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Controlling turbulence in coupled map lattice systems using feedback techniques
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We report the suppression of spatiotemporal chaos observed in coupled map lattices. Suppression is
achieved using different feedback techniques, most of which are applicable to actual experimental situations.
Results from application of feedback control to a single chaotic element~single map! are presented to dem-
onstrate similarities in the dynamical response of a single system and an extended system under the influence
of external feedback.@S1063-651X~97!04607-2#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Suppression of the turbulent behavior observed in s
tially extended nonlinear systems is of much practical int
est. The growing interest in this field stems from the pione
ing work done by Ott, Grebogi, and Yorke@1# in controlling
chaos. Since then chaos has been controlled in various
perimental systems@2–7# using different control strategie
@8–10#. These efforts have been naturally extended to try
tame the complex dynamical behavior observed in dist
uted dynamical systems@11–14#. This control of spatiotem-
poral chaos leading up to the control of turbulence is mu
more complicated due to the existence of numerous unst
spatial modes, but, is more important too, because of its p
sible applications in plasma, laser devices, chemical,
biological systems where both spatial and temporal dep
dences need to be considered. In this paper, we propos
ing feedback techniques to suppress turbulent behavior
served in a one-dimensional coupled map lattice model w
periodic boundary conditions as first considered by Kan
@15,16# and described briefly in Sec. II. In Sec. III we imple
ment two control strategies to stabilize a fixed point~corre-
sponding to a period one solution! of a single logistic map.
These control strategies~Secs. III A and III B! when appro-
priately implemented to the extended system~Sec. IV A!
manifest striking similarity between the dynamical respon
of a single map and an extended system. Results from im
mentation of different global feedback techniques to the
tended system are presented in Sec. IV B. Finally, in Sec
we compare and contrast the various control strategies
and discuss the possibility of application to experimen
situations.

II. COUPLED MAP LATTICE MODEL

The coupled map lattice model used here to manifest
efficiency of feedback techniques to suppress turbulent
havior has the following diffusive coupling@15,16#:

Xn11~ i !5~12e! f „Xn~ i !…

1e/2@ f „Xn~ i11!…1 f „Xn~ i21!…#, ~1!
561063-651X/97/56~1!/239~6!/$10.00
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wheren is the discrete time step andi is a lattice point (i
51,2, . . .N5system size). We restrict ourselves to choo
ing periodic boundary conditions. The mapping functi
f (x) is chosen to be the logistic map described by

f ~x!5~12ax2!. ~2!

The system parametera is fixed such that the single ma
exhibits chaotic dynamics.

III. CONTROLLING CHAOS IN A SINGLE MAP USING
SIMPLE FEEDBACK TECHNIQUES

In this section we apply two feedback techniques to c
trol chaotic dynamics exhibited by a single logistic map@Eq.
~2!#. Using the feedback control we were able to stabilize
fixed point of the map~corresponding to the unstable perio
one orbit!.

A. Feedback: g„Xn2Xn21…

This feedback is a discretized version of the derivat
control technique@17# used to suppress oscillatory dynami

FIG. 1. Dynamical evolution of a single map without~,3000!
control and under the influence of control (.3000) of the type as
discussed in Sec. III A. The parametera for the map is 1.81 and the
control constantg50.95.
239 © 1997 The American Physical Society
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240 56P. PARMANANDA, M. HILDEBRAND, AND M. EISWIRTH
via stabilization of the previously unstable fixed points. U
der the influence of the above mentioned control, the alte
dynamics of the logistic map are represented by

Xn115~12aXn
2!1g~Xn2Xn21!. ~3!

Figure 1 shows the dynamical evolution of the syste
Before iteration number 3000, the system evolves chaotic
and subsequently converges to the stabilized fixed point
der the influence of the control. Upon successful stabilizat
of the period-one orbit the control signal goes to zero
Xn5Xn21 .

As the value ofg was decreased we were able to stabil
the whole array of dynamical behavior of increasing co
plexity ~period two, period four period eight, . . . .!. How-
ever, the control signal for such stabilizations did not go
zero. Figure 2~a! shows one such stabilization on the perio
two orbit beyond iteration number 3000. The nonvanish
control signal is plotted in Fig. 2~b!. This is not controlling
chaos in the pure sense~as the control signal does not vanis
upon successful stabilization! but more like altering dynam
ics via a nonvanishing feedback.

