) · ω2
h,k

ω2h,k · k
z
1
2

k−1∑

ν=0

e− π ih′
k (2ν2−ν) · Ia,c,k,ν(z).

(6) If c � k, 2 � k and c1 = 4, then

O
(a

c
; q
)

= e
π ih′
8k − 2π ia2h′k1

c1c · tan
(πa

c

) ω2
h,k√

2 · ω2h,k
z− 1

2 · V
(

ah′, �c

c1
, c; q1

)

+4
√
2 sin2

(
πa
c

) · ω2
h,k

ω2h,k · k
z
1
2

k−1∑

ν=0

e− π ih′
k (2ν2−ν) · Ia,c,k,ν(z).

2.4 Circle method

By Cauchy’s Theorem, for any n ≥ 1 we have

A
(a

c
; n
)

= 1

2π i

∫

C
O ( a

c ; q
)

qn+1 dq,

where C is the circle of radius e− 2π
n parametrized by q = e− 2π

n +2π i t , for t ∈ [0, 1],
from which we further get

A
(a

c
; n
)

=
∫ 1

0
O
(a

c
; e− 2π

n +2π i t
)

· e2π−2π int dt .
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If h1
k1

< h
k < h2

k2
are adjacent Farey fractions in the Farey sequence of order N = 	√n
,

we set

ϑ ′
h,k := 1

k(k1 + k)
and ϑ ′′

h,k := 1

k(k2 + k)
.

Splitting the path of integration along the Farey arcs −ϑ ′
h,k ≤ Φ ≤ ϑ ′′

h,k, where

Φ = t − h
k and 0 ≤ h < k ≤ N with (h, k) = 1, we have

A
(a

c
; n
)

=
∑

h,k

e− 2π inh
k

∫ ϑ ′′
h,k

−ϑ ′
h,k

O
(a

c
; e

2π i
k (h+i z)

)
· e

2πnz
k dΦ, (3)

where z = k
n − kΦi . Applying Theorem 6 to (3), we can now express

A
(a

c
; n
)

