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The transition from low to high confinement in fusion experiments is accompanied by a reduction of turbulence in
the strong shear regime. This work investigates the influence of the background shearing rate on the energy transfer
between turbulence and zonal flows, which can serve as a loss channel of kinetic energy, in the different shear regimes
using the k-ε model. To this end, plasma biasing is used to control the flow shear which is categorized in terms of
measured turbulent lifetime. The shearing rate scaling of Reynolds stress and zonal flow production is analyzed. A
linear dependency of the Reynolds stress and a quadratic dependency of the energy transfer on the shearing rate is
found. This is accompanied by a redistribution of the spectral power towards the zonal flow. The increase in relative
zonal power is even higher beyond the transition to the strong shear regime.

I. INTRODUCTION

In magnetized fusion plasmas the transition from a low (L)
to a high (H) confinement regime is accompanied by a re-
duction of the turbulence level and turbulent transport.1 This
reduction may be due to the transfer of energy from small
scale turbulence to macroscopic turbulent structures, which
are not associated with cross-field transport, known as turbu-
lence generated zonal flows (ZF).2 Indeed, first experimental
results provided an indication that ZFs may trigger the fast
LH-transition.3–10 The transition to the H-mode is accompa-
nied by a transition from a weak to a strong shear regime.
A strong shear regime is present if the E×B-shearing rate is
larger than the growth rate of most unstable mode.11 Accord-
ing to the k-ε model the energy transfer depends quadratically
on the shearing rate. Since the kinetic energy in the turbu-
lence is reduced in the strong shear regime, the question arises
whether the energy transfer collapses with the transition, too.
Further, this work deals with the question to what extent the
background shear contributes to a redistribution of the spectral
power in favor of the ZF.

In magnetically confined fusion plasmas, ZFs are asso-
ciated with poloidally and toroidally homogeneous, as well
as, radially localized plasma potential perturbations. Here,
the plasma potential takes over the role of the stream func-
tion as compared to neutral fluids. In analogy to neutral flu-
ids, macroscopic turbulence generated flows are driven by
gradients in the turbulent Reynolds stress (∂r〈ṽr ṽθ 〉). Finite
Reynolds stress (RS) can be traced back to tilted vortex flow
fields.12 Thus equilibrium shear flows can principally affect
the RS by tilting vortices which in turn can lead to a higher
RS gradient and thus to an increase in ZF amplitudes. In par-
ticular, the RS is expected to increase linearly with the back-
ground shear when viewed in the picture of turbulent viscos-
ity.13 According to the k-ε model, the product of shear and RS
is the production of kinetic energy of the mean flow, which im-
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plies a quadratic dependence of energy transfer into the ZF.14

In addition, as energy is transferred from smaller to larger ed-
dies, a substantial change in spectral power distribution across
turbulent scales could be expected.15

How far this redistribution takes place in favour of ZFs
in toroidal geometry is investigated experimentally at mag-
netically confined low-temperature plasmas in the stellarator
TJ-K.16 To this end, shear in the equilibrium plasma flow is
imposed by externally controlling the stationary plasma po-
tential profile through electrode biasing.17 Electrode biasing
can be used to trigger H-mode-like regimes, where the transi-
tion appears similar to the ones reported in from spontaneous
L-H transitions reported in Ref.5,8–10,18 Shearing rates as de-
duced from plasma potential measurements are opposed to
experimental estimates of zonal averages of turbulent RS and
potential fluctuations. A flux-surface aligned multiprobe setup
with 128 probes is used to resolve fluctuations relevant for RS
and ZF estimates.12

A key issue is to differentiate between the stationary
equilibrium E×B-flow and the self-generated ZF. While the
plasma potential can be considered constant on the flux sur-
face in TJ-K, the inhomogeneity of the confining magnetic
field leads to a poloidal variation of the E×B-background flow
and corresponding shear. The k-ε model is adapted to the en-
ergy transfer between ZFs as poloidal mean flows and turbu-
lence by applying a poloidal average as Reynolds average on
the total velocity field consisting of the time-fluctuating and
stationary velocities. Although the energy evolution of the
mean flow does not depend on the time-independent compo-
nent, the energy transfer term has a dependence on the sta-
tionary flow which is discussed in sec. II by a further de-
composition in time. After a description of the experimen-
tal setup (sec. III) it is shown how the shearing rate is ob-
tained in TJ-K and controlled with biasing. By comparison
with mean growth rates from the elliptical model the differ-
ent shear regimes are identified (sec. IV). In the next section
the dependency of RS and production is investigated (sec. V).
Finally, spectral analyses are used to investigate the redistri-
bution of power as a function of energy transfer and shearing
rate (sec. VI).
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II. MODEL EQUATIONS