FIG. 2. Successful stabilization of the period-two fixed point
the map under the influence of the control of the type in Sec. III
~a! Shows the dynamical evolution of the system. The value of
control constant isg50.6. Control is implemented subsequent
iteration number 3000.~b! Shows the nonvanishing control sign
of the same period.
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B. Feedback: g„Xn2XF…

The feedback strategy used here is an adaptation of
external force control technique@18# applied to temporal sys
tems, such as

dx

dt
5P~y,x!1F~ t !

dx

dt
5Q~y,x! ~4!

where y is the output variable and vectorx describes the
remaining variables. From the time series ofy(t), one can
identify @19# the various periodic signals of different form
y5yi(t), yi(t1Ti)5yi(t) corresponding to the different un
stable periodic orbits. HereTi is the period of thei th un-
stable orbit.F(t) in Eq. ~4! is the superimposed feedbac
described by

F~ t !5g@yi~ t !2y~ t !#. ~5!

When applied to a single logistic map the above cont
strategy is expressed as

Xn115~12aXn
2!1g~Xn2XF!. ~6!

Figure 3 represents the dynamical evolution of the sys
without control~iteration,3000! and with control~iteration
.3000!. The control signal upon successful stabilizati
goes to zero as the dynamics converge onto the target pe
one orbit~fixed point of the mapXF!. Similar to the results
discussed in the preceding subsection, by decreasingg we
were able to stabilize the entire array of dynamical behav
with a nonvanishing control signal.

IV. SUPPRESSION OF TURBULENCE IN A COUPLED
MAP LATTICE SYSTEM

In this section we consider the extended system~100
coupled maps! with periodic boundary conditions studied e
tensively by Kaneko@15,16# and mentioned briefly in Sec. II
The coupled map system exhibits turbulent dynamics for
following parameter values~a51.81 and e50.08!. The
implemented control strategies are presented in different s

f
.
e

FIG. 3. Successful stabilization of the period-one fixed point
the map (a51.81) using the control of the type in Sec. III B. Th
value of the control constantg50.86 was used to attain successf
stabilization.
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56 241CONTROLLING TURBULENCE IN COUPLED MAP . . .
sections depending on whether or not the local state of t
system is required for their successful implementation. A
the discussed feedback strategies are able to suppress
turbulent dynamics via stabilization of fixed point~homoge-
neous state! or periodic~clustered state! solutions.

A. Local feedback techniques

All the feedbacks considered in this subsection requi
information of the local state for successful suppression
the turbulent dynamics. Although the feedback is imple
mented locally, the feedback superimposed to the evoluti
equation is the difference between the local state and a glo
observable~local-global composite!.

1. Feedback: g„Xn
i 21/N( i51

N Xn21
i

…

The altered dynamics under the influence of the abo
feedback control is represented by

FIG. 4. Control of the turbulent behavior via stabilization of the
homogeneous state for a 100 coupled logistic maps using the c
trol as discussed in Sec. IV A 1. The system parameter isa51.81
and the coupling constant ise50.08. The value of the control con-
stantg50.9 achieves the desired stabilization.~a! Space-time por-
trait before and subsequent to~indicated by ‘‘ON’’! implementation
of the control signal. Every 64th step is plotted along the time axi
~b! Depicts the local time series of the fifth cell before and subs
quent to the implementation of the control. The stabilization occu
on the previously unstable fixed point solution of the map.
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Xn11~ i !5~12e! f „Xn~ i !…1e/2@ f „Xn~ i11!…1 f „Xn~ i21!…#

1gS Xn
i 2

1

N (
i51

N

Xn21
i D . ~7!

Using the control of the type in Eq.~7! we were able to
stabilize both the homogeneous and/or the clustered s
depending on the value ofg. Figure 4~a! shows the space-
time plot where the control is initiated at the time step 50
and the dynamics stabilize on the homogeneous state. Fig
4~b! shows the local time series for the fifth cell. It exhibit
the stabilization of the system dynamics on the fixed point
the map (XF50.516) ~identical to Fig. 1!. Also the control
signal vanishes upon successful stabilization. Figure 5~a!
shows the space-time plot for the control at a lower value
g. In this case the control stabilizes a clustered state co
sponding to a periodic solution. The local time series of t
fifth cell shows a period-two oscillation subsequent to t
application of the control similar to the one shown in Fi

