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Controlling turbulence in coupled map lattice systems using feedback techniques
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We report the suppression of spatiotemporal chaos observed in coupled map lattices. Suppression is
achieved using different feedback techniques, most of which are applicable to actual experimental situations.
Results from application of feedback control to a single chaotic eleifsémgle map are presented to dem-
onstrate similarities in the dynamical response of a single system and an extended system under the influence
of external feedbacK.S1063-651X97)04607-3

PACS numbds): 05.45+b

[. INTRODUCTION wheren is the discrete time step andis a lattice point {
=1,2, ...N=system size). We restrict ourselves to choos-
Suppression of the turbulent behavior observed in spaig periodic boundary conditions. The mapping function
tially extended nonlinear systems is of much practical inter{f(x) is chosen to be the logistic map described by
est. The growing interest in this field stems from the pioneer-
ing work done by Ott, Grebogi, and Yorké] in controlling fo0=(1-ax?). )
chaos. Since then chaos has been controlled in various e
perimental systemf2—7] using different control strategies
[8—10. These efforts have been naturally extended to try t
tame the complex dynamical behavior observed in distrib-
uted dynamical system41-14. This control of spatiotem- ll. CONTROLLING CHAQS IN A SINGLE MAP USING
poral chaos leading up to the control of turbulence is much SIMPLE FEEDBACK TECHNIQUES
more complicated due to the existence of numerous unstable | this section we apply two feedback techniques to con-

spatial modes, but, is more important too, because of its pogro| chaotic dynamics exhibited by a single logistic ni&g).
sible applications in plasma, laser devices, chemical, angh)]. Using the feedback control we were able to stabilize the

biological systems where both spatial and temporal deperixed point of the magcorresponding to the unstable period
dences need to be considered. In this paper, we propose Usne orbij.

ing feedback techniques to suppress turbulent behavior ob-
seryed_ ina one—dimensi'o.nal coupiled map_Iattice model with A. Feedback: (X, —X,_1)

periodic boundary conditions as first considered by Kaneko . ) ) ] . o
[15,16 and described briefly in Sec. II. In Sec. Il we imple- ~ This feedt_)ack is a discretized verS|on_0f the denvapve
ment two control strategies to stabilize a fixed pdizarre- ~ control techniqu¢17] used to suppress oscillatory dynamics
sponding to a period one solutipof a single logistic map.

These control strategiéSecs. Il A and 1l B when appro- 1.0
priately implemented to the extended systéBec. IV A

manifest striking similarity between the dynamical response

of a single map and an extended system. Results from imple- 05|
mentation of different global feedback techniques to the ex-
tended system are presented in Sec. IV B. Finally, in Sec. V
we compare and contrast the various control strategies used x oco [,
and discuss the possibility of application to experimental
situations.

The system parametex is fixed such that the single map
0exhibits chaotic dynamics.

-05 [

II. COUPLED MAP LATTICE MODEL

The coupled map lattice model used here to manifest the 10 v 2050 3050 050 =000
efficiency of feedback techniques to suppress turbulent be- ITERATION NUMBER
havior has the following diffusive couplingdl5,16]:
FIG. 1. Dynamical evolution of a single map with6a3000
Xns1()=(1—e)f(X,(i)) control and under the influence of controt8000) of the type as
discussed in Sec. lll A. The parametefor the map is 1.81 and the
+el[f (X (i+1)+ (X (i—1))], (1) control constanty=0.95.
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FIG. 3. Successful stabilization of the period-one fixed point of
the map &=1.81) using the control of the type in Sec. Il B. The
value of the control constant=0.86 was used to attain successful
0.5 stabilization.

B. Feedback: y(X,—Xg)

The feedback strategy used here is an adaptation of the
external force control technigu&8] applied to temporal sys-
tems, such as

0.0

CONTROL SIGNAL

-0.5

dx_ dx_
E—P(y,XHF(t) a—Q(y,X) (4)

10, 1000 2000 3000 4000 5000 . . .
(b) ITERATION NUMBER wherey is the output variable and vector describes the

remaining variables. From the time seriesygf), one can

FIG. 2. Successful stabilization of the period-two fixed point of identify [19] the various periodic signals of different forms
the map under the influence of the control of the type in Sec. Il A.Y=Yi(t), Yi(t+T;)=y;(t) corresponding to the different un-
(a) Shows the dynamical evolution of the system. The value of theStable periodic orbits. Herg; is the period of theth un-
control constant isy=0.6. Control is implemented subsequent to Stable orbit.F(t) in Eq. (4) is the superimposed feedback
iteration number 3000(b) Shows the nonvanishing control signal described by
of the same period.