= i tan
(πa

c

) ∑

h,k
2|k, c|k

ω2
h,k

ωh,k/2
(−1)k1+1 cot

(
πah′

c

)
e− 2π ia2h′k1

c − 2π inh
k

∫ ϑ ′′
h,k

−ϑ ′
h,k

z− 1
2 e

2πnz
k O

(
ah′

c
; q1

)
dΦ

− √
2i tan

(πa

c

) ∑

h,k
2�k, c|k

ω2
h,k

ω2h,k
e

π ih′
8k − 2π ia2h′k1

c − 2π inh
k

∫ ϑ ′′
h,k

−ϑ ′
h,k

z− 1
2 e

2πnz
k U

(
ah′

c
; q1

)
dΦ

+ 2 tan
(πa

c

) ∑

h,k
2|k, c�k, c1 �=2

ω2
h,k

ωh,k/2
(−1)c1(�+k1)e

− 2π ia2h′k1
c1c − 2π inh

k

×
∫ ϑ ′′

h,k

−ϑ ′
h,k

z− 1
2 e

2πnz
k O

(
ah′, �c

c1
, c; q1

)
dΦ

+ tan
(πa

c

) ∑

h,k
2|k, c�k, c1=2

ω2
h,k

ωh,k/2
e− π ia2h′k1

c − 2π inh
k

∫ ϑ ′′
h,k

−ϑ ′
h,k

z− 1
2 e

2πnz
k V

(
ah′

c
; q1

)
dΦ

+ √
2 tan

(πa

c

) ∑

h,k
2�k, c�k, c1 �=4

ω2
h,k

ω2h,k
e

π ih′
8k − 2π ia2h′k1

c1c − 2π inh
k

×
∫ ϑ ′′

h,k

−ϑ ′
h,k

z− 1
2 e

2πnz
k U

(
ah′, �c

c1
, c; q1

)
dΦ

+ 1√
2
tan

(πa

c

) ∑

h,k
2�k, c�k, c1=4

ω2
h,k

ωh,k/2
e

π ih′
8k − 2π ia2h′k1

c1c − 2π inh
k
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×
∫ ϑ ′′

h,k

−ϑ ′
h,k

z− 1
2 e

2πnz
k V

(
ah′, �c

c1
, c; q1

)
dΦ

+ 4 sin2
(πa

c

)∑

h,k
2|k

ω2
h,k

ωh,k/2 · k
e− 2π inh

k

×
k−1∑

ν=0

(−1)νe− 2π ih′ν2
k

∫ ϑ ′′
h,k

−ϑ ′
h,k

z
1
2 e

2πnz
k Ia,c,k,ν(z)dΦ

+ 4
√
2 sin2

(πa

c

)∑

h,k
2�k

ω2
h,k

ω2h,k · k
e− 2π inh

k

×
k−1∑

ν=0

e− π ih′
k (2ν2−ν)

∫ ϑ ′′
h,k

−ϑ ′
h,k

z
1
2 e

2πnz
k Ia,c,k,ν(z)dΦ

=:
∑

1

+
∑

2

+
∑

3

+
∑

4

+
∑

5

+
∑

6

+
∑

7

+
∑

8

.

2.5 Asymptotics for the coefficients A
( a
c ; n

)

As explained in [10], a careful investigation shows that only the sums
∑

2 and
∑

5
contribute asymptotically, while all the others are seen to be of order O(nε), for any
given ε > 0. Consequently, we have the following.

Theorem 7 [10] If 0 < a < c are coprime positive integers and ε > 0 is arbitrary,
then

A
(a

c
; n
)

= i

√
2

n

∑

1≤k≤√
n

c|k, 2�k

Ba,c,k(−n, 0)√
k

· sinh
(

π
√

n

k

)

+ 2

√
2

n

∑

1≤k≤√
n

c�k, 2�k, c1 �=4
r≥0, δc,k,r >0

Da,c,k(−n, ma,c,k,r )√
k

· sinh
(
4π
√

δc,k,r n

k

)

+ Oc(n
ε).

Remark 7 One can easily note that Ba,c,k ∈ iR and Da,c,k ∈ R. The latter follows
from the fact that Da,c,k is defined by the same summatory formula as Da,c,k, but taken
over −h instead, while the former is a consequence of the same argument combined
with the fact that the factor sin

(
πah′

c

)−1 enters now every summand.

Remark 8 As pointed out in [10, p. 5], in evaluating the sums Ba,c,k and Da,c,k from
Theorem 7, the integer h′ is always taken to be even, cf. Bringmann and Lovejoy [9,
pp. 14–15].
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3 Strategy of the proof

In this section we will sketch the main ideas of the proof of Theorem 1. To this end,
we believe it is in the benefit of the reader interested to consult [8] to keep the notation
used there.

Recall that, as explained inSect. 1.3, due to the fact that N (a, c, n) = N (c−a, c, n),

we do not restrict the generality by assuming that 0 ≤ a < b ≤ ⌊ c
2

⌋
.

3.1 Orthogonality relation

From the orthogonality of the roots of unity, it follows that

∞∑

n=0

N (a, c, n)qn = 1

c

∞∑

n=0

p(n)qn + 1

c

c−1∑

j=1

ζ
−aj
c · O(ζ

j
c ; q). (4)

Combining identity (4) with the fact that N (a, c, n) = N (c − a, c, n), we obtain

∞∑

n=0

(N (a, c, n) − N (b, c, n))qn = 2

c

c−1
2∑

j=1

ρ j (a, b, c)O(ζ
j

c ; q)

= 2

c

c−1
2∑

j=1

ρ j (a, b, c)
∞∑

n=0

A

(
j

c
; q

)
qn (5)

if 2 � c, and

∞∑

n=0

(N (a, c, n) − N (b, c, n))qn

= 2

c

c−2
2∑

j=1

ρ j (a, b, c)O(ζ
j

c ; q) + ((−1)a − (−1)b)O(−1; q)

= 2

c

c−2
2∑

j=1

ρ j (a, b, c)
∞∑

n=0

A

(
j

c
; q

)
qn + ((−1)a − (−1)b)

∞∑

n=0

O
(
1

2
; q

)
qn (6)

if 2 | c, where

ρ j (a, b, c) := cos

(
2πaj

c

)
− cos

(
2πbj

c

)
.