n-

.
-
s

FIG. 5. Stabilization of the periodic clustered state for th
coupled map lattice with the implementation of the control, as d
cussed in Sec. IV A 1. The system parameter isa51.81 and the
coupling constant ise50.08. The value of the control constant use
is g50.6. The control signal in this case is nonvanishing.~a!
Space-time portrait exhibiting the control on the clustered state s
sequent~indicated by ‘‘ON’’! to implementation of the feedback
control. Every 64th step is plotted along the time axis.~b! The local
time series of the fifth cell before and subsequent to the implem
tation of the control. Similar to Fig. 2~a!, stabilization occurs on the
period-two state.
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242 56P. PARMANANDA, M. HILDEBRAND, AND M. EISWIRTH
2~a!. Also, the control signal for such a control is nonvanish
ing and exhibits a period-two oscillation similar to Fig. 2~b!.

2. Feedback: g„Xn
i 2XF…

The controlled dynamics under the influence of this feed
back is represented by

Xn11~ i !5~12e! f „Xn~ i !…1e/2@ f „Xn~ i11!…1 f „Xn~ i21!…#

1g~Xn
i 2XF! ~8!

The control of Eq.~8! was also able to stabilize the ho-
mogeneous state. Moreover, as shown in the space-time p
of Fig. 6~a! suppression of turbulent dynamics was als
achieved via stabilization of a clustered states with a nonv
nishing control signal. The local time series for the fifth cel
exhibiting a period-four oscillation is shown in Fig. 6~b!.
Also, the scenario of stabilizing structures~clusters! of
higher complexity asg decreases is observed, similar to the
single map results for the similar feedback control~Sec.
III B !.

FIG. 6. Stabilization of the periodic clustered state for the
coupled map lattice with the implementation of the control as dis
cussed in Sec. IV A 2. The system parameter isa51.81 and the
coupling constant ise50.08. The control constantg50.4 and the
control signal is nonvanishing.~a! Space-time portrait exhibiting
the control on the clustered state subsequent~indicated by ‘‘ON’’!
to implementation of the feedback control. Every 64th step is plo
ted along the time axis.~b! The local time series of the fifth cell
before and subsequent to the implementation of the control. T
stabilization occurs on the period-four state.
-
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B. Global feedback techniques

The obvious advantage of using global feedback te
niques is the enhanced relevance to experimental situati
The feedbacks considered in this section involves supe
posing a global observable~or difference between two globa
observables! to the dynamical equation.

1. Feedback: 2g„1/N( i51
N Xn21

i 21/N( i51
N Xn

i
…

This control involves computing the difference in magn
tude of successive global averages and feeding it back
the system. The system under the influence of the contro
represented by

Xn11~ i !5~12e! f „Xn~ i !…1e/2@ f „Xn~ i11!…1 f „Xn~ i21!…#

2gS 1N (
i51

N

Xn21
i 2

1

N (
i51

N

Xn
i D . ~9!

A control of this type is plausible in an actual experime
tal system as the feedback required can be acquired f
experiments. Using this control we were able to stabil
different clustered states with a nonvanishing control sig
for different values ofg. Figure 7 shows the space-time pl
for one such control exhibiting stabilization on a cluster
~oscillatory yet periodic! state.

2. Feedback: 2g„1/N( i51
N Xn21

i 2XF…

The motivation for trying this feedback are its possib
applications to experimental situations. The results w
similar to the one in the preceding subsection, namely,
suppression of the observed turbulent behavior is obtai
via stabilization of the system dynamics on a clustered~os-
cillatory yet periodic! state. The altered dynamics under t
influence of control are represented by

Xn11~ i !5~12e! f „Xn~ i !…1e/2@ f „Xn~ i11!…1 f „Xn~ i21!…#

2gS 1N (
i51

N

Xn21
i 2XFD . ~10!

-

t-

e

FIG. 7. Space-time portrait for a coupled lattice with the imp
mentation~indicated by ‘‘ON’’! of the control as discussed in Se
IV B 1. The system parameter isa51.81 and the coupling constan
is e50.08. Control constantg50.45 stabilizes periodic clustere
state with a nonvanishing control signal. Every 64th step is plot
along the time axis.
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56 243CONTROLLING TURBULENCE IN COUPLED MAP . . .
Figure 8 exhibits the eventual stabilization on the clu
tered state subsequent to implementation of the control.
system was integrated under the influence of control u
successful suppression of the defect was achieved.