FO=2yi(H)-y(®]. ®)

via stabilization of the previously unstable fixed points. Un-\y/hen applied to a single logistic map the above control

der the influence of the above mentioned control, the alteregtrategy is expressed as

dynamics of the logistic map are represented by

_ 2
X 1= (1= @XE) 4 y(Xg— Xy 1), @ XoeaZ (L7 =Xe), ©
Figure 3 represents the dynamical evolution of the system
without control(iteration <3000 and with control(iteration
Figure 1 shows the dynamical evolution of the system.>3000. The control signal upon successful stabilization

Before iteration number 3000, the system evolves chaoticallgoes to zero as the dynamics converge onto the target period-

and subsequently converges to the stabilized fixed point urbne orbit(fixed point of the mapXg). Similar to the results

der the influence of the control. Upon successful stabilizatiorjiscussed in the preceding subsection, by decreaging

of the period-one orbit the control signal goes to zero asyere able to stabilize the entire array of dynamical behavior

Xn=Xn-1- with a nonvanishing control signal.

As the value ofy was decreased we were able to stabilize

the whole array of dynamical behavior of increasing com- |\, sUPPRESSION OF TURBULENCE IN A COUPLED

plexity (period two, period four period eight.. ). How- MAP LATTICE SYSTEM

ever, the control signal for such stabilizations did not go to

zero. Figure 23) shows one such stabilization on the period- In this section we consider the extended syst&@0

two orbit beyond iteration number 3000. The nonvanishingcoupled mapswith periodic boundary conditions studied ex-

control signal is plotted in Fig.(®). This is not controlling tensively by Kanek$15,16 and mentioned briefly in Sec. II.

chaos in the pure sengas the control signal does not vanish The coupled map system exhibits turbulent dynamics for the

upon successful stabilizatipbut more like altering dynam- following parameter valuega=1.81 and e=0.08. The

ics via a nonvanishing feedback. implemented control strategies are presented in different sub-



56 CONTROLLING TURBULENCE IN COUPLED M& . .. 241

O O

O

& &

w wn

(@ TIME @ TIME
9 9
3 <

-1.0 ‘ ‘ . -1.0 ‘
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
ITERATION NUMBER (b) ITERATION NUMBER

(b)

FIG. 4. Control of the turbulent behavior via stabilizati fth FIG. 5. Stabilization of the periodic clustered state for the
- 4. Lontrol of e turbulent behavior via stabiiization of the coupled map lattice with the implementation of the control, as dis-

homerr‘eous state for a 100 coupled logistic maps using the CO%ussed in Sec. IVA 1. The system parametenis1.81 and the
trol as dlscus_sed in Sec. l.VA 1. The system parameter=id.81 coupling constant ig=0.08. The value of the control constant used
and the coupling constant &=0.08. The value of the control con- is y=0.6. The control signal in this case is nonvanishira)
stgnty=0.9 achieves the deswgd Stabmzftl@),' Space-nme por- Space-time portrait exhibiting the control on the clustered state sub-
trait before and.subsequent(iudlcated.by ON )|mp|ement.at|on ._sequent(indicated by “ON”) to implementation of the feedback
of the C.OerI signal. Every 64th stepis plotted along the time axXIScontrol. Every 64th step is plotted along the time aii$.The local
(b) Depicts the local time series of the fifth cell before and SUbse'time series of the fifth cell before and subsequent to the implemen-

quent to thg |mplementat|on.of the (.:OerI' The stabilization 0CCURation of the control. Similar to Fig.(d), stabilization occurs on the
on the previously unstable fixed point solution of the map. period-two state

sections depending on whether or not the local state of thé(““(i):(l_E)f(xn(i)H'“‘lz[f(xn(i +1)+Xa(i—1))]

system is required for their successful implementation. All

the discussed feedback strategies are able to suppress the +y
turbulent dynamics via stabilization of fixed poifitomoge-

neous stateor periodic(clustered stajesolutions.