Before moving forward, a remark is in order, namely that in the summations carried
over j in the identities (4)–(6), we need to replace j and c by j ′ = j

(c, j) and c′ = c
(c, j) .
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As such, whenever (c, j) > 1, the statement of Theorem 7 applies, instead, to the
coefficients A

( j ′
c′ ; q

)
.

3.2 Asymptotical contributions

Let us only focus for now on the case when c is odd, as the other case will be treated
in essentially the same manner. For simplicity, we can further assume that c is prime.
As explained in [8], and as it will also become clear in the course of our proof, this
assumption does not restrict the generality and it will only lead to slightly different
bounds when estimating the error terms (which we do explicitly in the next section),
without affecting the main result whatsoever. Coming back to our problem, let us write

N (a, c, n) − N (b, c, n) =
c−1
2∑

j=1

(S j (a, b, c) + Tj (a, b, c)) + Oc(n
ε),

where

S j (a, b, c) := 2ρ j (a, b, c)i

√
2

n

∑

1≤k≤√
n

c|k, 2�k

B j,c,k(−n, 0)

c
√

k
· sinh

(
π

√
n

k

)

and

Tj (a, b, c) := 4ρ j (a, b, c)

√
2

n

∑

1≤k≤√
n

c�k, 2�k, c1 �=4
r≥0, δc,k,r >0

D j,c,k(−n, m j,c,k,r )

c
√

k

· sinh
(
4π
√

δc,k,r n

k

)

.

Now, if we can identify the term that gives the main contribution to the sums on S j

and Tj , and if this term has a positive coefficient, then we are done. Indeed, we will
shortly see that for c ≥ 7 the main contribution can only come from the term in T1
corresponding to k = 1 and r = 0, in which case D1,c,1 = 1 and ρ1(a, b, c) > 0 for
any 0 ≤ a < b ≤ c−1

2 . Proving that a value na,b,c exists, beyond which (2) always
holds, is then only a matter of carefully bounding some error terms. Our proof will
also explain why, for the small moduli c ≤ 6, the sign of the inequalities might depend
on the residue class of n modulo c.
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4 Proofs of themain results

In the way described in the previous section, we start by giving the proof of Theorem 1.
The proof of Theorem2will then be nothingmore than a computation,while Theorems
3–5 will follow fairly easily.

Proof (of Theorem 1) We distinguish two cases, and we first treat the case when c ≥ 7
is odd.
Case 1: 2 � c. Without restricting generality, assume that c is prime. While this
assumption does not affect the result, it also simplifies our task, in that we do not have
to worry about possible common divisors of c and j, and so we do not need to pass
down to j ′ or c′ (if anything, this would just make the notation more cumbersome and
lead to slightly different estimates for the error terms, but the conclusion is essentially
the same). As already seen, we have

N (a, c, n) − N (b, c, n) =
c−1
2∑

j=1

(S j (a, b, c) + Tj (a, b, c)) + Oc(n
ε),

where

S j (a, b, c) = 2ρ j (a, b, c)i

√
2

n

∑

1≤k≤√
n

c|k, 2�k

B j,c,k(−n, 0)

c
√

k
· sinh

(
π

√
n

k

)
(7)

and

Tj (a, b, c) = 4ρ j (a, b, c)

√
2

n

∑

1≤k≤√
n

c�k, 2�k, c1 �=4
r≥0, δc,k,r >0

D j,c,k(−n, m j,c,k,r )

c
√

k
·sinh

(
4π
√

δc,k,r n

k

)

.

(8)

4.1 Determining the dominant terms

Knowing that the error term from Theorem 7 is of order O(nε), we only need to
identify what is the main contribution coming from the sums S j and Tj . For this, we
first compare the arguments of the hyperbolic sines appearing in (7) and (8). In S j , the

main term occurs for k = c, giving sinh
(

π
√

n
c

)
as the main hyperbolic sine argument,

whereas in Tj it is given by k = 1, in which case we have k1 = 1 and c1 = c, and thus
the condition � ≡ jk1 (mod c) yields � = j .Due to symmetry reasons, we can assume
that �

c ≤ 1
4 , and hencewe compute δc,k,r = δc,1,r = ( j

c − 1
4

)2−r �
c1

,with r ≥ 0,which

is maximized by δc,1,0 = ( j
c − 1

4

)2 for r = 0. Running over j, the maximum value is
obviously attained for j = 1,which gives sinh