A model which describes the energy of the fluctuations and
the mean flow is the k-ε model. Here the energy evolution
of the mean flow is derived by multiplying the Reynolds aver-
aged Navier-Stokes equation (RANS) by the mean flow veloc-
ity (U). By neglecting the dissipation term (ε), the k-ε model
for the two-dimensional case, with x as radial and y as cor-
responding poloidal plane-coordinate, finally yields for the
poloidal mean-flow energy (Ē = 0.5U2

y ) 5,15,19

∂t Ē +∂xT̄ = R∂xUy := P , (1)

with T̄ = RUy and R = 〈ũxũy〉 the RS, with ũ as the fluctuating
part of the Reynolds decomposition. The Navier-Stokes equa-
tion is subtracted by the RANS and multiplied by the fluc-
tuating velocity, so that after a further Reynolds average the
fluctuating energy finally yields;14

∂t Ẽ +∂xT̃ =−R∂xUy :=−P , (2)

with T̃ = 0.5〈ũxũyũy〉Y , where 〈·〉Y denotes a spatial, i.e.
poloidal average. A comparison of the energy evolution of the
mean flow (eq. (1)) with the one from the fluctuations (eq. (2))
shows the importance of the so-called production term

P = R∂xUy = 〈ũxũy〉Y ∂xUy (3)

The production term connects the evolution of the mean
flow with the one of the fluctuations. A positive production
(P > 0) can be physically interpreted as an energy transfer
from the turbulence into the mean flow and therefore “pro-
duces” the mean flow. Respectively, turbulence is generated
by the mean flow, if the production is negative (P < 0). The
direction of the energy transfer depends on whether the RS
and the shear (∂xUy) do have the same sign. If they do not,
then the velocity field of the eddies counteracts the shear in
the mean flow and energy is transferred from the mean flow
into the turbulence. In the case of a positive production, the
eddies are strained out by the shear flow towards larger struc-
tures, i.e. the mean flow itself.20 This energy transfer from
small to large scale structures is accompanied by the inverse
cascade.21 Furthermore, a positive correlation between the
sheared mean flow and the RS implies a negative turbulent vis-
cosity νT as theoretically proposed for two-dimensional sys-
tems (R =−νT ∂xUy).13

The investigation of the influence of the time-independent
shear on the turbulence requires to distinguish between a spa-
tial 〈·〉Y and a temporal average 〈·〉T of the velocity, such that
〈u〉Y = 〈U + ũ〉Y with 〈ũ〉Y = 0 and 〈V 〉T = 〈V + ṽ〉T with
〈ṽ〉T = 0. Here, for the Reynolds decomposition the spatial
average is chosen, in order to examine the ZF component. In
order to investigate the influence of the background shearing
rate on the power in the ZF, eq. (1) is time-averaged. The time-
derivative of the mean kinetic energy on the left-hand side of
eq. (1) then reads

1
2
〈∂tU2

y 〉T =−iω
〈
〈ṽy〉2〉

T . (4)
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FIG. 1. a) Scheme of experimental setup showing the path of the
movable emissive probe, the flux surface of the ring electrode (thick)
and the projected pin positions of the array as crosses. The photo
of the array indicates the direction of the radial and poloidal electric
field fluctuations, needed to obtain the RS. b) A photo of the ring
electrode placed at a top-port, where the flux surfaces are elliptical.