T
Xn— N ;1 x'n_l). 7

Using the control of the type in Eq7) we were able to
A. Local feedback techniques stabilize both the homogeneous and/or the clustered state
depending on the value of. Figure 4a) shows the space-

All the feedbacks considered in this subsection requirgime plot where the control is initiated at the time step 5000
information of the local state for successful suppression ofnd the dynamics stabilize on the homogeneous state. Figure
the turbulent dynamics. Although the feedback is imple-4(p) shows the local time series for the fifth cell. It exhibits
mented locally, the feedback superimposed to the evolutioge stapilization of the system dynamics on the fixed point of
equation is the difference between the local state and a globgle map Kr=0.516) (identical to Fig. 1. Also the control

observablelocal-global composite signal vanishes upon successful stabilization. Figu@ 5
shows the space-time plot for the control at a lower value of
1. Feedback: y(X,—1NZML X! _) v. In this case the control stabilizes a clustered state corre-

sponding to a periodic solution. The local time series of the
The altered dynamics under the influence of the abovdifth cell shows a period-two oscillation subsequent to the
feedback control is represented by application of the control similar to the one shown in Fig.



242 P. PARMANANDA, M. HILDEBRAND, AND M. EISWIRTH 56

SPACE
SPACE

(a) TIME TIME

FIG. 7. Space-time portrait for a coupled lattice with the imple-
mentation(indicated by “ON") of the control as discussed in Sec.
IV B 1. The system parameter &=1.81 and the coupling constant
is €=0.08. Control constany=0.45 stabilizes periodic clustered
state with a nonvanishing control signal. Every 64th step is plotted
along the time axis.

B. Global feedback techniques

The obvious advantage of using global feedback tech-
nigues is the enhanced relevance to experimental situations.
The feedbacks considered in this section involves superim-
posing a global observabler difference between two global

0 2000 4000 6000 8000 10000 observablesto the dynamical equation.
ITERATION NUMBER
(b) 1. Feedback: —y(UNEN,X,_;~1INSN X})

FIG. 6. Stabilization of the periodic clustered state for the This control involves computing the difference in magni-
coupled map lattice with the implementation of the control as dis-tude of successive global averages and feeding it back into
cussed in Sec. IVA2. The system parameteais1.81 and the the system. The system under the influence of the control is
coupling constant ig=0.08. The control constant=0.4 and the  represented by
control signal is nonvanishinga) Space-time portrait exhibiting
the control on the clustered state subsequiemticated by “ON”) (1 — ; ; .
to implementation of the feedback control. Every 64th step is pIot-X”H(I) (1= T X))+ el TXn(i + 1))+ F(Xa(i = 1))]
ted along the time axis(b) The local time series of the fifth cell 1 N 1 N
before and subsequent to the implementation of the control. The Y= E X'n_l— — z X'n . 9
stabilization occurs on the period-four state. Ni= N =1

2(a). Also, the control signal for such a control is nonvanish- A control of this type is plausible in an actual experimen-

ing and exhibits a period-two oscillation similar to Fighg ~ tal system as the feedback required can be acquired from
experiments. Using this control we were able to stabilize

2. Feedback: (X! —Xg) different clustered states with a nonvanishing control signal

) . . for different values ofy. Figure 7 shows the space-time plot
The controlled dynamics under the influence of this feeds,; one such control exhibiting stabilization on a clustered

back is represented by (oscillatory yet periodik state.
Xn+1(1)= (1= ) F (Xq(i) + el2[ f(Xn (i + 1))+ F(Xp(i —1))] 2. Feedback: —y(UNZN XL _ = X)
+y(XE—Xg) (8) The motivation for trying this feedback are its possible

applications to experimental situations. The results were
The control of Eq.(8) was also able to stabilize the ho- similar to the one in the preceding subsection, namely, that

mogeneous state. Moreover, as shown in the space-time mgyppres.s_ion'of the observed turbulerjt behavior is obtained
of Fig. 6@ suppression of turbulent dynamics was alsoVia stabilization of the system dynamics on a clustdjest

achieved via stabilization of a clustered states with a nonvagliatory yet periodig state. The altered dynamics under the

nishing control signal. The local time series for the fifth cell Influence of control are represented by

exhibiting a period-four oscillation is shown in Fig(l8. _ _ _ _

Also, the scenario of stabilizing structurgslusters of — Xn+1(i)=(1—€)f(Xn(i))+e/2[ f(Xy(i+1))+F(Xp(i —1))]