(
π

√
n
(
1 − 4

c

))
as the main hyperbolic
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sine term.We only need tomake sure that D1,c,1(−n, 0) �= 0, but this is clear since, for
k = 1, r = 0 and any j,we easily see that D j,c,k(−n, m j,c,k,r ) = D j,c,1(−n, 0) = 1.
Now, since

1 − 4

c
= c − 4

c
>

1

c

for any c ≥ 7 (in fact, for any c ≥ 6), we conclude that the term which gives the main
contribution equals

T1(a, b, c) = 4

c
√

n
tan

(π

c

)
ρ1(a, b, c) sinh

(
π

√
n

(
1 − 4

c

))
, (9)

and this is positive for all 0 ≤ a < b ≤ c−1
2 .

In order to infer that the inequality (2) holds for n sufficiently large, we only need
to prove that the contribution of the other terms entering the expressions of S j and Tj

is asymptotically smaller than T1(a, b, c), and this is what we will do next.

4.2 Bounding the contributions of Sj and Tj

We first consider S j , for which we have the estimate

|S j (a, b, c)| ≤ 2
√
2|ρ j (a, b, c)|

c
√

n

∑

1≤k≤√
n

c|k, 2�k

|B j,c,k(−n, 0)|√
k

· sinh
(

π
√

n

k

)

≤ 2
√
2|ρ j (a, b, c)|

c
√

n

∣∣∣∣tan
(

π j

c

)∣∣∣∣ sinh
(

π
√

n

c

)

×
∑

1≤k≤√
n

c|k, 2�k

k− 1
2
∑′

h

1
∣
∣sin

(
πh
c

)∣∣ .

We bound the innermost sum using the estimate

∑′

h

1
∣
∣sin

(
πh
c

)∣∣ ≤ 2k

c

c−1
2∑

h=1

1
∣
∣sin

(
πh
c

)∣∣ ≤ 2k

π

c−1
2∑

h=1

1

h
(
1 − π2

24

) ≤ 2k
(
1 + log

( c−1
2

))

π
(
1 − π2

24

) ,

where the first inequality follows from the fact that c ≤ k (because by assumption
c | k), the second from the inequality | sin x | ≥ x − x3

6 , and the third from the
well-known bound for the harmonic series. This gives further

|S j (a, b, c)| <
4
√
2|ρ j (a, b, c)|

c
√

n

∣∣ tan
(π j

c

)∣∣ (1 + log
( c−1

2

))

π
(
1 − π2

24

)
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× sinh

(
π

√
n

c

) ∑

1≤k≤√
n

c|k, 2�k

√
k

<
16 cot

(
π
2c

) (
1 + log

( c−1
2

))

c2π
(
1 − π2

24

) n
3
4 sinh

(
π

√
n

c

)
,

where we used the Cauchy–Schwarz inequality to bound the sum over k.
We next explicitly estimate the error coming from Tj . We have to look at the terms

with k ≥ 2 and at those that have k = 1, but are different than the main term. For this,
we trivially bound

|D j,c,k | ≤ k√
2
tan

(
π j

c

)
.

For k ≥ 2, the argument of the hyperbolic sine is at most half that of the main term,
namely

sinh

(
π

√
n

(
1

2
− 2

c

))
.

Next, note that the number of r ’s satisfying δc,k,r > 0 is decreasing as a function of
�, and thus attains its maximum at � = 1, in which case it equals

⌊
c1
16

− 1

2
+ 1

c1

⌋
<

c + 8

16
,

and therefore the contribution coming from k ≥ 2 can be estimated against

c + 8

2c
√

n
n

3
4 cot

( π

2c

)
sinh

(
π

√
n

(
1

2
− 2

c

))
<

c + 8

4c
√

n
n

3
4 cot

( π

2c

)
e
π

√
n
(
1
2− 2

c

)

.