By considering the E×B-velocity this expression is propor-
tional to the power in the zonal potential and does not depend
on the time-independent velocity components

1
2
〈∂tU2

y 〉T ∝ 〈φ 2
ZF〉T . (5)

Now the influence of the background shearing rate on the en-
ergy transfer will be investigated. The spatial fluctuations of
the RS are related to temporal fluctuations as

ũxũy = (Vx + ṽx)(Vy + ṽy)− (Vx + ṽx)〈Vy + ṽy〉Y
= ṽxVy + ṽxṽy − [ ṽx〈Vy〉Y + ṽx〈ṽy〉Y ] , (6)

such that the resulting temporally averaged production con-
sists of mixed contributions

〈P〉T =
〈
〈ṽxVy〉Y ∂x〈ṽy〉Y

〉
T + 〈ṽxṽy〉Y ,T ∂x〈Vy〉Y

+
〈
〈ṽxṽy〉Y ∂x〈ṽy〉Y

〉
T . (7)

The bracket 〈·〉Y ,T denotes a poloidal as well as temporal av-
erage. Only the second part shows a dependence on the back-
ground shear flow (∂x〈Vy〉Y ) while the other contributions only
lead to an offset of the mean production. As the RS itself can
be expressed by the negative product of the turbulent viscos-
ity and the shearing rate, the second term in eq. 7 results in a
quadratic dependency on the temporally and poloidally aver-
aged shearing rate.14

The model suggests that the background shear leads to an
energy transfer from the turbulence to the mean flow, i.e. the
ZF. Disregarding loss channels for ZF energy. the relative ra-
tion of the ZF to the total spectral power may be expected to
increase with the shearing rate.

III. EXPERIMENTAL SETUP

The low-temperature plasmas in the stellarator TJ-K
(Te ≤ 20eV, Ti ≈ 1eV)22 allow to place a ring-shaped, flux-
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FIG. 2. a) Radial profile of the plasma potential measured by a radially movable emissive probe. Important radial positions are marked as
dashed vertical lines. b) The inlay shows an exemplary poloidal profile of the shearing rate at a high bias case (UBias = 72V). The poloidally
averaged shearing rate is plotted against the bias voltage of the electrode for two different shots (different symbols). The shearing rate increases
monotonously with the bias voltage.

surface-aligned electrode within the confinement region (see
fig. 1-b)). Due to the currents drawn by the electrode, a radial
electric field is formed, whose E ×B rotation balances corre-
sponding the friction forces, associated with magnetic pump-
ing, against forces through radial return currents neutralising
the charge-loss through the electrode.17,23 This way, the back-
ground E×B rotation is controlled through the current drawn
by the electrode.24 Zonal flows have been studied in TJ-K in
detail without biasing.12,20,25,26 With biasing enhanced zonal
flow activity have been found.27,28

In the experiment TJ-K, the profile of the plasma poten-
tial is measured by a radially moving emissive probe as indi-
cated in fig. 1-a) allowing to calculate the E×B-velocity and
shearing rate. Further, equilibrium parameters as the electron
temperature and the density are obtained from an additional,
swept Langmuir probe on the same carrier as the emissive
probe. The floating potential is measured by 128 Langmuir
probes distributed on four consecutive flux surfaces (fig. 1-a)
as crosses) acquiring simultaneously 219 samples per probe at
1MHz sampling rate.12 The radial and poloidal velocity fluc-
tuations, needed for the RS calculation, are derived from the
fluctuating electric fields in poloidal and radial direction as
the inlay shows (ṽr ∝ Ẽθ and ṽθ ∝ −Ẽr). The electric fields
are calculated from the difference quotients of the fluctuations
in the floating potential (Ẽr =

[
φ̃fl(ri)− φ̃fl(r j)

]
/ [r j − ri] and

Ẽθ =
[
φ̃fl(θi)− φ̃fl(θ j) ]/[rθ j − rθi

]
).

Temperature fluctuations are negligible which allows to
take advantage of the approximation φ̃fl ≈ φ̃pl.29 The array al-
lows to calculate k f -spectra of the band-passed potential fluc-
tuations (3kHz−400kHz) which are used to obtain the power
in the ZF component (k = 0 at 3kHz−8kHz) and the power
in the remaining turbulent spectrum.26

The hydrogen plasma is heated by a 2.45GHz microwave at
a power of P2.45 = 2.5kW. The neutral gas working pressure
is p0 = 9mPa. The bias voltage of the electrode - as control
parameter - is increased stepwise (∆U = 2V) within two dis-
charges (#12334, #12336). At each step the equilibrium and
fluctuations of the plasma are measured by the emissive/swept

Langmuir probe and by the array, too.

IV. CONTROLLING THE SHEAR

The development of the plasma potential profiles with
changing bias voltage is shown in fig. 2-a). The radial pro-
file covers the full range from the plasma center to outside
the last closed flux surface. The plasma potential raises with
increasing bias voltage. Further, the gradient of the plasma
potential steepens with higher bias voltages in the region be-
tween electrode and separatrix, thus changing the poloidal
E×B-velocity. In this region the probe array is positioned. A
strong effect of the flow shear on the tilt of turbulent structures
is supposed to be detected by the array.