higher complexity asy decreases is observed, similar to the N

ﬁilngl)e map results for the similar feedback cont(Bkec. _7(% E Xinl_xF)_ (10)
. =1
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FIG. 8. Space-time portrait for a coupled lattice with the imple-
mentation of the contrdlindicated by “ON”) as discussed in Sec. FIG. 10. Space-time portrait for a coupled lattice with the imple-
IV B 2. The system parameter és=1.81 and the coupling constant mentation (indicated by “ON”) of the feedback control as dis-
is €=0.08. Value of the control constant=0.35 results in stabi- cussed in Sec. IV B 4. The system paramedeis reduced toa
lization of the periodic clustered state with a nonvanishing control=0.5 for 1000 iterationgsimulating a spikpto attain the initial
signal. Every 64th step is plotted along the time axis. homogeneous state. Subsequently the system parameter is reset to
a=1.81 and the control of Sec. IV B 4 is implemented with
=0.7 resulting in stabilization on the homogeneous state with a

Figure 8 exhibits the eventual stabilization on the clus-~ ' ° X , )
nishing control signal. Every 64th step is plotted along the time

tered state subsequent to implementation of the control. Th&
system was integrated under the influence of control untifs:

successful suppression of the defect was achieved, wide array of nonturbulent oscillatory dynamical behavior

(clusters. It should be possible to apply this global feedback

. N i
3. Feedback: —yINZ{_ X, control to actual systems.
Global delayed feedback has been used to control turbu- N o .
lence in the complex Ginzburg-Landau equatidd]. In this 4. Feedback: — y(UNZ{ X3 —IUNZ{ Xp)

subsection we implement a global feedback with delay to the This is the identical feedback discussed in Sec. IVB 1,

coupled map lattice system exhibiting chaotic behavior. They it is applied to the system stabilized at the homogeneous
dynamics under the influence of the control is represented by;ate attained using a judiciously chosen parameter spike.
The motivation for this is the following: It is possible to
N1 ; : - bring the system from the turbulent state to a homogeneous
Xn2(1)=(1= )T Xn(1)F /2 TXn(i 1))+ F(Xa(i = 1))] (nonsimilar to the target homogeneous state on which control
1N is desired state momentarily via a parameter manipulation
— E Xi_q- (11 (kind of resetting the systemNow once the system is at the
! temporary homogeneous state a control of the type such as
above is applied to try to constrain the system dynamics on

Figure 9 shows the results of implementation of the globafh® target homogeneous stateorresponding to the previ-
feedback control. Control is attained on a homogeneou8Usly unstable fixed point of the magrigure 10 shows the
state, however the control signal remains a nonvanishing ef€Sults of such a two-step control exhibiting the system sta-
tity. By varying the value ofy we were able to stabilize a bilization on a homogeneous steady state. Control of this sort

is possible in an actual experiment provided that the system

can be resetted via a judicious parameter spike.

V. CONCLUSIONS

In this article we have demonstrated successful suppres-
sion of turbulent behavior observed under appropriate pa-
rameter conditions in the one-dimensional coupled map lat-
tice system. The stabilized system corresponded to the
homogeneous state and/or the clustered state depending on

ON the type of feedback used and/or the valueyahosen. The
TIME remarkable analogy between the dynamical behavior under
the influence of the control between a single ni@gcs. 11l A

FIG. 9. Space-time portrait for a coupled lattice with the imple- and IlI B) and a lattice of coupled magSecs. VAL .and
mentation of the global feedback conti@dicated by “ON") as |V A 2) is described. The feedback control described in Secs.
discussed in Sec. IV B 3. The system parameter=s.81 and the [V A1 and IV A 2 requires information about the local state
coupling constant ig=0.08. The value of the control constapt  Of the system for successful implementation, however it does
=0.34 results in stabilization of the homogeneous state with a nonfot necessary imply that they are not applicable to experi-
vanishing control signal. Every 64th step is plotted along the timemental situations. The controlling feedback in both these
axis. strategies is proportional to the difference between the local

SPACE
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state and a global variable. Therefore, the correctional feedzontrol strategiegSecs. IV B 1-1V B 4 rely on feedbacks
back superimposed on a site is related to the local dynamidsvolving global observables and are more generally appli-
at that site. It is possible to envisage a setfgy example, cable to experimental situations.

using optical illumination as the control parametemere

the response on different sites of an extended system is a ACKNOWLEDGMENTS

function of the local state of individual sites. Only partial
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