(10)
Finally, the terms with k = 1 have j ≥ 2. But k = 1 implies k1 = 1, and so
� = j ≥ 2, which then means that the contribution coming from these terms can be
estimated against

c + 8

2c
√

n
cot

( π

2c

)
sinh

(
π

√
n

(
1 − 8

c

))
<

c + 8

4c
√

n
cot

( π

2c

)
e
π

√
n
(
1− 8

c

)

. (11)

On comparing (10) and (11) with the main term T1(a, b, c) from (9), we conclude this
part of the proof. What is left to do is to make the error term explicit and bound it in
an optimal way. We do so after discussing the case when c is even.
Case 2: 2 | c. In this case, we have

∞∑

n=0

(N (a, c, n) − N (b, c, n))qn
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= 2

c

c−2
2∑

j=1

ρ j (a, b, c)O(ζ
j

c ; q) + ((−1)a − (−1)b)O(−1; q).

As explained in the proof of Corollary 1 from [10, p. 22], the coefficients of
O(−1; q), which is the holomorphic part of a harmonic Maass form of weight 3/2,
are of order O(nε). Therefore, we can ignore them from our analysis, since the main
contribution will come from the sum over j .

We continue by noting that, since c is even, the terms B j,c,k do not contribute to
the sum, hence

∞∑

n=0

(N (a, c, n) − N (b, c, n))qn = 2

c

c−2
2∑

j=1

Tj (a, b, c) + O(nε),

where

Tj (a, b, c) = 4ρ j (a, b, c)

√
2

n

∑

1≤k≤√
n

c�k, 2�k, c1 �=4
r≥0, δc,k,r >0

D j,c,k(−n, m j,c,k,r )

c
√

k

× sinh

(
4π
√

δc,k,r n

k

)

.

The term corresponding to j = 1 and k = 1 gives sinh
(
π

√
n
(
1 − 4

c

))
asmaximum

argument. For any other j (which might now have common divisors with c), set
j ′ = j

(c, j) and c′ = c
(c, j) . From the congruence j ′k1 ≡ � (mod c′

1) we see that any
value c′

1 ≤ 4 will give δc′,k,r = 0, and hence there can be no hyperbolic sine argument
contributing. For c′

1 > 4, it is then easy to see that δc′,k,r is maximized by k = 1,
which in turn forces k1 = 1 and c′

1 = c′.The hyperbolic sine termwill then be given by

sinh
(
π

√
n
(
1 − 4 j ′

c′
))

= sinh
(
π

√
n
(
1 − 4 j

c

))
, and this is smaller than the leading

term for any j ≥ 2.
We can now conclude the proof in this case by arguing in the following way. Pick

any j ≥ 2. If c′ is even, then we are done, as the maximum possible contribution
would be

sinh

(
π

√
n

(
1 − 4 j ′

c′
1

))
= sinh

(
π

√
n

(
1 − 4 j ′

c′

))
= sinh

(
π

√
n

(
1 − 4 j

c

))

≤ sinh

(
π

√
n

(
1 − 8

c

))
,

which is smaller than the main term. The only issue might appear when 2 � c′, as there
may then be another possible main term coming from the B j,c,k sum, namely the one
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containing sinh
(

π
√

n
c′
)

. In order to establish which one is bigger between these two,

we need to compare 1
c′ with 1 − 4

c . Since we have

1

c′ + 4

c
= j

c
+ 4

c
≤ 1

2
+ 1

2
= 1

for c ≥ 8, we are done.
What this shows is that for any c ≥ 7, regardless of whether c is even or odd, the

main contribution is always given by the term in (9). A separate study is required for
c ≤ 6, as then the hyperbolic sine arguments from the sum B j,c,k and D j,c,k might
coincide, and we need to explicitly evaluate their coefficients in order to establish
which one dominates asymptotically. As the case c = 6 has already been covered, one
only needs to study the cases c ∈ {2, 3, 4, 5}.

Next, we want to make explicit the error term appearing in Theorem 7. This would
ensure then the existence of a number na,b,c such that the inequalities hold for every
n > na,b,c.

4.3 Estimating the error terms

The analysis is a bit tedious, as the various sums give different types of errors and,
as such, we need to bound them in different ways. In some cases, the arguments are
similar to those from [8], while in some others we manage to simplify them and come
up with neater estimates. Certainly, and this might be an interesting question for a
minutious reader, our bounds can be improved.