3. Feedback: 2g1/N( i51
N Xn21

i

Global delayed feedback has been used to control tu
lence in the complex Ginzburg-Landau equation@14#. In this
subsection we implement a global feedback with delay to
coupled map lattice system exhibiting chaotic behavior. T
dynamics under the influence of the control is represented

Xn11~ i !5~12e! f „Xn~ i !…1e/2@ f „Xn~ i11!…1 f „Xn~ i21!…#

2g
1

N (
i51

N

Xn21
i . ~11!

Figure 9 shows the results of implementation of the glo
feedback control. Control is attained on a homogene
state, however the control signal remains a nonvanishing
tity. By varying the value ofg we were able to stabilize a

FIG. 8. Space-time portrait for a coupled lattice with the imp
mentation of the control~indicated by ‘‘ON’’! as discussed in Sec
IV B 2. The system parameter isa51.81 and the coupling constan
is e50.08. Value of the control constantg50.35 results in stabi-
lization of the periodic clustered state with a nonvanishing con
signal. Every 64th step is plotted along the time axis.

FIG. 9. Space-time portrait for a coupled lattice with the imp
mentation of the global feedback control~indicated by ‘‘ON’’! as
discussed in Sec. IV B 3. The system parameter isa51.81 and the
coupling constant ise50.08. The value of the control constantg
50.34 results in stabilization of the homogeneous state with a n
vanishing control signal. Every 64th step is plotted along the ti
axis.
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wide array of nonturbulent oscillatory dynamical behav
~clusters!. It should be possible to apply this global feedba
control to actual systems.

4. Feedback: 2g„1/N( i51
N Xn21

i 21/N( i51
N Xn

i
…

This is the identical feedback discussed in Sec. IV B
but it is applied to the system stabilized at the homogene
state attained using a judiciously chosen parameter sp
The motivation for this is the following: It is possible t
bring the system from the turbulent state to a homogene
~nonsimilar to the target homogeneous state on which con
is desired! state momentarily via a parameter manipulati
~kind of resetting the system!. Now once the system is at th
temporary homogeneous state a control of the type suc
above is applied to try to constrain the system dynamics
the target homogeneous state~corresponding to the previ
ously unstable fixed point of the map!. Figure 10 shows the
results of such a two-step control exhibiting the system s
bilization on a homogeneous steady state. Control of this
is possible in an actual experiment provided that the sys
can be resetted via a judicious parameter spike.

V. CONCLUSIONS

In this article we have demonstrated successful supp
sion of turbulent behavior observed under appropriate
rameter conditions in the one-dimensional coupled map
tice system. The stabilized system corresponded to
homogeneous state and/or the clustered state dependin
the type of feedback used and/or the value ofg chosen. The
remarkable analogy between the dynamical behavior un
the influence of the control between a single map~Secs. III A
and III B! and a lattice of coupled maps~Secs. IV A 1 and
IV A 2 ! is described. The feedback control described in Se
IV A 1 and IV A 2 requires information about the local sta
of the system for successful implementation, however it d
not necessary imply that they are not applicable to exp
mental situations. The controlling feedback in both the
strategies is proportional to the difference between the lo

-

l

-

n-
e

FIG. 10. Space-time portrait for a coupled lattice with the imp
mentation~indicated by ‘‘ON’’! of the feedback control as dis
cussed in Sec. IV B 4. The system parametera is reduced toa
50.5 for 1000 iterations~simulating a spike! to attain the initial
homogeneous state. Subsequently the system parameter is re
a51.81 and the control of Sec. IV B 4 is implemented withg
50.7 resulting in stabilization on the homogeneous state wit
vanishing control signal. Every 64th step is plotted along the ti
axis.
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244 56P. PARMANANDA, M. HILDEBRAND, AND M. EISWIRTH
state and a global variable. Therefore, the correctional fe
back superimposed on a site is related to the local dynam
at that site. It is possible to envisage a setup~for example,
using optical illumination as the control parameter! where
the response on different sites of an extended system
function of the local state of individual sites. Only parti
suppression of turbulent dynamics could be achieved if
control was applied to a subset of the lattice because of
inherent absolute instability of the model system. Howev
suppression of turbulent dynamics via implementation
control to selected sites is possible@12# if the underlying
system exhibits convective instability. The following fou
tt

t,
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re
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f

control strategies~Secs. IV B 1–IV B 4! rely on feedbacks
involving global observables and are more generally ap
cable to experimental situations.
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