In order to compare the shearing rate with the two-
dimensional RS measurements, the equilibrium potential is
mapped on the flux surface since the plasma potential is a flux
quantity. The E×B velocity is calculated, incorporating the
metrics of the magnetic field geometry (cf. inlay fig. 2-b)).
For a comparison of the shearing rate with the RS, the shear-
ing rate is defined by the radial change in the angular velocity
as Ω = (2π)−1〈r∂r(vE×B/r)〉θ . The shearing rate is poloidally
averaged (〈·〉θ ). Fig. 2-b), shows how the shearing rate can be
controlled by the bias voltage. With increasing bias voltage,
the shearing rate increases, too.

In a next step, two different shear regimes are identified.
A low shear regime is determined by a shearing rate lower
than the inverse mean growth time of turbulent structures (τg)
and the strong shear regime by shearing rates exceeding the
inverse growth time.31 A transition threshold is defined as ζ =
Ωτ−1

g = 1. A value ζ < 1 implies a weak shear regime and a
value ζ > 1 a strong shear regime. In the latter case, the shear
tilts the turbulent structures faster than they can evolve and
turbulence suppression is supposed to become effective.

In order to experimentally obtain the inverse mean growth
time (τg) of the evolving turbulent structures, the cross-
correlation of the fluctuations in poloidal direction (θ ) and in
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FIG. 3. a) The cross-correlation function in two dimensions with
the poloidal shift ∆y on the ordinate and the time shift τ on the ab-
scissa. The red contour line marks the e−1-level, which has roughly
the shape of an ellipse. b) The growth time (τg) is obtained from
the width of a Gaussian fit to the envelope of the different cross-
correlations over the negative time shift τ .

time can be estimated by the elliptical model

CC(τ ,r∆θ) = exp
[
−
(

τ2

τ2
c
+

(r∆θ −Vθ τ)2

L2
θ

)]
, (8)

where τ is the time-shift and r∆θ the spatial, poloidal shift and
Vθ the background velocity. The contours in the τ , r∆θ -space
show the ellipses. Typical time (τc) and length (Lθ ) scales de-
scribe the correlation time and poloidal size of the structures.
In contrast to the “frozen turbulence” theorem of the Taylor-
hypothesis, the model takes an intrinsic, average life-time of
turbulent structures into account. Since their growth and de-
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FIG. 4. The poloidal profile of the inverse growth times (γ = τ−1
g ) as

squares agree qualitatively well with the calculated maximum growth
rates (line) incorporating the magnetic field geometry according to
Nasim.30 The local maximum of the growth rate is found in a region
where the calculated growth rate exhibits a postive maximum (red
area), too.
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FIG. 5. The ratio (ζ = Ωτ−1
g ) plotted against the shearing rate.

The range of Ω = 0kHz− 45kHz denotes the weak shear regime,
whereas the range higher than Ω > 45kHz the strong shear regime.

cay do not necessarily show the same behavior, it is useful to
split the cross-correlation in a part for negative and positive
time-shifts. This enables to differentiate between growth time
τc → τg and decay/decorrelation time τc → τd . The correla-
tion times τg,d are not obtained from the 1/e folding time at
r∆θ = 0, but from the minimum/maximum value of the time
shift τ from the CC(τ ,r∆θ) = 1/e contour ellipse.32 Similar
models have been used in Ref.33,34.

The proposed elliptical character of the CC in TJ-K can
be seen from fig. 3-a) for one exemplary reference probe of
the array. Fig. 3-b) shows the cross-correlations for differ-
ent poloidal positions (r∆θ ) over the time-lag (τ). In or-
der to obtain the growth time τg, the envelope of all cross-
correlations of negative time shifts (τ ≤ 0) is fitted by a Gaus-
sian (CC(τ) = exp

[
−(τ/τg)

2
]
). The average growth time τg

is the minimal possible time-shift that defines the edge of the
1/e-ellipse for negative times (white dot in fig. 3-a)). The
fit is done for every probe pin of the array (τg(θ)). The in-
verse growth time can be interpreted as an effective, average
growth rate. The poloidal profile of the growth rate is shown
in fig. 4 for a low shear case (Ω ≈ 0). It exhibits a maximum
at θ ≈ 0.1π which qualitatively agrees well with the maxi-
mum linear growth rate calculated according to Nasim30 in-
corporating the magnetic field geometry. For comparison with
the shearing rate the growth rate is finally averaged over the
poloidal angle.