As we do not want to repeat too much material here, we kindly invite the reader
to follow the steps presented in the proof of [10, Theorem 1]. This is essential in
understanding the following estimates.

4.3.1 Estimation of the error term arising from the Circle Method

For
∑

2, the error term, let us denote it by S2, comes from the two sums takenover r ≥ 1

in the expression for Ũ
(

ah′
c ; q1

)
from [10, p. 15]. Recall that we write z = k

n − kΦi .

Using well-known facts from the theory of Farey arcs, such as

Re(z) = k

n
, Re

(
1

z

)
>

k

2
, |z|− 1

2 ≤ n
1
2 · k− 1

2 and ϑ ′
h,k + ϑ ′′

h,k ≤ 2

k(N + 1)
,

we can bound the error term coming from
∑

2 by

S2 < 4e2π
√
2 cot

( π

2c

)∑

k

k− 1
2 ·
∑

r≥1

p(r)
(

e− (16r−1)π
16 + e− (16r+7)π

16

)

< 4c1e2π
√
2 cot

( π

2c

)∑

k

k− 1
2 ,
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where

c1 :=
∑

r≥1

p(r)
(

e− (16r−1)π
16 + e− (16r+7)π

16

)
.

In the same way we bound the error terms coming from the sums
∑

5 and
∑

6, which
we denote S5 and S6, by

S5 < c2e2π
√
2 cot

( π

2c

)∑

k

k− 1
2 ,

S6 <
c2e2π√

2
cot

( π

2c

)∑

k

k− 1
2 ,

where

c2 := 2
∑

r≥1

p(r)e
− (c2−8)πr

16c2 .

Now, for the sums
∑

1,
∑

3,
∑

4 we can argue similarly, and, denoting the error terms
by S1, S3, S4, respectively, we obtain

S1 < 4c3e2π cot
( π

2c

)∑

k

k− 1
2 ,

S3 < 2c4e2π cot
( π

2c

)∑

k

k− 1
2 ,

S4 < c5e2π cot
( π

2c

)∑

k

k− 1
2 ,

where

c3 :=
∑

r≥1

p(r)e−πr ,

c4 :=
∑

r≥1

p(r)e
− πr

2c2 ,

c5 :=
∑

r≥1

p(r)e− (2r+1)π
8 .

Remark 9 The fact that the sums entering the expressions of c1, . . . , c5 are convergent
follows from the well-known asymptotic estimate p(n) ∼ 1

8n eπ
√

n, which implies

p(n) � eπ
√

n; see, for instance, [16]. Therefore c1, . . . , c5 are indeed well-defined
positive constants.
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4.3.2 Estimates of the error terms
∑

7 and
∑

8 given by Mordell integrals

Note that Hj,c(x) = H+
j,c(x) + H−

j,c(x), where

H±
j,c = ± i

8 cosh
( x
2

)
sin

(
πa
c

)
sinh

( x
2 ± πa

c

) .

We can therefore split the sum just like in [8, pp. 937–938], and we denote the contri-
butions of these functions to I j,c,k,ν by I ±

j,c,k,ν . From the proof of [10, Lemma 1] we
obtain

z
1
2 I ±

j,c,k,ν ≤
√

k

8
√
2
∣∣ sin

(
πν
k − π

4k ± π j
c

)∣∣∣∣ sin
(π j

c

)∣∣(Re
( 1

z

)|z|) 12

≤
√

n

8
√

k
∣
∣ sin

(
πν
k − π

4k + πa
c

)∣∣
∣
∣ sin

(π j
c

)∣∣
.

Denoting

S±
a,c,k :=

k∑

ν=1

1
∣∣sin

(
πν
k − π

4k ± πa
c

)∣∣ ,

we have

S−
a,c,k ≤

k∑

ν=1

1
∣∣sin

(
πν
k − π

2k

)∣∣ =

⌊
k
2

⌋

∑

ν=1

1

sin
(

πν
k − π

2k

) +

⌊
k+1
2

⌋
−1

∑

ν=0

1

sin
(

πν
k + π

2k

)

<
k

π

⌊
k
2

⌋

∑

ν=1

1
(
ν − 1

2

) (
1 − 1

6

(
π
k

(⌊ k
2

⌋− 1
2

))2)

+ k

π

⌊
k+1
2

⌋
−1

∑

ν=0

1
(
ν + 1

2

) (
1 − 1

6

(
π
k

(⌊ k+1
2

⌋− 1
2

))2) <
2k log

( k
2

)

π
(
1 − π2

24

) ,

and a similar estimate for S+
a,c,k . We thus obtain

∑

7

≤ log
( k
2

)

2π
(
1 − π2

24

)
sin

(
π
c

)
∑

k

√
k <

n
3
4 log

( n
4

)

2π
(
1 − π2

24

)
sin

(
π
c

) ,

while a similar bound holds for
∑

8 .

123



Inequalities between overpartition ranks for all moduli 485

4.3.3 Symmetrizing the paths of integration

Such errors are only given by the sums that contribute to the main term, which are∑
2,
∑

5 and
∑

6 . As it can be seen in [10, p. 19], making the path of integration
symmetric leads to a Hankel-type integral that will give the main term, and an error
term arising from integrating over the remaining parts of the interval. This error is
what we estimate in what follows.

We decompose

∫ ϑ ′′
h,k

−ϑ ′
h,k

=
∫ 1

k N

− 1
k N

−
∫ − 1

k(k1+k)

− 1
k N

−
∫ 1

k N

1
k(k2+k)

and we want to estimate the contributions to the error terms from the last two integrals
in the same way as before, the only difference being that on these other parts of the
Farey intervals we have

Re(z) = k

n
, Re

(
1

z

)
< k and |z|2 ≥ k2

n2 .

In this way, we get that this contribution is less than

√
2e2π+ π

8 cot
( π

2c

)
n− 1

2
1 + log

( c−1
2

)

π
(
1 − π2

24

)
∑

k− 1
2 .

Now, since δc,k,r ≤ 1
16 , the exact same bounds (multiplied by 2 for

∑
5) hold for

∑
5

and
∑

6 .

4.3.4 Errors introduced by integrating along the smaller arc

This is very easy and goes along the same lines as in [8, p. 939]. The contribution to∑
2 is less than

2
√
2

(
4

3
+ 2

5
4

)
e2π+ π

8 cot
( π

2c

) 1 + log
( c−1

2

)

π
(
1 − π2

24

) n
1
4 ,

the precise same bounds (multiplied by 2 for
∑

5) being valid for
∑

5 and
∑

6 . Putting
together all these bounds, we complete the proof of Theorem 1. ��

More than the result in itself, the following is a perfect example of Theorem 1 at
play and it illustrates why the general reasoning fails for moduli c < 7.

Proof (of Theorem 2) As it can be readily seen, the argument of the leading hyperbolic

sine term is the same in the sums B1,5,5, B2,5,5 and D1,5,1, and equals sinh
(

π
√

n
5

)
.
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Therefore, to establish the sign of the rank difference N (a, 5, n)− N (b, 5, n),we need
to compute the leading coefficients of these terms. Without much effort, and making
use of several known properties of the Dedekind sums (see, e.g., [4, Chapter 3.7]), we
compute

i

√
2

n
B1,5,5(−n, 0) = 1√

5n
tan

(π

5

)
·

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if n ≡ 0 (mod 5),

3 + √
5 if n ≡ 1 (mod 5),

1 − √
5 if n ≡ 2 (mod 5),

−1 − √
5 if n ≡ 3 (mod 5),

−3 + √
5 if n ≡ 4 (mod 5),

and

i

√
2

n
B2,5,5(−n, 0) = 1√

5n
tan

(
2π

5

)
·

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if n ≡ 0 (mod 5),

4 if n ≡ 1 (mod 5),

−2 if n ≡ 2 (mod 5),

2 if n ≡ 3 (mod 5),

−4 if n ≡ 4 (mod 5),

while

2

√
2

n
D1,5,1(−n, 0) = 2√

n
tan

(π

5

)
.

Bounding the error terms as described before, a numerical check in Mathematica
shows that the result holds for all values n > 40, with the exceptions presented in
Table 1.