In fig. 5, the ratio of the poloidally averaged quantities
ζ = Ωτ−1

g is shown in dependence of the shearing rate. Val-
ues of the ratio below one, marked by a horizontal line, refer
to the low shear regime and value above to the strong shear
regime. For the presented hydrogen discharges it is found that
the transition takes place at a shearing rate of Ω ≈ 45kHz
(vertical line).
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FIG. 6. a) The poloidally and temporally averaged Reynolds stress
for two different flux surfaces (orange, inner and red, outer) plotted
against the shearing rate. With increasing shearing rate the Reynolds
stress increases roughly linearly and has a zero-crossing at around
Ω ≈ 40kHz. b) The production term calculated according to eq. (7)
plotted against the shearing rate. Positive values indicate that the en-
ergy is transferred from the turbulence into the mean-flow (i.e. zonal
flow). For higher shearing rates the energy transfer into the mean
flow takes increases, too.

V. INFLUENCE OF THE SHEAR ON THE REYNOLDS
STRESS AND THE ZONAL FLOW PRODUCTION

The background shear is supposed to change the tilt of the
turbulent structures resulting in a non-vanishing RS as pre-
vious simulations suggest.35 The local, time-averaged RS is
expected to depend linear on the E×B-shearing rate

Rloc(θ) = [−∆θdŝ + Ωloc(θ)τL(θ) ] 〈ṽ2
r 〉T , (9)

where ∆θd is the poloidal distance to the ballooning peak-
ing position, ŝ the global magnetic shear, Ωloc the local
E×B-shearing rate and τL = τg + τd the life-time of the tur-
bulent structures. For the flux surface averaged RS in the
confinement region, simulations show that the magnetic shear
is negligible because of its symmetry19 and the value of the
global shear in TJ-K is low at the array position (ŝ ≈−0.05).

In the experiment TJ-K, the RS (〈ṽr ṽθ 〉) is poloidally avail-
able from the array (see. III).12 The RS is averaged both tem-
porally and poloidally, as was previously applied in the case
of the background shearing rate. Both are plotted against the
shearing rate in fig. 6-a). The figure shows a roughly linear
dependence of the RS on the shearing rate, as theoretically
expected from eq. (9). The fit parameters are shown as inlay
and show a slightly different behavior depending on the radial
position. The positive correlation between the background
shearing rate and the RS confirms the concept of a negative
turbulent viscosity R ≈−νT Ω+a0 with the expected offset at
zero shear. Since the life-time, the power in the radial velocity

fluctuations and the shearing rate can vary poloidally the life-
time or radial velocity fluctuations may weight the shearing
rate differently and the RS is not necessarily zero if the mean
shearing rate is zero (R(Ω = 0)≈ 〈ΩlocτLṽ2

r 〉T 〉θ 6= 0).
As defined in sec. II, an energy transfer from the turbulence

into the mean flow takes place, if the production term is pos-
itive. The production term as derived in eq. (7) is calculated
from the experimental data (sec. III) and is plotted against the
shearing rate in fig. 6-b). All values are positive, which im-
plies an energy transfer from the turbulence into the poloidal
mean flow, as it is expected from the inverse cascade in two-
dimensional turbulent systems. The production term depends
roughly quadratically on the shear but the coefficients again
depend on the radial position. The quadratic behavior is ex-
pected from eq. 7, where the second term consists of the back-
ground RS and the background shearing rate (R(∂xV )2). For
both dependencies, the RS and the production term no signif-
icant change is found when entering the strong shear regime.