One should also note that, although our approach cannot establish identities, a
simple trigonometric computation shows that

(
1 + 1√

5

)(
1 − cos

(
4π

5

))
tan

(π

5

)
+ 1√

5

(
1 − cos

(
8π

5

))
tan

(
2π

5

)
= 0,

which means that the main asymptotic contributions of N (a, 5, 5n + d) and
N (b, 5, 5n+d) coincide and is, consequently, an indicationof the fact that N (a, 5, 5n+
d) = N (b, 5, 5n + d) holds a = 0, b = 2 and d = 2. This result was already proven
by Lovejoy and Osburn, see eq. (12) from [21, Theorem 1.2]. ��
Remark 10 For c = 6 we can also give an alternative proof to all the inequalities listed
in Theorem 1.2 from [18]. Indeed, we have

∞∑

n=0

(N (a, 6, n) − N (b, 6, n))qn
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= 1

3
ρ1(a, b, 6)O

(
1

6
; q

)
+ 1

3
ρ2(a, b, 6)O

(
1

6
; q

)
+ 1

6
O
(
1

2
; q

)

= 1

3
ρ1(a, b, 6)O

(
1

6
; q

)
+ 1

3
ρ2(a, b, 6)O

(
1

6
; q

)
+ O(nε),

where the second identity follows from the fact that O(−1; q) = O(nε), which we
recall from the discussion made in the proof of Theorem 1 for the case 2 | c. The main
contribution of the first term equals

ρ1(a, b, 6)A

(
1

6
; n

)
∼ 4

c
√

n
tan

(π

3

)(
cos

(πa

3

)
− cos

(
πb

3

))
sinh

(
π

√
n

3

)
,

while that of the second term equals

ρ2(a, b, 6)A

(
1

3
; n

)

∼

⎧
⎪⎪⎨

⎪⎪⎩

2

3
√

n
tan

(π

3

) (
cos

( 2πa
3

)− cos
( 2πb

3

))
sinh

(
π

√
n

3

)
if n ≡ 0, 1 (mod 3),

− 4

3
√

n
tan

(π

3

) (
cos

( 2πa
3

)− cos
( 2πb

3

))
sinh

(
π

√
n

3

)
if n ≡ 2 (mod 3).

Since for j = 2 the arguments appearing in ρ2(a, b, 6) are no longer in the interval
[0, π), on which the cosine function is decreasing, the inequalities now depend, addi-
tionally, on the values of a and b. While our line of reasoning cannot be used to prove
the identities from [18, Theorem 1.4], it clearly suggests that they should hold true, in
light of the fact that the main hyperbolic sines are equal. In passing, we also correct
Example 1 from [10], in which some misprints seem to have occurred, the correct
asymptotic values for A

( 1
3 ; n

)
being those given here. In particular, Theorem 4 is now

a straightforward consequence of these asymptotics.

Further, the proof of Theorem 3 follows on noting that from identity (4) we obtain

N (0, 2, n) − N (1, 2, n) = O(−1; q),

and on invoking the next result. The numerical check is in this case greatly simplified.

Lemma 1 The coefficients (other than the leading term) of the series

O(−1; q) = 1 + 2q − 4q2 + 8q3 − 10q4 + · · ·

are alternating in sign. What is the same, the coefficients (other than the leading term)
of the series

O(−1;−q) = 1 − 2q − 4q2 − 8q3 − 10q4 − · · ·

are negative.
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Proof Summing according to the largest part of the overpartition, we obtain, cf. eq.
(3.1) from [20],

O(z; q) = 1 + 2q + z−1
∞∑

n=1

(−q/z)n(zq)n(1 + zq)

(q/z)n
. (12)

Setting z = −1 and q �→ −q in (12), we have

O(−1;−q) = 1 − 2q −
∞∑

n=1

(−q)nqn(1 + q)

(q)n
= 1 − 2q −

∞∑

n=1

n∏

k=1

1 + qk

1 − qk
(1 + q)qn,

and it is clear that the coefficients of the sum subtracted on the right, expressed as a
q-series, are all positive. ��
Using the fact (see, e.g., the proof of Theorem 5.6 from [20, p. 330]) that

O(i; q) = 1 + 2
∑

n=1

qn2 ,

Theorem 5 becomes an easy exercise, which we leave to the interested reader (this
was also proven, by a different and independent approach, in [14]).
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