VI. REDISTRIBUTION OF POWER

As a consequence of the higher production at higher shear,
a redistribution of the energy towards the ZF is expected. For
verification, the frequency integrated k-spectrum of the poten-
tial fluctuations in fig. 7 shows the power distribution for se-
lected shearing rates. Here, the wavenumber is normalized by
ρs =

√
miTe/(eB0), where Te is obtained from the swept Lang-

muir probe, and the upper axis respectively shows the poloidal
mode number (m). Besides the m= kρs = 0 mode, which is re-
lated to the ZF, an m =−4 mode shows up which could be re-
lated to the rotational transform (-ι≈0.25) for TJ-Ks magnetic
field which could stimulate the m=−4 mode as most unstable
eigen mode30 in the system. For the increasing shearing rate,
the power in the broadband turbulence decreases. This drop
is stronger than the changes in the ZF power. Therefore, this
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FIG. 7. Frequency integrated wavenumber power-spectra for differ-
ent shearing rates. The local maximum at m = −4 may be related
to the rotational transform (-ι≈0.25) for TJ-Ks magnetic field. With
increasing shear, the m = 0 mode gains more power relative to the
other modes, i.e. the power is redistributed.
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describes a redistribution of the power as described by the k-ε model. b) With increasing shearing rate the relative ZF power increases and
reaches its highest level in the strong shear regime. This implies that increasing the background shear leads to an enhanced redistribution of
the energy towards the ZF.

qualitatively describes a redistribution of the spectral power.
In order to quantify the redistribution, the ZF mode is fil-

tered in the frequency-band 3 kHz-8 kHz and integrated. Fur-
ther the ZF power is normalized to the power of the total
k f -spectrum as done in a previous study.26 This relative ZF
power is plotted against the production term in fig. 8-a). The
roughly linear behavior indicates that indeed an increase in
the production takes place simultaneously with an increase of
the relative ZF power. This verifies the power redistribution
towards the ZF.

As mentioned before (sec. II), the production term for a
two-dimensional turbulent system can be reduced to a shear-
ing rate dependence. Further, the redistribution of power is
traced back to the change in the shearing rate, too. As can
be seen in fig. 8-b), the relative ZF power increases with the
shearing rate. At a shearing rate of around 45 kHz (vertical
line) the relative ZF power increases even more strongly. As
shown in the classification of the shear (fig. 5), the system
enters the strong shear regime at this shearing rate.

VII. SUMMARY AND CONCLUSIONS

The influence of the background E×B-shearing rate on the
redistribution of energy is experimentally studied for hydro-
gen discharges in the stellarator experiment TJ-K under exter-
nally controlled shear, which is achieved by electrode biasing.
A low shear regime from Ω = 0kHz− 45kHz and a strong
shear regime higher than Ω > 45kHz are identified.

Following the k-ε model, the energy transfer, i.e. the pro-
duction term, between the poloidal mean flow and the turbu-
lence can be described by the product of the Reynolds stress
and the shearing rate. In two-dimensional turbulence, as the
one in the stellarator TJ-K, the Reynolds stress is supposed to
be positive and to depend linearly on the shearing rate result-
ing in a quadratic dependency of the production on the flow
shear. Both dependencies are confirmed by the experimental
data justifying the RS approximation in terms of a negative
viscosity.

The redistribution of the energy is qualitatively shown by
k-spectra for selected shearing rates. It already indicates a dif-
ferent behavior of the zonal flow component compared to the
broadband turbulence, which is reduced in the strong shear
regime. For a quantitative study the relative zonal flow power
normalized to the total power of the k f -spectrum is analyzed
with respect to the production and the shearing rate. A roughly
linear dependency of the relative zonal flow power on the en-
ergy transfer indicates that indeed the redistribution of the
power can be inferred from the production term. In the strong
shear regime, the relative zonal flow power increases with
higher shearing rates and exhibits an even stronger increase.
The increasing shearing rate appears to entail a change in
the Reynolds stress and consequently of the production term
which describes an energy transfer towards the zonal flow.

The results show that indeed the background shear is able
to enhance the energy transfer from the broadband turbulence
to the zonal flow. Recent investigations of the I-phase in
ASDEX-Upgrade do not reveal any significant contribution
of turbulence driven zonal flows to the mean flow.36,37 It must
be stressed that the present work focusses on the energetic
zonal flow drive rather than damping, which co-determines fi-
nal zonal flow activity. For high-temperature plasmas as in
ASDEX-Upgrade and JFT-2M38, zonal flows could be sub-
ject to, e.g., ion-viscous damping, which is practically absent
in TJ-K plasmas because of low ion temperatures.22 Regard-
less of the detailed effects of zonal flow damping - which is
left for future studies - the present work clearly shows that the
power redistribution occurs as a more effective loss channel
of turbulence energy when background shear is active.
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